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Abstract

Background: During their lifespan, stem- or progenitor cells have the ability to
differentiate into more committed cell lineages. Understanding this process can be key
in treating certain diseases. However, up until now only limited information about the
cell differentiation process is known.

Aim: The goal of this paper is to present a statistical framework able to describe the
cell differentiation process at the single clone level and to provide a corresponding
inferential procedure for parameters estimation and structure reconstruction of the
differentiation network.

Approach: We propose a multidimensional, continuous-time Markov model with
density-dependent transition probabilities linear in sub-population sizes and rates. The
inferential procedure is based on an iterative calculation of approximated solutions for
two systems of ordinary differential equations, describing process moments evolution
over time, that are analytically derived from the process’ master equation. Network
sparsity is induced by adding a SCAD-based penalization term in the generalized least
squares objective function.

Results: The methods proposed here have been tested by means of a simulation
study and then applied to a data set derived from a gene therapy clinical trial, in order
to investigate hematopoiesis in humans, in-vivo. The hematopoietic structure
estimated contradicts the classical dichotomy theory of cell differentiation and
supports a novel myeloid-based model recently proposed in the literature.

Keywords: Cell differentiation tree, Penalized inference, Method-of-moments, Euler’s
method

Introduction
Over the past decade, gene therapy (GT) has proved its potential as a next-generation
therapy for many diseases that were untreatable by conventional therapies (Naldini 2011).
GT can be used to treat cellular defects due to a mutated gene by providing a fully
functional copy of it or by equipping target cells with a new cellular function through
genetic engineering. Most clinical approaches are based on the delivery of exogenous
DNA molecules by viral vectors using retrovirus- or lentivirus-derived systems. The
advent of next-generation sequencing (NGS) platforms (i.e. Roche/454 pyrosequencing
and Illumina sequencing technology) substantially improved the accuracy and resolution
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of viral integration site (IS) analyses (Biasco et al. 2011). This technological progress has
resulted in the availability of IS data from single transduction experiments that are two
orders of magnitude denser than previously possible. As a result, IS research has diver-
sified from characterizing the mechanisms driving the virus integration process and its
interactions with the host cell genome to investigating other biological questions. For
example, retrovirus IS distribution over the genome has been used as an indicator of
active gene enhancers and regulatory regions, involved in hematopoietic stem cell com-
mitment (Romano et al. 2016) or as a tool to follow individual cell fate in-vivo (Biasco et
al. 2016; Scala et al. 2018).
In clinical settings, GT has been successfully used, for example, to treat hematologi-

cal diseases such as Wiskott-Aldrich Syndrome (WAS), an inherited immunodeficiency
caused by mutations in the gene encoding WASP protein (Aiuti et al. 2013). In this
context, to ensure life-long curative potential and limit possible treatment side effect,
hematopoietic stem/progenitor cells (HSC) are harvested from patients’ bone marrow
(BM), corrected by means of virus-based manipulation and then re-infused to patients.
Treated cells acquire a unique label, represented by IS genomic coordinates, and this label
will be inherited by all cellular offspring generated by both duplication or differentiation
events inmore committed cell types. In other words, IS can be used as amolecular marker
to track individual HSC and evolution.
The set of cells, among all lineages under investigation, sharing a specific genomic

marker, and therefore deriving from a common HSC ancestor, is defined as a clone. The
analysis of the in-vivo clone evolution by means of periodic IS analysis performed on
patients’ BM or peripheral blood (PB) sample, is called clonal tracking. In the experi-
mental data analysed in this paper, 15 different cell sub-populations (named also cell
types or lineages), distributed along the hematopoietic hierarchy, have been collected
from three patients affected by WAS during their first three years after GT treatment.
Lineage-specific population sizes have been measured by means of reads count values
(Biasco et al. 2016), returned by NGS platforms. Given the amount of lineages, samples
and patients, this study provides a unique opportunity to reveal novel insight into human
hematopoiesis.
In the literature, various mathematical approaches for the quantitative analysis of

hematopoiesis have been proposed. For example, stochastic models for simplified hierar-
chical structures reduced to two categories, stem cells reserve and contributing clones,
have been developed in (Abkowitz et al. 1990; Catlin et al. 2001) and in (Becker et al. 1963)
for cat and mouse models, respectively. In (Marciniak-Czochra and Stiehl 2013) authors
proposed a more complex multi-compartment model described by a set of determinis-
tic functions, aimed at evaluating the mechanisms of regulation governing reconstitution
after HSCs transplantation in humans. However, in all these approaches, authors com-
pared how known and alternative hierarchies support various types of experimental data,
rather than making hierarchy estimation a goal of the inferential procedure itself. In this
respective, an interesting discovery-oriented approach applied to GT for WAS data has
been recently proposed in (Scala et al. 2018). Bymeans of additive Bayesian networkmod-
eling of IS detection, simultaneous structural learning and associations estimation have
been performed, in order to investigate differences in lineages dependence at early and
late phase after treatment. Dichotomizing IS measurements is motivated by the neces-
sity to alleviate the noisy nature of IS analysis, due to technical factors such as DNA
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amplification and sequencing, but it also discards valuable information about clone size
dynamics. Standard Bayesian network algorithms are in principle capable of both param-
eter inference and model structure learning. These methods are based on modeling
conditionally independence among nodes, usually using a contingency table parametriza-
tion in the case of binary variables. In the context of clonal tracking data, the results
derived from such a modeling approaches are difficult to interpret from a biological per-
spective. In general, the metrics adopted by learning methods like mutual information
make no distinction between positive and negative association. However, they have oppo-
site biological interpretations, where a positive dependence suggests a differentiation path
connecting two nodes, whereas a negative one supports the hypothesis that the nodes
belong to alternative differentiation branches. In addition, coefficients measuring depen-
dence strength are difficult to compare among each other and are particularly sensitive to
a significant amount of stochastic variation of the process itself and other effects, such as
saturation.
The goals of this paper are to propose a statistical framework able to model the cell dif-

ferentiation process (CDP) measured at single clone resolution, to provide an inferential
procedure able to perform both process parameters estimation and model reconstruc-
tion and finally, to investigate the hematopoietic process in humans. Our proposal derives
from the definition of a novel generative stochastic process for clonal tracking data,
defined over a network of lineages (nodes). The model is able to properly address the
stochastic nature of the cell differentiation process and given a specific setting for the net-
work parameters, generate complete evolution of clone size dynamics among all lineages.
Although the application in this paper is clearly geared towards the cell differentiation
process, themethodology underlying the analysis is completely general and can be applied
to any stochastic process that involves differentiation, replication and extinction, such as
political systems, corporate organizational development or even insect colonies.
A description of the continuous time, density-dependent Markov model for CDP, along

with the underlying assumptions, are detailed in “Stochastic cell differentiation model”
section. In “Approximate generalized method-of-moments estimation” section an effi-
cient generalized least square estimation procedure, relying on first order Euler’s method
approximation for the evolution of first and second order process moments is derived.
In “Model selection” section a sparsity-inducing penalty term is incorporated in the
estimation procedure in order to reconstruct the differentiation structure of the sys-
tems under investigation. A overview of the inference algorithm is given in “Schematic
overview of the inferential procedure” section. In “Simulation study” section the perfor-
mance of our proposal is verified by means of a simulation study. In “Investigating human
hematopiesis in vivo” section the experimental data previously mentioned are described
in more details and then analyzed. Finally, our findings are discussed in “Discussion”
section. “Conclusion” section is dedicated to final considerations, possible extensions and
future directions to improve the methodology.

Stochastic cell differentiationmodel
For each clone or integration site l a CDP can be defined as a N-dimensional Markov
process,X l(t), such that each elementXl

i (t) ofX l(t) =
(
Xl
1(t), . . . ,X

l
N (t)

)
, corresponds to

the number of cells (counts) of type (or lineage)Ci, i = 1, . . . ,N present in clone l at time t.
For notational convenience, we will drop the explicit dependence on each individual clone
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l in this section, as clones can be thought of as independent copies of each other. Given
an initial state vector, x0, the process evolves according to a random sequence of events,
divided in three categories: duplications, deaths and differentiations. Individual cells are
assumed to be independent from each other and cells belonging to the same lineage are
assumed to obey the same law. Single event rates are assumed to be non-negative and
constant over time. A graphical representation of cellular events is available in Fig. 1a and
a detailed description follows.

Cell duplication: 1Ci
αi−→ 2Ci

The net effect, or process state change induced by the duplication of a cell of type Ci is the
increment, of one unit, of Ci population size. Duplication rates, α = (αi, i = 1, . . . ,N),
correspond approximately to the probability that a generic cell of type Ci undergoes
duplication, in a time unit. The transition probability associated to a duplication event
in lineage Ci occurring in time interval [ t, t + �t) for process X(t) being in state xt , is
given by:

P(Xi(t + �t) = xi,t + 1|Xi(t) = xi,t) ≈ xi,tαi�t.

Cell death: Ci
δi−→ ∅

The net effect corresponding to a single death event is the decrease of one unit in the Ci
population size. Death rates in vector δ = (δi, i = 1, . . . ,N), are the probabilities that
a generic cell of type Ci dies, in a time unit. The transition probability associated to the
generic death event in a time interval [ t, t + �t) is:

P(Xi(t + �t) = xi,t − 1|Xi(t) = xi,t) ≈ xi,tδi�t.

Cell differentiation: Ci
λi,j−→ Cj

According to the biological literature, it is possible to distinguish between two different
models of differentiation: asymmetric cell division and signalling induced differentia-
tion. In the first case, cell division gives rise to two daughter cells with distinct features

Fig. 1 Cellular events and network representation of a fully connected 3-dimensional CDP. a Process
configuration modification associated to duplication (top), death (middle) and differentiation (bottom) of a
type 1 cell (circled in yellow). b Each node represent a lineage, arrows represent cell events and labels
corresponding events rates. Each lineage has two self-referring arrows, labelled with αi and δi , corresponding
to cell duplication and death respectively. Connections between nodes are differentiation paths
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and fates. In the second case, differentiation is a process induced by a set of cell-to-cell
signals, leading to conformational and receptor modifications and is not coupled with
a duplication event. The kind of differentiation considered in this work consists in the
transition of a single cell from lineage Ci to lineage Cj, and is equivalent to assume sig-
nalling induced differentiation. Similarly to duplication and death events, event rates
λ = (λi,j, i, j = 1, . . . ,N , i �= j) measure the probabilities that a generic cell of type Ci
undergoes differentiation into Cj, in a time unit. The transition probability associated to
a single differentiation event Ci → Cj in the time interval [ t, t + �t), for a system being
in state xt is given by:

P(Xi(t + �t) = xi,t − 1,Xj(t + �t) = xi,t + 1|Xi(t) = xi,t ,Xj(t) = xi,t) ≈ xi,tλi,j�t.

In a CDP involving N lineages, the complexity of the system depends on the number of
positive differentiation rates. This could vary from a minimum of 0 up to a maximum of
N(N − 1) in a fully interconnected system.
Readers familiar with literature concerning the modelling of systems of coupled bio-

chemical reactions, could recognize similarities between those models and the presen-
tation made so far for the CDP. Pursuing this parallelism, the set of cell events can be
interpreted as first-order mass-action kinetics (reactions), whilst the transition probabil-
ities per time unit, Xi(t)αi,Xi(t)δi and Xi(t)λi,j correspond to the propensity functions
(Wilkinson 2006; Purutcuoglu andWit 2008). Defining θ = (α, δ,λ) as the r-dimensional
column vector of parameters, the set of the propensity functions can be expressed in a
compact matrix notation as a r-dimensional column vector, obtained from the product
D(X(t))θ , where D(X(t)) is as a r × r diagonal matrix with elements of vector X(t) repli-
cated. Finally, the state changes associated to cell events can be recast into a net effect or
stoichiometric matrix, V , defined as the r × N integer matrix.
In order to clarify the elements just introduced, we present a derivation for a fully

connected CDP of size N = 3, that is graphically represented in Fig. 1b. In total,
r = 3+3+(3×2) = 12 distinct cell events can be defined and accordingly, the parameter
vector is given by: θ = (α1,α2,α3, δ1, δ2, δ3, λ2,1, λ3,1, λ1,2, λ3,2, λ1,3,, λ2,3)ᵀ. The net effect

matrix equals to: V =
⎡
⎢⎣

Vdupl
Vdeath
Vdiff

⎤
⎥⎦ where

Vdupl =
⎡
⎢⎣
1 0 0
0 1 0
0 0 1

⎤
⎥⎦ ; Vdeath =

⎡
⎢⎣

−1 0 0
0 −1 0
0 0 −1

⎤
⎥⎦ ; Vdiff =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0
1 0 −1

−1 1 0
0 1 −1

−1 0 1
0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and D(X) = diag(X1,X2,X3,X1,X2,X3,X2,X3,X1,X3,X1,X2). Because X(t) has been
defined as a Markov process, given an initial condition vector, Kolmogorov forward
equations enables to determine the time evolution of the process probability distribution
P(X(t), t). An alternative and equivalent formulation of the Kolmogorov equation, widely
used for modelling physical and chemical dynamic systems, is known asmaster equation
(Kampen 1981; Risken 1984; Gardiner 1985).
For the CDP described in this paper, the master equation is given by:
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dP(Xt , t)
dt

=
r∑

k=1

{[
D(Xt − Vk,·)θ

]
k P

(
Xt − Vk,·, t

) − [D(Xt)θ ]k P (Xt , t)
}

(1)

The solution of (1) involves the evaluation of the evolution of P(X(t), t) over the whole
set of admissible configurations for process X(t). Clearly, for systems of realistic size and
complexity this do not represent a feasible option. However, starting from (1), important
information about the dynamics of characteristic statistical features of the system can be
obtained. In particular, as shown in Appendix 1, two coupled sets of ordinary differential
equations (ODEs) are derived, describing the time evolution of lineage population size
averages, E[Xi(t)] , i = 1, . . . ,N , and variances-covariances �Xi,Xj(t), i, j = 1, . . . ,N :

dE[Xi(t)]
dt

=
r∑

k=1
vk,i [D(E [X(t)])θ ]k

with initial condition:

E[Xi(t0)]= xi,0 (2)

and

d�Xi,Xj(t)
dt

=
r∑

k=1
vk,j [D(E [Xi(t)X(t))] θ ]k +

r∑
k=1

vk,i
[
D(E

[
Xj(t)X(t))

]
θ
]
k

+
r∑

k=1
vk,ivk,j [D(E [X(t)])θ ]k − E[Xi(t)]

r∑
k=1

vk,j [D(E [X(t)])θ ]k

− E[Xj(t)]
r∑

k=1
vk,i [D(E [X(t)])θ ]k ;

with initial conditions:

E[Xi(t0)]= xi,0; E[Xi(t0)Xj(t0)]= xi,0xj,0. (3)

In the next session, starting from (2) and (3), an inference procedure is presented.

Inference
In this section, a two step inference procedure for parameters estimation andmodel selec-
tion is described. Themajority of studies aimed at answering biological questions through
clonal tracking experiments provide information about the simultaneous evolution of sev-
eral clones, observed at a limited set of timepoints. Assuming in a single experiment in
total L clones have been tracked, with S total observations at times t1 < · · · < tS, each
clone trajectory xl = (

xlt1 , . . . , x
l
tS

)
, with l = 1, . . . , L corresponds to an independent

realization of a unique, common CDP. Conditioning on the generic xlts , the mean and
variance-covariance values for lineage counts at time ts+1, can be estimated by solving (2)
and (3) with the following initial conditions:

E
[
Xl
i (ts)

]
= xli,ts ; E

[
Xl
i (ts)X

l
j (ts)

]
= xli,tsx

l
j,ts (4)

A computationally efficient, albeit approximated, solution for E
[
Xl
i (ts+1)

]
and

�Xl
i ,X

l
j
(ts+1) can be calculated by Euler’s method. Accordingly, for the lineage specific

mean population count, the following expression is derived:
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E
[
Xl
i (ts+1)

]
� E

[
Xl
i (ts)

]
+

dE
[
Xl
i (ts)

]

dt
[ ts+1 − ts] . (5)

By substituting the second term on the right-hand-side (RHS) of (5) with (2) and including
initial condition defined in (4), equation (5) becomes:

E
[
Xl
i (ts+1)|Xl(ts) = xlts

]
� xl,its +

r∑
k=1

vk,i ·
[
D

(
xlts

)
· θ

]
k
·[ ts+1 − ts]

or, in an equivalent matrix notation:

E
[
Xl(ts+1)

]
� xlts + Vᵀ · D

(
xlts

)
· θ ·[ ts+1 − ts] . (6)

A similar reasoning can be applied to approximate the solutions for variance-covariance
indexes, �Xl

i ,X
l
j
(ts+1), introduced in (3):

�Xl
i ,X

l
j
(ts+1) � �Xl

i ,X
l
j
(ts) +

d�Xl
i ,X

l
j
(ts)

dt
[ ts+1 − ts] . (7)

The first term in on the RHS of (7), by definition of variances-covariances as second
central moments and initial conditions in (4), equals 0, while the second term simplifies
to:

d�Xl
i ,X

l
j
(ts)

dt
=

r∑
k=1

vk,i · vk,j ·
[
D

(
xlts

)
· θ

]
k

or, in matrix notation:

�Xl (ts+1) � Vᵀ · D
(
xlts

)
· Diag (θ) · V ·[ ts+1 − ts] . (8)

Let now define �Xl(ts) as:

�Xl
ts = Xl(ts+1) − Xl(ts) (9)

a collection of N-dimensional r.v. modelling the state increment occurring in a time
interval [ ts+1 − ts]. It is straightforward to show by linearity of expectation operator that:

E
[
�Xl

ts | Xl(ts) = xlts
]

� Vᵀ · D
(
xlts

)
· θ ·[ ts+1 − ts] (10)

and by invariance property with respect to shift in location parameters of variance-
covariance index:

��Xl
ts |Xl(ts)=xlts

� Vᵀ · D
(
xlts

)
· Diag (θ) · V ·[ ts+1 − ts] . (11)

The piece-wise constant nature of the propensity functions over time, allows to make
some considerations concerning the degree of the approximation provided by Euler’s
method in (10) and (11). In the time elapsing between consecutive cellular events, the
propensity functions are not subjected to variation, since they depend on the current
process configuration and on parameters θ , assumed constant over time. Modification of
their values can eventually occur only in coincidence with cellular events. It follows that
if the set of time t1, . . . , tS corresponds to the sequence of events times, the probabili-
ties D

(
xlts

) · θ ·[ ts+1 − ts] associated to the set of possible state variations are constant
as well. It is thus possible to consider state increment as a regular discrete random vari-
ables and conclude that, under this specific sampling scheme, (10) and (11) are exact
results rather than an approximation.When the time distance between consecutive obser-
vations increases, it becomes more likely that more than one event occur within them,
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decreasing the quality of the approximation. The impact of sampling times intervals will
be investigated by means of a simulation study in “Simulation study” section.

Approximate generalized method-of-moments estimation

Formulas given in (10) and (11) state that first order approximation for both increments
conditional expectation and variance-covariances can be calculated as linear combination
of the propensity functions at time ts, in turn linear with respect to both process state and
parameters vector. This result suggests an estimation of θ as a linear regression problem
of type

dx � Mθ + ε; E[ ε]= 0; �ε = W (12)

where

dx =

⎡
⎢⎢⎢⎢⎣

dx1t0
dx1t1
...

dxLtS−1

⎤
⎥⎥⎥⎥⎦

M =

⎡
⎢⎢⎢⎢⎣

M1
t0

M1
t1
...

ML
tS−1

⎤
⎥⎥⎥⎥⎦

andW =

⎡
⎢⎢⎢⎢⎣

W 1
t0 0 . . . 0
0 W 1

t1 . . . 0
...

...
. . .

...
0 0 . . . WL

tS−1

⎤
⎥⎥⎥⎥⎦
, (13)

respectively, (i) dx is a [ L ·S ·N]-dimensional column vector in which the generic element
dxlts = vec(xlts+1 − xlts) is a N-dimensional column vector corresponding to observed
increments in cells counts, interpretable as realizations of the r.v. defined in (9); (ii)M is a
[ L · S ·N]×r predictors matrix where the generic elementMl

ts = Vᵀ ·D(xlts)·[ ts+1 − ts] is
a N × r matrix; (iii) The covariance matrix W is a blocks diagonal matrix describing the
dependence between lineages counts increments belonging to the same time-point and
independence among all the other. Each blockWl

ts is aN ×N matrix and is approximated
by (11) as Vᵀ · D(xlts)·[ ts+1 − ts] · diag · (θ) · V .
Both duplication and death events involve only a single lineage and associated columns

in M matrix result in pairs numerically equal but with opposite sign, causing rank defi-
ciency. To overcome this issue, a new set of parameters, γ = α − δ named net duplication
rates is defined. Differently from others, elements of γ take values in R. In particular, γi is
positive if cells in lineage Ci undergo duplication with a higher rate than death (αi ≥ δi),
and with a lower rate if the reverse is true (αi ≤ δi). Therefore, the followingmodifications
have to be done. Parameters vector θ reduces to θ∗ = (γ ,λ), an r∗-dimensional vector,
where r∗ is equal to r − N , V∗ is the reduced net effect matrix of dimension r∗ × N and
M∗ is a [ L · S · N]×r∗ matrix equal to M but columns related to death events removed.
Although it is not possible to infer simultaneously both duplication and death rates, the
modifications introduced have limited impact on the precision of the estimators, since
the productMθ is equal toM∗θ∗.
It is now possible to define the constrained generalized least squares (CGLS) estimator

as:

θ̂∗ = argmin
θ∗

(dx − M∗θ "∗)ᵀW ∗−1
(dx − M∗θ∗) s.t. λ ≥ 0 (14)

Due to the non-negativity constraint on differentiation rates λ and the dependence
of W ∗ on the unknown parameters θ∗, a closed form solution for θ̂∗ is not available.
A description of the iterative procedure for solving the CGLS minimization problem is
presented in Appendix 2.
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Model selection

Biologically meaningful and realistic cell differentiation structures are characterized by
a limited number of connections between lineages. From a statistical modelling point of
view, this type of result can be encouraged bymeans of sparsity promoting components in
the differentiation parameters vector. Within the class of differentiation rates, it is usually
possible to distinguish two types of relations between cell lineages: relations with differ-
entiation rates known to be equal to zero due to the hierarchical cellular structure, and
relations that do not violate hierarchical constraints and whose rates can be either zero
or positive. The first category includes all rates related to the differentiation of mature
lineages into stem/progenitors cells. The associated parameters are simply set to zero a
priori. For the second category, a penalization procedure based on the smoothly clipped
absolute deviation (SCAD) penalty function (Fan 1997) is applied. SCAD penalization has
several advantages over another widely used technique, i.e., least absolute shrinkage and
selection operator (LASSO). Although the LASSO hasmany excellent properties and very
efficient implementations, it is a biased estimator. This bias affects in particular parame-
ters that are truly non-zero, and does not disappear when the sample size increases. The
SCAD penalty, instead, retains the penalization rate of the LASSO for small coefficients,
but continuously relaxes the rate of penalization as the absolute value of the coefficient
increases, leading to asymptotically unbiased estimates (Fan and Li 2001). The SCAD
penalty function is defined as:

pη(θ) =

⎧⎪⎨
⎪⎩

η|θ |, if 0 ≤ |θ |≤ η
(ξ2−1)η2−(|θ |−ξη)2

2(ξ−1) , if η ≤ |θ |≤ ξη

(ξ+1)η2
2 , if |θ |≥ ξη

(15)

where η > 0 and ξ > 2. As for many other penalization procedures, the role of the
threshold parameters, η and ξ , is to tune the degree of sparseness in the final model and
valid setting criteria for them are needed to ensure the accuracy of the estimator. Setting
ξ = 3.7, the SCAD penalty has been demonstrated to give a satisfactory performance in a
variety of variable selection problems (Fan and Li 2001) and it has therefore been adopted
in this paper.
The optimal value of η has been chosen according to a generalized cross-validation

(GCV) minimization criteria (Golub et al. 1979; Tibshirany 1996). The GCV is defined as:

GCV η = 1
n

‖dx − ̂dx‖2
(1 − e/n)2

(16)

where ̂dx = M∗θ̂∗P , e = tr[M∗(M∗ᵀW ∗−1M∗ + Pη)
−1M∗ᵀW ∗−1] corresponds to

the number of effective parameters and Pη is a r∗ × r∗ parameters penalization matrix
described in detail in Appendix 3. Finally, given a particular value for η, the parameters
estimates are calculated by minimizing the following objective function:

θ̂∗P = argmin
θ∗

(dx − M∗θ∗)ᵀW ∗−1
(dx − M∗θ∗) + n

∑
pη(λi,j) s. t. λ ≥ 0 (17)

In the penalized CGLS (PCGLS) algorithm described in Appendix 3, the penaliza-
tion function is included in an iterative procedure able to perform model selection and
parameters estimation simultaneously.
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Schematic overview of the inferential procedure

In this section, we outline whole inferential procedure in pseudo-code notation. The
algorithm can be split into two major and consecutive parts that have been introduced
in “Approximate generalized method-of-moments estimation” and “Model selection”
sections: CGLS and PCGLS. Detailed description for each of them can found in Appen-
dices B and C, respectively. Algorithm 1 starts with the calculation of increments vector
dx and the regression matrixM∗ in (13). It receives as input a set η of candidate values for
the SCAD tuning parameter. The initial values for the CGLS iterative procedure are cal-
culated by solving a constrained ordinary least square problem (COLS), in which errors
are assumed independent and homoscedastic. The COLS estimates θ̂∗0 are then used to
calculate a first estimate for the covariance matrix Ŵ ∗. By means of an iterative proce-
dure, estimates for θ̂∗ and Ŵ ∗ are then sequentially refined, until the convergence criteria
are satisfied. Final θ̂∗ returned by the CGLS part is then used as parameter starting values
in the PCGLS procedure, aimed at reconstructing the true, sparse model configuration
by shrinking small coefficients to zero. In the PCGLS algorithm, parameter estimates and
model structure identification are simultaneously updated. Once the convergence crite-
rion is met, general cross-validation (GCV) statistics are calculated as shown in (16) to
select the network configuration corresponding to minimum cross-validation error.

Simulation study

In this section we present a simulation study to evaluate the performance of the infer-
ence procedure. The settings used in the simulation study closely correspond to the gene
therapy dataset analyzed in “Investigating human hematopoiesis in vivo” section, using
the most recent model of hematopoiesis that has been suggested for non-human primates
(Goyal et al. 2015). A simulated hierarchical differentiation process (SHDP) of sizeN = 15
has been designed with 3 hierarchical layers where differentiation paths are only allowed
between adjacent levels and in a unidirectional way. The top layer, constituted by a single
“stem cell” lineage (node: 1), is characterized by a positive net duplication rate. The mid-
dle layer is composed of 7 partially interconnected lineages (nodes: 2-8), all derived from
differentiation events occurred in top lineage cells and able to generate bottom level cell
types. The net duplication rates in this layer are heterogeneous and can be both positive
or negative. Finally, the 7 lineages in the bottom layer (nodes: 9-15) have no differentia-
tion potential and they all die faster than duplicate. A biological interpretation is that the
top layer corresponds to stem cells, responsible for the generation of a set of myeloid and
lymphoid branches specific progenitors in the BM (second layer). Each progenitor is then
able to give rise to a small subset of committed cell, circulating in the PB (third layer) and
characterized by limited lifespan. A graphical representation of the SHDP model is given
in Fig. 2 along with a matrix representation of rates intensities, hierarchical constraints
and the differentiation rates.
The aims of the simulation study are (i) to verify the performance of the pro-

posed inferential procedure in case of a hierarchically structured systems and (ii)
to measure the impact of different sampling time interval lengths on both esti-
mation precision and model selection, i.e., the reconstruction of the true under-
lying differentiation process. Each experiment is composed of N = 1000 sim-
ulated clone evolutions, all generated starting from the same initial state vector
consisting of a single hematopoietic stem cell. Continuous-time clones dynamics
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Algorithm 1: Structure of the proposed inferential procedure composed by CGLS and
PCGLS
Data: dx,M∗,η
Result: Parameters estimates θ̂∗ and model structure with minimum GCV
begin

CGLS (Appendix B): begin
Initialization: tol = ε , iter = 0;
θ̂∗0 = argmin

θ∗
(dx − M∗θ∗)ᵀ(dx − M∗θ∗) s.t. λi,j ≥ 0;

while
∑r∗

i=1(| θ̂∗iter − θ̂∗iter−1 |) ≥ tol do
Update Ŵ ∗iter with current θ̂∗iter ;
Update θ̂∗iter with current Ŵ ∗iter ;

end while
Return θ̂∗

end

PCGLS (Appendix C): begin
foreach η in η do

iter = 0;
θ̂∗0

P=θ̂∗;
while

∑r∗
i=1(|θ̂∗iter

P − θ̂∗iter−1
P |) ≥ tol do

Update Ŵ ∗iter
P with current θ̂∗iter

P ;
Update Piter

η,λ with current η, θ̂∗iter
P ;

Update θ̂∗iter
P with current Ŵ ∗iter

P , Piter
η,λ ;

end while
Calculate GCV(η);

end foreach
end
Return model associated to minimum GCV(η);

end

are simulated by means of Gillespie algorithm (Gillespie 1977; Wilkinson 2006)
according to the SHDP configuration in Fig. 2. Process states are then recorded at equis-
paced time intervals of lengths, dt = (0.1, 0.2, 0.5, 0.7, 1), up to the end time-point fixed at
tend = 4. Based on these fixed time observations, state increments vector are calculated
and given as input to the algorithm described in “Schematic overview of the inferential
procedure” section. In the GCV procedure we consider a sequence of candidate values η

from 0.001 to 0.1 with 0.001 step sizes.
In total, 100 independent experiments have been analyzed, each composed by 1000

simulated clones. Results are graphically represented in two figures. Figure 3 shows the
impact of sampling interval length on the ability to correctly estimate process parame-
ters. The performance regarding four specific rates are reported: a positive and a negative
net duplication rate, one positive differentiation rate and one absent differentiation coef-
ficient. The distribution of the estimates obtained from the 100 replicates are represented
as a boxplot. In Fig. 4 the accuracy in terms of network reconstruction for increasing dt
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Fig. 2 Configuration of the Simulated Hierarchically Differentiation Process. a Network configuration of the
SHDP. The assumed structuremimics a potential model for human hematopoiesis according to both literature
and experimental data. Network layout has been generated with a force directed layout. b Parameters
heatmap. Main diagonal elements correspond to net duplication rate. Off-diagonal elements correspond to
differentiation rates (row → column). Light-Grey entries are differentiations rates fixed to 0 but in the set of
the potentially present differentiation paths (67). Dark-Grey entries are excluded from the inferential
procedure due to violation of hierarchical constraints (112). The colored boxes correspond to: red, top to
middle layer connections; blue, middle layer inter-connections; pink, middle to bottom layer connections

values is summarized. The distribution of two indices, recall and precision, are plotted
by means of boxplots. In particular, we focus on verifying how reliable our proposal is
in estimating absent connections among lineages. Precision measures the proportion of
true differentiations among the identified differentiations, while recall (also known as
sensitivity) is the proportion of identified differentiations among the true differentiations.
From a computational point of view, the Gillespie algorithm has been implemented

in C++ (Stroustrup 1997) with the support of the Eigen library (Guennebaud et al.
2010). The inferential and penalization procedures are implemented in R (R Core Team
2015) by means of custom scripts requiring sparse Matrix packages for efficient dense
and sparse matrix manipulations (Bates and Maechler 2015). QP problems (21) and
(22) are solved by means of IBM ILOG CPLEX Optimizer, freely available under
the IBM Academic Initiative program (IBM 2010). The simulated clone trajectories
included in a single experiment (1000 clones) are generated in approximately 4 min-
utes. The inferential procedure takes from 5 to 12 minutes to complete on a single
dataset, using candidate values for SCAD parameter (η) as mentioned above. In gen-
eral, with a small dt value (0.1), the amount of data to be processed is about 10 times
higher than with dt = 1, increasing the computational burden and time. This aspect is
slightly counter-balanced by the fact that with higher dt values, the number of iterations
required for convergence is higher (3.8 vs. 7.1 with dt equal to 0.1 and 1 respectively).
For the setting tested and reported in this manuscript, no convergence issues have
been observed.

Investigating human hematopoiesis in vivo
In this section, we return to the motivating Wiskott-Aldrich syndrome (WAS) gene ther-
apy (GT) clinical study. The aim is to infer the network structure of the hematopoietic
process in humans, along with lineage-specific duplication, death and differentiation



Pellin et al. Applied Network Science           (2019) 4:115 Page 13 of 26

Fig. 3 Distribution of parameter estimates for increasing dt values. On each experiment included in the
SHDP simulation study the inferential procedure has been applied by setting dt value to (0.1, 0.2, 0.5, 0.7, 1).
Each boxplot describe the distribution of 100 independent estimates obtained for a specific parameter/dt
pair. Four parameters are shown: a) a positive net duplication rate, γ1 (0.8); b) a negative net duplication rate
γ11 (-0.05); c) a positive differentiation rate, λ1,2 (0.1). d) an absent differentiation path, λ3,2 (0)

rates. Technical and experimental protocols used to collect the data have been described
in Aiuti et al. (2013); Biasco et al. (2016); Scala et al. (2018) and are briefly summarized
below.
At time 0, corrected HSCs harvested from BM are re-infused in 3 patients previously

treated with bone marrow suppressive drugs enhancing immunosuppression in order to
ensure a higher level of engraftment for corrected HSCs. In the patient’s body, marked
HSCs start to duplicate, die and possibly differentiate into functionally more specialized
cells, passing on the copy of the WASP gene to all the offspring generated, reconstituting
a functional hematopoietic heritage. Viral IS selection is itself a quasi-random process
and the probability that two integration events occur in the same genomic position in
two distinct cells is negligible (Ambrosi et al. 2008; Biasco et al. 2011; Pellin and Di Serio
2016). Therefore, IS coordinates can be used as a molecular marker to monitor the in-
vivo evolution of a single HSC and of its progeny. BM and PB samples have been taken
for the 3 patients at 1, 2 and 3 years after treatment, enriched by means of magnetic cell
sorting (MACS) technology according to a set of antibodies known to be lineage-specific.
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Fig. 4 Network reconstruction accuracy for different dt values. For each experiment included in the SHDP
simulation study, the best reconstructed network selected by the inferential procedure has been compared
to the true model configuration. Each replicate has been analysed by setting dt value to (0.1, 0.2, 0.5, 0.7, 1).
Precision and recall values have been calculated considering only differentiation rates subjected to estimation
(excluding λi,j fixed to 0 due to hierarchical constraints) and measure the capability to correctly estimate
absent differentiation paths, λi,j = 0. Each boxplot corresponds to 100 independent precision/recall values

Finally, these samples were sequenced by means of the Illumina Miseq platform (Biasco
et al. 2011). A bioinformatic pipeline starting from the sequencing output detects the IS
coordinate (labels) and quantifies by means of reads count values the label distributions
over lineages and time.
In total 37,637 distinct clones have been tracked covering 15 cell types divided in a three

hierarchical levels: (i) the HSC level: CD34; (ii) the BM level: CD3, CD14, CD15, CD19,
CD56, CD61, GLYCO and (iii) the PB level: CD3, CD4, CD8, CD14, CD15, CD19, CD56.
In order to limit potential bias introduced by the low recapture probability of clones
known to affect clonal tracking data, we kept only the 1083 clones with more than 15
observations across all lineages and time-points.
In accordance with the current state of the biological literature, the following assump-

tions have been made: (i) lineages in the HSC level can differentiate in any other cell type
in BM level; (ii) lineages in the BM level can be connected to any cell type in BM and PB
level; and (iii) lineages in the PB level cannot differentiate.
DNA library preparation for NGS based sequencing requires a linear amplification

step known to be a source of noise potentially affecting cells counts measurement. To
investigate the reliability of available information, part of the HSCs sample has been
sequenced after a time interval in which is reasonable to assume that no or few cell events
occurred, therefore are clones of size 1. Based on 3104 ISs, a median absolute deviation
(MAD) statistics equal to 6.1 has been calculated, leading to a process noise estimate
σ̂ 2 = (1.48×MAD)2 = 81.5 (Rousseeuw and Croux 1993). This value has been incorpo-
rated in the inference and model selection procedures by modifying variance-covariance
matrix as Ŵ ∗ = W ∗+σ̂ 2I. In order to facilitate the biological interpretation of the results
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obtained, a filtered version (only λi,j ≥ 0.1) of estimated human hematopoiesis structure
is given in Fig. 5. The full model can be found in Appendix 4.

Discussion
In the simulation study presented in “Simulation study” section, a candidate model of
hematopoiesis of realistic complexity has been considered. The inferential procedures
presented in “Approximate generalizedmethod-of-moments estimation” section relies on
iteratively updated approximate solutions for 2 coupled systems of ODEs with initial con-
ditions. The accuracy of such approximations is known to be inversely proportional to the
time distance between consecutive observations. This is particularly relevant given the
sampling schema adopted in the experimental study. For these reasons, different values
for dt have been considered and the clones’ evolution has been observed until tend = 4.
As shown in Fig. 3, dt affects the estimation precision. This result was expected and

can be attributed to the loss of approximation quality provided by Euler’s method for
moments evolution with higher dt values. Bias consistently increases with interval length
and for the settings considered in this paper only for dt = 0.1 parameter estimates are
centered around the true values. The only exception is λ3,2, shown in panel Fig. 3d, for
which the performance is of good quality and similar across all dt settings, despite the fact
that the overall amount of information available on clone dynamics decreases 10 times.
This remarkable feature is the result of the penalization procedure that attenuate the dt
effect by shrinking small coefficients to zero. In terms of model reconstruction accuracy,
data in Fig. 4 show that precision values are close to 1 for all settings evaluated, meaning
that we are very confident that λ̂i,j = 0 correspond to truly absent differentiation paths.
This is consistent across dt. On the other hand, recall behaviour suggests that our proposal

Fig. 5 Estimated (filtered) human hematopoietic differentiation process. a The network configuration of the
human hematopoietic differentiation process. Nodes representing lineages positive for the surface marker
and collected from bone marrow and peripheral blood (circled) have the same color. Lymphoid lineages
have a blue/green color, whereas myeloid cell types are red/orange and violet. The node corresponding to
the stem cell (CD34) is dark blue and circled in black. Glycophorin positive cells(Glyco) and CD61 are
respectively grey and pink. Network layout has been generated with a force directed layout, excluding
λi,j ≤ 0.1. b Parameters heatmap. Main diagonal elements correspond to net duplication rate. Off-diagonal
elements correspond to differentiation rates (row → column). Light-Grey entries are differentiations rates
estimated as 0 by SCAD penalization or smaller than 0.1. Dark-Grey entries are excluded from the inferential
procedure due to violation of hierarchical constraints (112)
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is not able to identify all absent differentiations (i.e. λi,j = 0), but on average only 4%more
are missed with dt = 1 (78%) compared to dt = 0.1 (82%).
In view of the above encouraging results, in particular regarding the network struc-

ture, it is possible to give the following interpretation of the final model for human
hematopoiesis shown in Fig. 5. According to the hematological classification, the follow-
ing branches can be defined: (i) the lymphoid branch, including CD3 and CD19 in BM and
CD3, CD4, CD8 and CD19 in PB; (ii) the myeloid branch composed of CD14, CD15 and
CD56 in both BM and PM; (iii)Glycophorin positive cells, corresponding to Glyco BM and
(iv) the CD61 positive lineage. The flexibility of such a classification is currently debated
and evidence for the presence of progenitors in BM straddling multiple branches emerged
in multiple independent studies (Kawamoto et al. 2010; Kawamoto et al. 2010; Aiuti et
al. 2013). Our results support this hypothesis. The complexity of the relationship among
BM lineages is high and characterized by relevant cross-branches differentiation paths,
mainly in myeloid to lymphoid direction, such as CD14 → CD19, CD14 → GLYCO and
CD56 → CD19. A possible explanation can be found in a recent investigation aimed at
dissecting the heterogeneous CD34 HSC population, suggesting the presence of interme-
diate stages, named Myeloid PluriPotent then followed by a Multi Lymphoid Progenitor
(Biasco et al. 2016; Scala et al. 2018). All lineages in BM, with exception of CD15, have
connections with their committed homologous subpopulation in PB compartment, as
biologically expected.
The full model represented in Appendix 4 displays a much higher level of com-

plexity with respect to Fig. 5. As showed in Appendix 5, a considerable amount of
low differentiation rates are present. We consider them mostly related to the intrin-
sic sampling issues associated with clonal tracking experiments. In fact, it is difficult
to obtain a consistent detection of all clones contributing to a given lineage across
all time-points. The missing observation of clones in an intermediate cell popula-
tion, say Ck , connecting lineages Ci and Cj for example, leads the inference algo-
rithm at estimating weak differentiation rates between Ci → Cj directly, in addition
to the true Ci → Ck → Cj path. This problem affects in particular BM data, where
bone marrow aspiration location, not always maintained unchanged over the follow-
up period, can strongly affects clone capture probabilities. We set a threshold at 0.1,
that we consider offering a good balance between model complexity and interpretability
of the results.

Conclusion
In this paper, we presented a statistical model for cell differentiation process along with an
inferential procedure able to provide parameters estimation and cell differentiation net-
work reconstruction. The model has been defined as a continuous-time Markov chain,
with density-dependent transition probabilities and considers three categories of cellular
events: duplications, deaths, and differentiations. Starting from a special formulation of
the Kolmogorov forward equation, two coupled set of ODEs have been derived, describ-
ing the time evolution of process first and second central moments over time. ODEs
solutions have been approximated by Euler’s method allowing for parameter estimation
via a general linear regression setup.
In order to take into account the dependence among process components due to dif-

ferentiation events and non-negativity constraints on a subset of parameters, estimation
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is performed by means of an iterative generalized least square procedure, solved using
an efficient quadratic programming approach. However, a biologically meaningful differ-
entiation network is expected to be characterized by a limited amount of connections
between lineages. To encourage a data-driven parsimonious solution and to provide an
estimation of the best candidate differentiation pathway, a penalization step based on
SCAD penalty function and a GCV criterion have been introduced.
Inferential procedures have been tested in a simulation study, mimicking a realistic can-

didate structure for human hematopoiesis. As expected, in case of frequently repeated
observations for process state over time, Euler’s method provides a good approximation
for moments evolution and, consequently, both parameters and model structure esti-
mations are more accurate. When the time elapsing between consecutive observations
increases, the quality of the estimations decreases, in particular for a subset of param-
eters. Despite this, model structure reconstruction is still reliable. The main limitation
of the proposed model for cell differentiation, from a biological point of view, is rep-
resented by the linearity of the propensity functions, potentially allowing for unlimited
clone expansion. However, it is worth noting that patients are immunodepressed at the
time of treatment and that time necessary to reach a stable steady state equilibrium for
lineages total populations is in the order of years.
Finally, human hematopoiesis structure and lineages specific parameters have been

investigated by applying the developed method to a recent Wiskott-Aldrich syndrome
gene therapy clinical study. The obtained result supports a recently proposed complex,
interconnected myeloid/lymphoid branching model over previous simpler alternatives.
In future work we aim to extend the statistical framework presented in this

paper to other, more flexible, dynamics formulation, such as Gompertz and logis-
tic growth models. Additional attention will be paid to the inferential procedure,
where the computationally efficient Euler’s method will be substituted with more com-
plex alternatives, able to better approximate the solution of the ODE systems. From
an application perspective, we consider of particular interests the potential compar-
ison of the results obtained from the analysis of gene therapy data for WAS to
those retrieved from different ongoing clinical trials, such as gene therapy for Adeno-
sine Deaminase deficiency (ADA), Metachromatic Leukodystrophy (MLD) or sickle
cell disease.

Appendix 1: Derivation of moment equations

By means of the summation operator,
∑

x∈x̃, spanning over the whole set of possible state
for process X(t), x̃ = Z

N , it is possible to derived a functional connection between the
evolution for the expected population size of each process component and the dynamics
of the process probability distribution P(X(t), t):

dE[Xi(t)]
dt

=d
∑

x∈x̃ xiP(X(t) = x, t)
dt

=
∑
x∈x̃

xi
dP(X(t) = x, t)

dt

The evolution of P(X(t), t) can be expressed by means of the master equation introduced
in 1:
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dE[Xi(t)]
dt

=
∑
x∈x̃

xi
r∑

k=1

{[
D(x − Vk,·)θ

]
k P

(
x − Vk,·, t

) − [D(x)θ ]k P (X(t) = x, t)
}

Due to the fact that the summation operator
∑

x∈x̃ span over the all possible state
configurations, the order of summation operators in the RHS can be inverted:

dE[Xi(t)]
dt

=
r∑

k=1

∑
x∈x̃

xi{
[
D(x − Vk,·)θ

]
k P

(
x − Vk,·, t

) − [D(x)θ ]k P (X(t) = x, t)}

=
r∑

k=1

⎧⎨
⎩

∑
x∈x̃

xi
[
D(x−Vk,·)θ

]
k P

(
x− Vk,·, t

) −
∑
x∈x̃

xi [D(x)θ ]k P (X(t) = x, t)

⎫⎬
⎭

Now, the summation variable in the first term of the RHS can be modified, without
affecting the sum domain, since it cover all the possible state configuration:

dE[Xi(t)]
dt

=
r∑

k=1

⎧
⎨
⎩

∑
x∈x̃

(xi+vk,i) [D(x)θ ]k P (X(t)=x, t)−
∑
x∈x̃

xi [D(x)θ ]k P (X(t) = x, t)

⎫
⎬
⎭

=
r∑

k=1

⎧
⎨
⎩

∑
x∈x̃

xi [D(x)θ ]k P (X(t) = x, t) + vk,i [D(x)θ ]k P (X(t) = x, t)−

∑
x∈x̃

xi [D(x)θ ]k P (X(t) = x, t)

⎫
⎬
⎭

=
r∑

k=1

∑
x∈x̃

vk,i [D(x)θ ]k P (X(t) = x, t)

Given the known property for expected value of function f (x) of a r.v. x with probability
distribution P(x), E[ f (x)]= ∑

x f (x)P(x):

dE[Xi(t)]
dt

=
r∑

k=1
E

[
vk,i [D(X(t))θ ]k

]

Finally, by linearity of expectation:

dE[Xi(t)]
dt

=
r∑

k=1
vk,i [D(E [X(t)])θ ]k (18)

A similar approach can be extended to define a system of ODEs for the time evolution for
second order moments of X(t):
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dE[Xi(t)Xj(t)]
dt

= d
∑

x∈x̃ xixjP(X(t) = x, t)
dt

=
∑
x∈x̃

xixj
dP(X(t) = x, t)

dt

=
∑
x∈x̃

xixj
r∑

k=1
{[D(x − Vk,·)θ

]
k P

(
X(t) = x − Vk,·, t

) − [D(x)θ ]k P (X(t) = x, t)}

=
r∑

k=1

∑
x∈x̃

xixj{
[
D(x − Vk,·)θ

]
k P

(
X(t) = x − Vk,·, t

) − [D(x)θ ]k P (X(t) = x, t)}

=
r∑

k=1

⎧⎨
⎩

∑
x∈x̃

xixj
[
D(x − Vk,·)θ

]
k P

(
X(t) = x − Vk,·, t

) −

∑
x∈x̃

xixj [D(x)θ ]k P (X(t) = x, t)

⎫⎬
⎭

=
r∑

k=1

⎧⎨
⎩

∑
x∈x̃

(xi + vk,i)(xj + vk,j) [D(x)θ ]k P (X(t) = x, t)−

∑
x∈x̃

xixj [D(x)θ ]k P (X(t) = x, t)

⎫
⎬
⎭

=
r∑

k=1

⎧
⎨
⎩

∑
x∈x̃

xixj [D(x)θ ]k P (X(t) = x, t) +
∑
x∈x̃

vk,jxi [D(x)θ ]k P (X(t) = x, t) +
∑
x∈x̃

vk,ixj [D(x)θ ]k P (X(t) = x, t) +
∑
x∈x̃

vk,ivk,j [D(x)θ ]k P (X(t) = x, t)−

∑
x∈x̃

xixj [D(x)θ ]k P (X(t) = x, t)

⎫⎬
⎭

=
r∑

k=1

⎧⎨
⎩

∑
x∈x̃

vk,jxi [D(x)θ ]k P (X(t) = x, t) +
∑
x∈x̃

vk,ixj [D(x)θ ]k P (X(t) = x, t)+

∑
x∈x̃

vk,ivk,j [D(x)θ ]k P (X(t) = x, t)

⎫⎬
⎭

=
r∑

k=1
E

[
vk,jXi(t) [D(X(t))θ ]k

] +
r∑

k=1
E

[
vk,iXj(t) [D(X(t))θ ]k

]+
r∑

k=1
E

[
vk,ivk,j [D(X(t))θ ]k

]

=
r∑

k=1
vk,j [D(E [Xi(t)X(t))] θ ]k +

r∑
k=1

vk,i
[
D(E

[
Xj(t)X(t))

]
θ
]
k +

r∑
k=1

vk,ivk,j [D(E [X(t)])θ ]k

The generic element of the covariance matrix �Xi,Xj(t), describing the covariance
between the X(t) components Xi(t) and Xj(t), can be expressed as a combination of first
and second order moments:

�Xi,Xj(t) = E[Xi(t)Xj(t)]−E[Xi(t)] E[Xj(t)] (19)
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Applying derivation rule to both sides, it is possible to derived a system of ODE for the
evolution of covariance matrix elements as:

d�Xi,Xj(t)
dt

= dE[Xi(t)Xj(t)]
dt

−
(
E[Xi(t)]

dE[Xj(t)]
dt

+ E[Xj(t)]
dE[Xi(t)]

dt

)

Finally, substituting the RHS elements with the corresponding expression derived in
(18), the following is obtained:

d�Xi,Xj(t)
dt

=
r∑

k=1
vk,j [D(E [Xi(t)X(t))] θ ]k +

r∑
k=1

vk,i
[
D(E

[
XjX(t))

]
θ
]
k +

r∑
k=1

vk,ivk,j [D(E [X(t)])θ ]k − E[Xi(t)]
r∑

k=1
vk,j [D(E [X(t)])θ ]k −

E[Xj(t)]
r∑

k=1
vk,i [D(E [X(t)])θ ]k

Appendix 2: Constrained generalized least square procedure

The algorithm described in pseudo-code notation in Algorithm 2 starts with the
calculation of increments vector dx and predictors matrixM∗ according to (13).

Algorithm 2: Iterative procedure for CGLS based parameters estimation.
Data: dx,M∗

Result: Get parameters estimates θ̂∗
begin

Initialization: tol = ε, iter = 0;
θ̂∗0 = argmin

θ∗
(dx − M∗θ∗)ᵀ(dx − M∗θ∗) s.t. λi,j ≥ 0;

while
∑r∗

i=1(| θ̂∗iter − θ̂∗iter−1 |) ≥ tol do

Ŵ ∗iter =

⎡
⎢⎢⎢⎢⎢⎣

Ŵ ∗iter
t0 0 . . . 0
0 Ŵ ∗iter

t1 . . . 0
...

...
. . .

...
0 0 . . . Ŵ ∗iter

tS−1

⎤
⎥⎥⎥⎥⎥⎦
where

Ŵ ∗iter
ts = V∗ᵀD(xts)(ts+1 − ts)Diag(| θ̂∗iter |)V∗;

iter = iter + 1;
θ̂∗iter = argmin

θ∗

[
θ∗ᵀ(M∗ᵀŴ ∗iterM∗)θ∗ − 2(dxᵀŴ ∗iterM∗)ᵀθ∗

]

s.t. Aθ∗ ≤ b
end while

end

Parameters initial values for the proposed iterative procedure are calculated by solving
a constrained ordinary least square problem (COLS), in which errors are assumed inde-
pendent and homoscedastic. The COLS estimates θ̂∗0 are then used to calculate a first
estimation for the covariance matrix Ŵ ∗. By means of an iterative procedure, estimates
for θ̂∗ and Ŵ ∗ are then sequentially refined, until convergence criteria on parameters vec-
tor is satisfied. From an optimization point of view, both COLS and CGLS estimations



Pellin et al. Applied Network Science           (2019) 4:115 Page 21 of 26

can be interpreted as a quadratic programming (QP) problems, a special type of math-
ematical optimization problem in which a quadratic function has to be minimized (or
maximized) taking into account for a set of linear constraints on variables. In general, a
quadratic programming problem with n variables andm constraints can be formulated as
follows.
Given a n-dimensional vector c, an n × n symmetric matrix Q, an m × n matrix A and

anm-dimensional vector b, the goal is to find the n-dimensional vector x, such that:

x̂ = argmin
x

(
1
2
xᵀQx + cᵀx

)
s.t. Ax ≤ b. (20)

The CGLS problem defined in (14) can be converted in a QP problem of type (20) by
setting x = θ∗,Q = 2(M∗ᵀW ∗−1M∗), c = −2(dxᵀW ∗−1M∗), b = 0r∗ and defining A
as a r∗ × r∗ diagonal matrix with elements Ai,i = 0 if ith element of θ∗ refers to a net
duplication rate (unconstrained) andAi,j = −1 if it is a differentiation rate (non-negativity
constrained). Finally, the QP problem becomes:

θ̂∗ = argmin
θ∗

[
θ∗ᵀ(M∗ᵀW ∗−1M∗)θ∗ − 2(dxᵀW ∗−1M∗)ᵀθ∗] s.t. Aθ∗ ≤ 0r∗ . (21)

For COLS is sufficient to remove W ∗−1 in Q and c formulas, other terms remain
unchanged. It is worth noting that in case of large systems and/or when the amount of
observations is high, it is possible to take advantage of the following property for block
structured matrix, in order to calculate the inverseW ∗−1:

⎡
⎢⎢⎢⎢⎢⎣

Ŵ ∗iter
t0 0 . . . 0
0 Ŵ ∗iter

t1 . . . 0
...

...
. . .

...
0 0 . . . Ŵ ∗iter

tS−1

⎤
⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Ŵ ∗iter
t0

−1
0 . . . 0

0 Ŵ ∗iter
t1

−1
. . . 0

...
...

. . .
...

0 0 . . . Ŵ ∗iter
tS−1

−1

⎤
⎥⎥⎥⎥⎥⎥⎦

In real data analysis, this aspect allows to remarkably reduce both computational
complexity and memory requirements of the estimation algorithm.

Appendix 3: Penalized constrained generalized least square procedure

The minimization problem in (17) can be formulated as a QP problem similarly to what
presented in “Conclusion” section, by making the following modification to the definition
of matrix Q:

QP = 2(M∗ᵀW ∗−1M∗ + Pη)

where

Pη =
[
Pγ 0
0 Pη,λ

]

is r∗ × r∗ diagonal penalization matrix, with elements defined as:

Pγ = 0N ,N ; Pη,λ = n

⎡
⎢⎢⎢⎣

p′
η(λ1,2)
λ1,2

. . . 0
...

. . .
...

0 . . .
p′

η(λN−1,N )

λN−1,N

⎤
⎥⎥⎥⎦

and the derivative of SCAD penalty function (15) is given by:
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p′
η(θ) = ηI(θ ≤ η) + (ξη − θ)

(ξ − 1)η
I(θ η).

The QP problem for PCGLS becomes:

θ̂∗P = argmin
θ∗

[
θ∗ᵀ(M∗ᵀW ∗−1M∗ + Pη)θ

∗ − 2(dxᵀW ∗−1M∗)ᵀθ∗] s.t. Aθ∗ ≤ 0r∗ .

(22)

The algorithm described in Algorithm 3 takes in input the parameters vector estimates
θ̂∗ obtained from the CGLS procedure, state increments vector, dx, predictors matrixM∗

and a vector of candidate values for tuning parameter η, named η. For each value in η,
the initial values for parameters is set to θ̂∗ and then an iterative procedure composed
by estimation of the covariance matrix; calculation of the penalty matrix, optimization
of the objective function; is reiterated until convergence criteria on parameters vector
estimates are met. For each value of η, based of the final estimates returned by the iter-
ative procedure, the GCV statistics is calculated and stored. Finally, the rates estimates
corresponding to the minimum GCV statistics are returned.

Appendix 4: Full network representation of the estimated human
hematopoietic differentiation process

Fig. 6 Estimated human hematopoietic differentiation process. a The network configuration of the human
hematopoietic differentiation process. Nodes representing lineages positive for the surface marker and
collected from bone marrow and peripheral blood (circled) have the same color. Lymphoid lineages have a
blue/green color, whereas myeloid cell types are red/orange and violet. The node corresponding to the stem
cell (CD34) is dark blue and circled in black. Glycophorin positive cells(Glyco) and CD61 are respectively grey
and pink. Network layout has been generated with a force directed layout. b Parameters heatmap. Main
diagonal elements correspond to net duplication rate. Off-diagonal elements correspond to differentiation
rates (row → column). Light-Grey entries are differentiations rates estimated as 0 by SCAD penalization (23).
Dark-Grey entries are excluded from the inferential procedure due to violation of hierarchical constraints (112)

Appendix 5: Histogram of estimated differentiation rates
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Fig. 7 Distribution of differentiation rate estimates. Histogram of λ̂, corresponding to differentiation rates
subjected to the penalization procedure. Vertical red dashed line (0.1) highlight the threshold used to select
edges included in Fig. 5

Algorithm 3: Iterative procedure for PCGLS based model selection and parameters
estimation
Data: θ̂∗,dx,M∗,η
Result: Model selection based on minimum GCV criteria.
Initialization: tol = ε, ξ ;
begin

foreach η in η do
iter = 0;
θ̂∗0

P=θ̂∗;
while

∑r∗
i=1(|θ̂∗iter

P − θ̂∗iter−1
P |) ≥ tol do

Ŵ ∗iter
P =

⎡
⎢⎢⎢⎢⎢⎣

Ŵ ∗iter
P,t0 0 . . . 0
0 Ŵ ∗iter

P,t1 . . . 0
...

...
. . .

...
0 0 . . . Ŵ ∗iter

P,tS−1

⎤
⎥⎥⎥⎥⎥⎦
where

Ŵ ∗iter
P,ts = VᵀD(xts)(ts+1 − ts)Diag(|θ̂∗iter

P |)V ;
iter = iter + 1;

Piter
η,λ ; Piter

η =
[
Pγ 0
0 Piter

η,λ

]
;

θ̂∗iter
P = argmin

θ∗
{θ∗ᵀ[M∗ᵀ(Ŵ ∗iter

P )−1M∗ + Piter
η ] θ∗−

2[dxᵀ(Ŵ ∗iter
P )−1M∗]ᵀ θ∗} s.t. Aθ∗ ≤ b;

end while
GCV(η);

end foreach
Return model associated to minimum GCV(η);

end
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Appendix 6: Abbreviations
• BM: bone marrow
• CDP: cell differentiation process
• CGLS: constrained generalized least squares
• GCV: generalized cross-validation
• GT: gene therapy
• HSC: hematopoietic stem cells
• IS: integration site
• MACS: magnetic cell sorting
• MAD: mean absolute deviation
• NGS: next-generation sequencing
• ODE: ordinary differential equation
• PB: peripheral blood
• RHS: right-hand side
• SCAD: smoothly clipped absolute deviation
• SHDP: simulated hierarchical differentiation process
• WAS: Wiskott-Aldrich syndrome

Appendix 7: Mathematical symbols
• α,αi: duplication rate
• δ, δi: death rate
• �Xl(t): random variable for clone l increments
• λ, λi,j: differentiation rate
• γ , γi: net duplication rate
• η > 0, ξ > 2: SCAD tuning parameters
• θ , θ∗: parameters vector
• Ci: cell type
• D(): diagonal matrix with appropriate process component repetition
• dx,dxlt : increments vector
• dP(Xt ,t)

dt : ODE describing evolution over time of process probability distribution
• dE[Xi(t)]

dt : ODE describing evolution over time of mean for cell type i counts
• d�Xi ,Xj (t)

dt : ODE describing variance-covariance evolution for cell type i constrained
generalized least squares

• E[Xi(t)] , E
[
Xl
i (t)

]
: expected value for process state at time t

• GCV: Generalized Cross Validation
• L, l: number of clones
• M,Ml

t ,M∗: predictors matrix
• N: number of cell types
• Pη : parameters penalization matrix
• P(X(t), t): process probability distribution
• r: total number of cell events
• S, s: total number of timepoints and related index
• t, ts: time and timepoints
• V ,Vk , vi,j: net effect matrix
• W ,Wl

t ,W ∗: covariance matrix
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• X(t),Xi(t): stochastic process for cell differentiation process
• xl, xlt , xli,t : observed state for clone l
• Xl(t),Xl

i (t): stochastic process for clone l dynamics
• xt , xi,t : observed state at time t
• �Xl (t),�Xi,Xj(t): variance-covariance matrix

Acknowledgments
The authors acknowledge support from EU COST Action COSTNET on Statistical Network Science (CA15109).

Authors’ contributions
DP and EW developed the modeling and inference procedures. CdS critically reviewed and provided useful suggestions.
DP wrote the draft and EW redacted it. LB and AA provided the data and biomedical interpretation of the results. All
authors read and approved the final manuscript.

Availability of data andmaterials
Additional information about the study, the experimental procedures and the data can be found at http://dx.doi.org/10.
1016/j.stem.2016.04.016.

Competing interests
The authors declare that they have no competing interests.

Author details
1Dana-Farber, Harvard Medical School, 1 Jimmy Fund Way, 02115 Boston, MA, USA. 2San Raffaele Telethon Institute for
Gene Therapy, IRCCS Ospedale San Raffaele, Milano, Italy. 3University Center for Statistics in the Biomedical Sciences,
Vita-Salute San Raffaele University, Milan, Italy. 4Institute of Computational Science, Università della Svizzera italiana, Via G.
Buffi 13, 6900 Lugano, Switzerland. 5Bernoulli Institute, University of Groningen, Nijenborgh 9, 9747 AG Groningen,
Netherlands. 6Medicine, Universita’ Vita Salute San Raffaele, Milano (Italy). 7Dana-Farber/Boston Children’s Cancer and
Blood Disorders Center, Harvard Medical School, 02115 Boston, MA, USA. 8University College of London (UCL), Great
Ormond Street Institute of Child Health, Faculty of Population Health Sciences, London, WC1N 1EH, United Kingdom.

Received: 19 March 2019 Accepted: 18 October 2019

References
Abkowitz JL, Linenberger ML, Newton MA, Shelton GH, Ott RL, Guttorp P (1990) Evidence for the maintenance of

hematopoiesis in a large animal by the sequential activation of stem-cell clones. Proc Natl Acad Sci 87(22):9062–9066
Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, Dionisio F, Calabria A, Giannelli S, Castiello MC,

Bosticardo M, Evangelio C, Assanelli A, Casiraghi M, Di Nunzio S, Callegaro L, Benati C, Rizzardi P, Pellin D, Di Serio C,
Schmidt M, Von Kalle C, Gardner J, Mehta N, Neduva V, Dow DJ, Galy A, Miniero R, Finocchi A, Metin A, Banerjee PP,
Orange JS, Galimberti S, Valsecchi MG, Biffi A, Montini E, Villa A, Ciceri F, Roncarolo MG, Naldini L (2013) Lentiviral
hematopoietic stem cell gene therapy in patients with wiskott-aldrich syndrome. Science 341(6148). https://doi.org/
10.1126/science.1233151. http://www.sciencemag.org/content/341/6148/1233151.full.pdf

Ambrosi A, Cattoglio C, Di Serio C (2008) Retroviral integration process in the human genome: is it really non-random? a
new statistical approach. PLoS Comput Biol 4(8):1000144

Bates D, Maechler M (2015) Matrix: Sparse and Dense Matrix Classes and Methods. R package version 1.2-2. http://CRAN.
R-project.org/package=Matrix. Accessed 25 Oct 2019

Biasco L, Ambrosi A, Pellin D, Bartholomae C, Brigida I, Roncarolo MG, Di Serio C, von Kalle C, Schmidt M, Aiuti A (2011)
Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression
and chromatin conformation of target cell. EMBO Mol Med 2(5):1757–4684

Becker A, McCulloch E, Till J (1963) Cytological demonstration of the clonal nature of spleen colonies derived from
transplanted mouse marrow cells. Nature 197:452–454

Biasco L, Pellin D, Scala S, Dionisio F, Basso-Ricci L, Leonardelli L, Scaramuzza S, Baricordi C, Ferrua F, Cicalese MP, et al.
(2016) In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady-state
reconstitution phases. Cell Stem Cell 19:107–119

Catlin SN, Abkowitz JL, Guttorp P (2001) Statistical inference in a two-compartment model for hematopoiesis. Biometrics
57(2):546–553

Fan J (1997) Comments on wavelets in statistics: a reviews by a. antoniadis. J Ital Stat Assoc 6:131–138
Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc

96:1348–1360
Gardiner CW (1985) Handbook of Stochastic Methods. Springer, New York
Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361
Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter.

Technometrics 21(2):215–223
Goyal S, Kim S, Chen IS, Chou T (2015) Mechanisms of blood homeostasis: lineage tracking and a neutral model of cell

populations in rhesus macaques. BMC Biol 13(1):85
Guennebaud G, Jacob B, et al. (2010) Eigen v3. http://eigen.tuxfamily.org. Accessed 25 Oct 2019
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