Voloch et al. Applied Network Science (2019) 4:130 H H
https://doi.org/10.1007/541109-019-0224-2 Ap p l I ed N etWO rk SCI ence

RESEARCH Open Access

Managing large distributed dynamic T
graphs for smart city network applications

updates
Nadav Voloch2*t, Noa Voloch - Bloch?" and Yair Zadok?

*Correspondence:
noavoloch@gmail.com Abstract
*Nadav Voloch and Noa V. Bloch o
contributed equally to this work Smart cities and traffic applications can be modelled by dynamic graphs for which

' Department of Computer Science, vertices or edges can be added, removed or change their properties. In the smart city

Ben Gurion University of the Negev, or traffic monitoring problem, we wish to detect if a city dynamic graph maintains a
84105 Beer Sheva, Israel

2Dan 5choo of High-Tech Studies, certalﬁ local or global property. Mpmtormg city Ia'rg.e dynamlcvg.raphs, Is even more
The Center of Academic Studies, complicated. To treat the monitoring problem efficiently we divide a large city graph
Hayotsrim 2,6021816 Or Yehuda, into sub-graphs. In the distributed monitoring problem we would like to define some

srael local conditions for which the global city graph G maintains a certain property.

Furthermore, we would like to detect if a local city change in a sub-graph affect a
global graph property. Here we show that turning the graph into a non-trivial one by
handling directed graphs, weighted graphs, graphs with nodes that contain different
attributes or combinations of these aspects, can be integrated in known urban
environment applications. These implementations are demonstrated here in two types
of network applications: traffic network application and on-line social network smart
city applications. We exemplify these two problems, show their experimental results
and characterize efficient monitoring algorithms that can handle them.

Keywords: Graph theory, Distributed and parallel computing, Large dynamic graphs,
Geographic graph applications, Fastest path problem, On-line social networks

Introduction

Using graphs for smart city network applications has a long history for improving our
lives, as reviewed in Helbing et al. (2014), where the authors discussed different models of
crowd disasters, and different useful approached to system behaviour that help handling
those cases. Another aspect of improving human lives is also by devising smart coopera-
tion strategies, as reviewed in Perc et al. (2017), where the authors review the advances in
the understanding of human cooperation, focusing on spatial pattern formation and on
the spatio-temporal dynamics of observed solutions. A key aspect of these applications
are also the information cascades, as reviewed in Jalili and Perc (2017), where the authors
review models that describe information cascades, that are dynamical processes in com-
plex networks. These describe the spreading dynamics of campaigns, diseases, rumors,
etc., which initially start from a node or a set of nodes in the network. A special emphasis
is given to the role and consequences of node centrality. Different smart city applications,
with the combination of social benefits are a topic of contemporary research in many
papers over the last couple of years such as (Barzilai et al. 2018), that handles social prior-
ities in a smart junction with an algorithm that takes into consideration these priorities.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

@ Springer Open International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
— reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-019-0224-2&domain=pdf
mailto: noavoloch@gmail.com
http://creativecommons.org/licenses/by/4.0/

Voloch et al. Applied Network Science (2019) 4:130 Page20f 13

In the last decade the topic of large dynamic graphs became popular since it lies at the
core of many modern smart city network applications. Managing these graphs in a dis-
tributed manner is an efficient heuristic dealt with in many papers such as the ones of
(Mondal and Deshpande 2012; Yang et al. 2012; Wang et al. 2014; Gao et al. 2014; Gon-
zalez et al. 2014). Large distributed dynamic (LDD) graphs creates a problem known as
the distributed monitoring problem, presented by Cormode et al. (2006), and dealt with
by Babcock and Olston (2003), in which we wish to find if an LDD graph holds a certain
global property, while its distributed sub-graphs are constantly changing, and might or
might not hold this property locally. We denote a certain graph by G = (V, E), for which
v € V and e € E are the graphs’ vertices (having different entities), and graph connec-
tions respectively. We denote a global graph property by T, which can set as a certain
threshold. We denote the local graph properties (thresholds) by T; where i < k and k is
the number of sub-graphs G is distributed to. These sub-graphs are denoted by data-sets

An example (described in Fig. 1), shows an attribute which can be handled in a cer-
tain graph G which is deg(G(V))— the vertices average degree (number of edges incident
to a vertex). At some starting point ¢ = 0 Fig. 1 panel (a) dTag(Dl(V))h:O = 2.5,
deg(Dy(V))|—o = 2.4 and deg(D3(V))|—o = 2.67, giving deg(G(V))|;—o = 2.52, which is
greater than some global threshold T arbitrary set to be > 1.6.

If a change occurs locally at t = 1min Fig. 1 panel (b) for which dTeg(Dl(V))ltzl =1,
meaning several edges in D; (B, C) were removed, and the local threshold 77 was
breached, but not the global T, since still dieg(G(V))It:l = 197 > 1.6. If a breach
of T3 could have also occurred at ¢ = 2, for which qu(Dg(V))ltzg = 1.33, mean-
ing several edges (J, K, L) in D3 were removed. Now, the global T would breach since
deg(G(V))|j=2 = 1.57 < 1.6.

A recent progress in the area of distributed monitoring problem (Yehuda et al. 2017)
deals with classification between local sub-graphs breaches, trying to identify the ones
that eventually lead to a global breach of the graph threshold T. This works established
conventional graph analysis tools (e.g. non-linear properties of the regular LDD graphs,
the number of triangles and the spectral gap) for detecting when T breaches. Moreover,
several ways to handle non-trivial graphs have been suggested such as directed graphs,
These non-trivial graphs include weighted graphs, graphs with nodes that contain differ-
ent attributes, and combinations of these aspects (Lovasz 1993; Hoory et al. 2006; Pavan
et al. 2013).

Here, we suggest that the aforementioned tools should be combined in managing traffic
and on-line social smart city network (OSN) applications. We demonstrate: a) Finding
when T breaches is actually a new way do detect the fastest route from a source vertex
to a target vertex in a geographic dynamic graph, b) Finding when T breaches is a way to
define communities in smart city OSN’s. The details, description, examples and solving
algorithms of these applications are presented in the following parts of this paper.

Related work

The problem of finding the fastest, time-dependent path in a real-time traffic application
has become increasingly important. Kenneth and Cooke (1966) presented a pioneering
work in this subject. Ziliaskopoulos and Mahmassani (1993) turned the problem to a dis-
crete one and suggested using dynamic programming to fit the problem to a real-time

Voloch et al. Applied Network Science (2019) 4:130 Page 3 of 13

& t=0/ Propogation in
time:

deg(G(v))=1.974T X, —

deg(G(v))=1.57<T
T breached

Fig. 1 A schematic global smart city graph breaching caused by a local breach. The attribute which is
handled in a graph G is deg(G(V))- the vertices average degree (number of edges incident to a vertex). a At
some starting point t = 0 deg(D; (V))|—o = 2.5, deg(D>(V))|;—o = 2.4 and deg(D3(V))|;—o = 2.67, giving
deg(G(V))|=o = 2.52, which is greater than the global graph threshold T preliminary setto be > 1.6.b A

change occurs locally at t = 1min for which dieg(Dw (V))|t=1 = 1, meaning several edges in Dy (B, C) were
Eﬂoved and the local threshold T; was breached, however not the globﬂ since still
deg(G(V))|t=1 = 1.97 > 1.6. ¢ A breach of T3 occurred at t = 2, in which deg(Ds(V))|=2> = 133, i.e, several

edges (J, K, L) in D3 were removed. In this case the global T breaches since deg(G(V))|;=> = 157 < 1.6

environment. Lauther (2004) introduced a distributed geometrical geographic graph for
his problem and a most accurate algorithm to solve it, but the handled graph was a static
one. Describing OSNs (e.g. Facebook, Twitter, etc.) as a graph or more accurately as a net-
work, has been the main topic of many recent studies among them (de Nooy 2012) and
(Kadry and Al-Taie MZ 2014). In their analysis, the different users have been represented
as vertices and their relationships are the edges that connect them. The edges could also
be different user interactions (such as “like”, “follow’; etc.). One interesting aspect of these
graphs is the vertices attributes. Every user may be characterized by different types of
attributes, some numerical (such as, number of followers) and some textual (residence,
school, etc.). The smart cities OSN graphs are inherently LDD graphs as the edges and
vertices attributes are constantly changing (friendships end, work placed are changed,
etc.). These graphs are very large at scale. An interesting question arises when we try to
define concepts within the smart cities OSN. One of these concepts is a community. The
descriptive graph structure of a community in an smart cities OSN was dealt with by

Voloch et al. Applied Network Science

(2019) 4:130

Traud et al. (2011); Fortunato (2009); Newman and Park (2003) and more specifically on
Facebook in the research of (Ugander et al. 2011).

Using LDD graphs for detecting the fastest path in a dynamic traffic graph
Applying the fastest path problem to a traffic real-time application (such as Waze),
involves configuring a much more diversified graph than the trivial one that has just ver-
tices and edges. First of all, the graph has to be a directed one (traffic lane direction),
and a weighted one, as the weight itself can be observed in two different aspects: physical
distance or travel time. The vertices are different interest points- such as a gas station, a
street, or any other place that has geographic coordinates.

The main problem with this graph is that it is highly dynamic, i.e., its edges are con-
stantly changing in time. The edges weights (considered as travel time) can increase
(traffic load, accident) or decrease (traffic unload, road clearance). This creates a huge
overhead for the calculations of the optimal real-time travel path. Distributing these
graphs to LDD graphs is shown in Fig. 2a, b, c. Each of these graphs include three sub-
graph datasets (denoted by D1, D, and D3) which are the parts of a road map. The graph is
directed (i.e the edges are all north-to-south), and the threshold 7 is defined as to fastest
route from source (vertex A) to target (vertex L). The fastest path is denoted by the path
between the filled blue circles. The green paths indicate a change in the local fastest path.
Notice here that T can be also dynamic, and T can change as time goes by, and so does the
source vertex (the car is constantly moving) although we ignore this in our analysis. The
local Ti’s are also the fastest routes. At some starting point t=0, the global attribute, i.e.,
the fastest path is T = 29 min (the blue route), were the local thresholds are 71 = 9 min,
Ty = 11 min, T3 = 9 min.

e~ _(b)—_(©)
D (10 ~®~\ Start D (e A@Oﬁsmn D 10° i‘i\/@k\ﬂan

1 122 3 1 12 3 1 12 3
@ 11’ @ 11’ =9 @‘ 1

6’ y =9 6’ 6’ f=9

D% i ® 0P

2 7 2 ﬁ7’ N 5 7
v 13 » ¥ 13 Pz ¥ 13
=10 || & =10

Fig. 2 Alocal breach affect in a real-time traffic application. When a global graph property is breached, the
fastest path changes correspondingly. The fastest path is emphasized by the solid blue line.a At t = 0 the
global attribute, i.e. the fastest path is T = 29 min and the local thresholds are Ty = 9 min, T, = 11 min,

T3 = 9 min.b At (t = 3 min) a local breach occurs and the edge £ — H reduces its weight from 6 min to 2 min
changing the local threshold T, from 11 min to 10 min (denoted by the green path). This local breach did not
affect the global graph T, since the total path time from A to L trough £ (A-C-D-E-H-I-L) 31 min is still slower
than the original path time 29 min. ¢ A local breach leading to a global graph breach and a path change. At

t = 9 min the edge H-I reduces its weight from 8 min to 3 min, changing the local threshold T3 from 9 min to
7 min. This breach broke the global T since the total path time is now faster, (26 min is faster than 29 min) and
global path is updated from (A-C-D-F-G-I-L) to (A-C-D-E-H-I-L) noted by the dashed blue line

Page 4 of 13

Voloch et al. Applied Network Science (2019) 4:130 Page 5 of 13

The change in the graph after some time (at ¢t = 3 min) is depicted in Fig. 2b. A local
change occurs, and the edge E — H reduces its weight from 6 min to 2 min, changing the
local threshold T3 from 11 min to 10 min (denoted by the green path). This local breach
didn’t break the global graph T, since the path time from A to L trough E (A-C-D-E-H-I-
L) will take 31 min which is still slower than the original path time 29 min. So when does
a local change, T; changes the global 7? Let’s examine an additional change described in
Fig. 2¢, that describes D; at ¢ = 9 min. A change occurred at ¢ = 9 min and the edge H-I
reduces its weight from 8min to 3min, changing the local threshold T3 from 9min to 7 min
(green path). This breach also broke the global T since the total path time is now faster,
(26 min is faster than 29 min), thus the local path changes to the green one and global path
is also updated from (A-C-D-E-H-I-L) to (A-C-D-F-G-I-L). It is important to state here
that the distribution of the internal graphs (Gm’s) is done beforehand and is not part of
the optimization process. The division must be equal in size for the generality of use-case
and for no computational overheads of prediction evaluations of the networks big-data,
keeping the algorithm complexity viable. This important feature of complexity simplicity
also justifies the choice of linear dependency between local and global property. In cases
of complex dynamic networks, some properties may be not linear, thus more complex to
manifest in distributed algorithms such as the ones described above.

Algorithm for finding the fastest route in LDD graphs

Finding the fastest path in an LDD graph is quite complex since at each point we must
consider all possible paths between the source and target vertice for each D;(t). Based on
a known fastest path algorithm (Pettie 2004) denoted by PTT(G), we present an algorithm
for finding the fastest path in LDD graphs. The main idea of the algorithm is to find if a
global threshold T was breached, meaning if there is a faster path from a current source
to a target point. It is important to state here that the PTT algorithm is used for finding
all-pairs shortest path, while the better-known Dijkstra algorithm (Dijkstra 1959), finds
the shortest path from source to target (Dijkstra algorithm is used inside PTT).

Algorithm 1 Pseudo code for finding the fastest path in LDD graphs
1: CurrSource < The point in which the source vertex (car, traveller, etc.) is currently at

t(k).

2: Target <— The target vertex

3: D,, < The dataset for which the local threshold is breached.

4: Sourcen, + The local source vertex of the breaching path (new fastest route) in D,,.
5: Target., < The local target vertex of the breaching path (new fastest route) in Dp,.
6: f(D(k)) =T Fastest time in D at ¢(k).

7: PTT(QG) Function for finding all-pairs fastest path in a graph G.

8: Time <— Number of time points taken into consideration.

9: for k= 1 to Time do

10: for m= 1 to G.length do

11: NewPTime < f[PTT(CurrSource, Sourcem)|+Tm+f[PTT(Targetm, Target)]
12: NewPath + [CurrSource, Sourcen,, Targetm, Target)

13: if NewPTime < f(D(k)) then

14: CurrentPath <+ NewPath

15: T < NewPTime

16: return CurrentPath

17: end if

18: end for

19: end for

20:

Voloch et al. Applied Network Science (2019) 4:130 Page 6 of 13

The algorithm efficiency is with agreement to PTT(G) algorithm which is O(EV +
V2log? V). 1t is important to notice in the algorithm that the important variable of cur-
rentPath holds the most efficient path in every time point, changing it according to
the new paths iterated by the algorithm and compared to the current efficient one that
it contains.

Algorithm explanation and complexity analysis

In stage 1 we find a new optional path time, by adding the time of the path from the cur-
rent source to the source point of D,,,, where the local T,, was breached, to T}, and to the
time of the path from the target point of D,, to the target point of G. In this stage we run
PTT twice, achieving a running time of O(EV + V?log?V)). In stage 2 we create this new
path described in stage 1, and in stage 3 we check if the new path is actually faster, mean-
ing we check if the global T was breached. If so, we update both the current path and the
global T. In stages 2 and 3 we have an O(1) complexity since the path is already set in stage
1. At the 4th and last stage we return the current path, whether it was changed or not, this
stage is also of O(1) complexity, setting the algorithm’s total time at O(EV + V?2log?V).
This performance is a good improvement to current algorithm for finding fastest path
with these dynamic conditions. Table 1 shows a benchmark comparison of state-of-the-
art current algorithm that handle the similar problem, we can see that our algorithm holds
a better complexity from the existing ones, and resembles (Pettie 2004), but ours gives the
advantage of a dynamic one while the Pettie algorithm refers to static ones.

Algorithm completeness and correctness-Initialization
For i = 1, the invariant is respected: in the first iteration we check local T}, since it is the
only one that could have changed.

Maintenance For i = m, given 1 < m < n— 1, without the loss of generality we take D,,
as the dataset currently handled. There are two possible cases for this 7" iteration:

e newPathTime < f(D(k)), meaning T was breached and the current path is no longer
the shortest one, but in that case we perform stages 1 and 2 in the algorithm and
update the current path and T.

e newPathTime > f(D(k)), meaning T was not breached and the current path is still
the shortest one, thus the invariant is preserved.

Algorithm completeness and correctness-Termination

At the last iteration, given i = u, the two options mentioned above are similar for D, and
respectively £(n), meaning in each of the options we get the minimal time for the current
path, thus T remains the fastest path. Hence, the algorithm gives us the fastest route from
the source point to the target.

Table 1 A benchmark comparison for the algorithms’ performance

Algorithm Complexity Source Remarks
Seidel algorithm O(V*)logV (Seidel 1995) w < 2373
I
William's algorithm O[ﬁ#iw)] (Williams 2013)
Floyd-Warshall algorithm o3 (Floyd 1962)
Pettie algorithm O(EV 4 V2loglogV/) (Pettie 2004) Limited to static graphs

Our algorithm O(EV + V2Iog2V)

Voloch et al. Applied Network Science (2019) 4:130 Page 7 of 13

More results of the algorithm

More results are shown in Table 2, in which we see the better performance time of the
algorithm in juxtaposition to the singular fastest path calculation (the beginning T). The
results are organized by different time-stamps, and are a continuance of the case-study
shown in Fig. 2.

Implementation of LDD graphs to the problem of defining communities in
smart cities online social networks

Monitoring the changes in a community graph Fig. 3 can be both private (for each user),
and both global (for all users). Local changes can be the number of followers, work place,
the number of friends. The global changes, can be the average number of relationships or
other graph attributes. Distributing the community graph can help us monitoring thresh-
old demand we wish to define on the graph. For example we can see in Fig. 4 “The
influential rock-stars city events’, where we have three graph datasets (denoted by D;, D
and Ds3) which are the parts of the community. The graphs edges are mutual city events
participators (enhanced by geographical proximity), we focus on the numeric attribute of
average number of followers for every user, as well as the users average number of inner-
community friendships (the vertices degrees). We define entry-level conditions of 1000
followers per user, and at least 2 inner-community friendships. The global threshold T is
defined as an average of 1300 followers per user and an average of 2.5 inner-community
friendships. The change in the graph after time goes by can be seen in Fig. 5, That
describes D at ¢ = 3 min. A change occurred in this time space (0 — 3), and Bob partici-
pators un-friended Chuck participators, changing the local average degree in D; from 2.5
to 2 which broke the local threshold of 2.5.

This change did not break T since the total average degree is still bigger than 2.5 (it
changed from 3.5 to 3.33), thus the global community-defining conditions remains valid.
When does a local change changes T? That we can see in Fig. 6, that describes D at
t = 9 min. Several changes occurred in this time space (3-9), and the number of avant
participators of the Rock Stars in D3 was reduces by 4900, changing the local average of
followers from 1943.8 to 1127.2. This change broke T since the total average of followers
is now smaller than 1300 (it is 1297.8), thus the community broke its defining conditions.

Algorithm and results for the problem of defining communities in an Online Social
Network in LDD graphs

The main idea of the algorithm is to find if the global threshold T was breached. In this
case we have two aspects of breaching: average number of followers, and average vertex

Table 2 Dynamic community definition for an LDD graph, a better performance time of the
algorithm in juxtaposition to the singular fastest path calculation (the beginning T)

t Source CurrentPath T CurrentPath

0 A ACDFGIL 29 None

3 A ACDFGIL 29 f(Dy)=10

9 A ACDEHIL 26 f(Dy)=10, f(D3)=7
19* H HIJL 26 f(D3)=6

22% L None 26 None

19*,22* Are additional time datasets, elaborating the example given in Fig. 2

Voloch et al. Applied Network Science

(2019) 4:130

f=1369 o

ftreshold=1 30 d=2.5 =0
= 1 o 2% Chuck fglobal 1706
treshold =3.5

e
%%/

Herbie

George

1

Herbie
1024

t=2)/ &~ —¥ "D
f = =1297
Jlobal

global- *

Fig. 3 Alocal breach affect in a real-time smart city OSN application. The graph reviews real- time influential
rock-stars events, distributed to three graph datasets (geographic regions) denoted by Dy, D, and Ds. The
graphs edges are friendships among events participators, and we focus on the numeric attribute of average
number of participators of each event, as well as the users average number of inner-community friendships
(the vertices degrees). a We define entry-level conditions of 1000 followers per user, and at least 2
inner-community friendships. The global threshold T is defined by the average of 1300 followers per user and
an average of 2.5 inner-community friendships. The change in the graph after time goes by as can be seen in
(b,c). b describes D at t = 1 min. A change occurred in this time space(0 — 1), and Bob un-friended Chuck,
changing the local average degree in Dy from 2.5 to 2 which broke the local threshold of 2.5. This change did
not break T since the total average degree is still bigger than 2.5 (it changed from 3.5 to 3.33), thus the global
community-defining conditions remained valid. € describes D at t = 2 min. Several changes occurred in this
time space (1-2), and the number of followers of the rock stars in D3 was reduces by 4900, changing the local
average of followers from 1943.8 to 1127.2. This change broke T since the total average of followers is less
than 1300 (1297.8), thus the community broke its defining conditions

degree, denoted before as f(D(k)) and d(D(k)) respectively. Notice that the i presented in
the algorithm is that of the time-stamp iterations, and m is the dataset in which there is a
local breach of T},. The algorithm is as follows:

It is important to state here that the data portrayed in this section is extracted of real
datasets that we used for the experimental evaluation. These adhered with our model and

provided the results presents in this section.

Page 8 of 13

Voloch et al. Applied Network Science (2019) 4:130 Page 9 of 13

fTreshold:]-SOO Alice
drresholda=2.5 1222
f4106a1=1706.2
dglobal:?)-5
Bob Chuck
1330 1023
f=1369 e
d=2.5 David
1902
Frank Elton
2312 1022
f=1731
d=2.8
Herbie George
1024 23%7
f=1943 Iggy Jeff
d=3 2234 1455
Keith
2654
Lenny
@ 1899
Fig. 4 Community graph dataset D at t(0)

Algorithm explanation and complexity analysis

We can see that in stage 1, we update the global f(D(i + 1)) with the local breach of D, by
subtracting the change in f (D,,(i+1)) , where the local T, was breached. In stage 2 we do
the exact same thing, only with d(D(i+ 1)). Both of these stages have an O(V) complexity
since every vertex is being checked. In stage 3 we check both of the aspects f(D(i 4 1))
and d(D(i + 1)) and compare them to the global T'(f(D)) and T(d(f(D))), to see if they
were breached. If so, we return false, since the definition of community was breached. If
not we return true in stage 4, meaning the community definition remains. Both of these
stages are of O(1) complexity (an atomic action of comparison), setting the algorithm’s
total time at O(V).

Algorithm explanation and complexity analysis
Initialization

For i = 1, the invariant is respected: in the first iteration, we check the f(D(i)) and
d(D(i)). Since we assume that in t(0) the community definition holds, we can move on to
the other iterations.

Maintenance

For i = k, given 1 < k < n — 1, without the loss of generality we take D,, as the
dataset currently handled. There are four possible cases for this k& iteration that we can

generalize into two cases:

Voloch et al. Applied Network Science (2019) 4:130

Page 10 0f 13

fTreshold:]-300 Alice
dTreshold:2-5 1222
fg10ba1=1706.2
dglobal:3-3
Bob Chuck
1330 1023
f=1369 e x .
d=2.5 David
1902
Frank Elton
2312 1022
f=1731
d=2.8
Herbie George
1024 23%7
f=1943 Iggy Jeff
d=3 2234 1455
Keith
2654
Lenny
@ 1899
Fig. 5 Community graph dataset D at t(3)
Algorithm 2 Community definition in LDD graphs
1: for i= 1 to Time do
2 for m= 1 to G.length do
3 (DG +1)) ¢ J(DD) = (H(Dn(®) = [(Dnli + 1)
4: d(D(i +1)) <= d(D(i)) — (d(Dm () = d(Dm (i + 1))
5: if £(D(i +1)) < T(f(D)) or d(D(i + 1)) < T(d(D)) then
6: CurrentPath <+ NewPath
7 T < NewPTime
8: return false
9: end if
10: end for
11: end for
12:

o f(DGK) — (FDm(k) = fDm(k + 1)) < T(FD)) ox
d(D(k)) — (d(Dy(k)) — d(Dy(k + 1))) < T(d(D)) meaning T was breached and the
definition of a community no longer holds, which cause in returning false.

* f(DK) = (f Dm (k) — f(Dm(k + 1)) = T(f(D)) and
d(D(k)) — (d(Dy,(k)) — d(Dy,(k + 1))) > T(d(D)) meaning T was not breached and
the definition of a community holds, which cause in returning true. Thus the

invariant is preserved.

Termination

Voloch et al. Applied Network Science (2019) 4:130 Page 11 0f 13

fT’reshold:1300 Alice
dTTeshold:2-5 1222
fh106a1=1297.8
dglobal:3-3
Bob Chuck
1330 1023
f=1369 e
d=2.5 David
1902
Frank Elton
2312 1022
f=1731
d=2.8
Herbie George
1024
f=1127.2 Jeff
d=3 1455
Fig. 6 Community graph dataset D at t(9)

At the last iteration, given i=n, the two options above are the same for D,, meaning in
each of the two options we get the answer whether T was breached or not, giving us a
definitive result about the definition of a community.

More results of the algorithm

More results are shown in Table 3, in which we see see at every point the change effect-
ing or not effecting T. The results are organized by different time-stamps, and are a
continuance of the case-study shown in Figs. 4, 5 and 6.

Conclusions and future work

In this paper we presented a new approach for managing real-life applications using the
methods presented in monitoring LDD graphs problems. The first one is the geographic
applications, for which the problem being monitored is the fastest path from a source

Table 3 Dynamic community definition for an LDD graph

t f(D)/d(D)) Community T(H)/T(d) f(D)/d(D)

0 1706.2/3.5 True 1300/2.5 None/ None

1 1706.2/3.33 True 1300/2.5 None/ d(D1) =2

2 1297.8/3.33 False 1300/2.5 f(D3)=1127.2/None
3 1706.2/3.33 True 1300/2.5 f(D3)=1943.8/None

Voloch et al. Applied Network Science (2019) 4:130 Page 12 0f 13

vertex to a target vertex. The second application is the smart city OSNs, in which the
problem being monitored is the definition of a community established by a certain crite-
ria of graph attributes. The different meanings of the threshold T for the aforementioned
application were studied, and their interesting experimental results were shown, along
with efficient monitoring algorithms that can handle them. The algorithms correctness
and completeness were proven, and their complexities were analyzed. An interesting jux-
taposition can be done with our model and a proposed approach applied to a real-case big
network of Wang et al. (2018), that applies a deep learning perspective to a connected traf-
fic flow prediction. While the traffic flow prediction smartly intertwines efficient learning
algorithms, the un-distributed network still has a high latency and overhead in com-
parison with our distributed network model, that needs less data to discover important
features and breaches of them in the network. Delving more into the problem of Momnitor-
ing Large Dynamic graphs can yield even more interesting results, or even more possible
applications especially the ones that involve handling non-trivial graphs such as directed
graphs, weighted graphs, graphs with nodes that contain different attributes, and com-
binations of these aspects. A particularly interesting geographic application that we are
currently developing is an algorithm for finding the fastest path in a distributed graph,
that takes into consideration the future locations of traffic in the path, by using the graph
multi-coloring method for scheduled connections shown in Bampas et al. (2015). OSN’s
have even much more possible applications required in this field, such as security and
access issues, communal popularity assessments, and fluid user networks. In this smart
city OSN field we are currently developing access-control and information flow-control
models, that use the distributed graph application presented in this paper. All of these
subjects are currently being progressed.

Abbreviations
OSN: Online social network, examples facebook twitter; LDD: Large distributed dynamic graphs; PTT(G): Petit algorithm

Acknowledgements

The authors would like to thank Prof. Daniel Keren from Haifa University and Prof. Assaf Schuster from the Technion-
Israel Institute of Technology for introducing him with the subject of monitoring attributes of Large Dynamic Distributed
graphs.

Authors’ contributions
NB, NV and YZ analysed studied the subject, NB, NV wrote the paper. All authors read and approved the final manuscript.

Authors’ information

Nadav Voloch

Is a Ph.D student and instructor in the computer science department in Ben- Gurion university, and a lecturer in the Dan
school for high-tech studies, the center of academic studies, Or-Yehuda, Israel. His M.Sc in computer science is from the
Open University in Israel. His research interests are graph algorithms, knapsack type problems, cryptography and control
models for Online Social Networks.

Noa Voloch Bloch

Of High-Tech Studies, the Center for Academic Studies in Or-Yehuda, Israel. She received Ph.D and M.Sc from Tel Aviv
university, Electrical Engineering Israel. She was a post doc researcher at the Hebrew University at the field of quantum
optics. Her research interests include quantum optics and quantum computing, computational physics, wave
propagation dynamics, accelerating beams.

Yair Zadok

Dr. Yair Zadok is the Dean of the Faculty of High-Tech Studies, Center for Academic Studies in Or-Yehuda, Israel. His Ph.D.
is from the Babes-Bolyai University Cluj-Napuca, Romania, where his dissertation was on a Model of Guidance for the
Instruction of Robotics by the Project-Based Learning Method. He is a senior researcher and lecturer in Web design
programming methods, and is involved in different researches in Technological assimilation in Academic Environments.
His Technological Education M.Sc in from the Ben-Guryon University of the Negev, and B.Sc in Mechanical Engineering
from The Holon Institute of technology in Israel.

Funding
No funding.

Availability of data and materials
Not applicable.

Voloch et al. Applied Network Science (2019) 4:130 Page 13 of 13

Competing interests
The authors declare that they have no competing interests.

Received: 17 April 2019 Accepted: 18 October 2019
Published online: 30 December 2019

References

Babcock B, Olston C (2003) Distributed top-k monitoring. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego, California, USA, June 9-12, 2003. pp 28-39. https://doi.org/10.1145/
872757.872764

Bampas E, Karousatou C, Pagourtzis A, Potika K (2015) Scheduling connections via path and edge multicoloring. In:
Ad-hoc, Mobile, and Wireless Networks - 14th International Conference, ADHOC-NOW 2015, Athens, Greece, June 29
-July 1,2015, Proceedings. pp 33-47. https://doi.org/10.1007/978-3-319-19662-6_3

Barzilai O, Voloch N, Hasgall A, Lavi Steiner O, Ahituv N (2018) Traffic control in a smart intersection by an algorithm with
social priorities. Contemp Eng Sci 11:1499-1511. https://doi.org/10.12988/ces.2018.83126

Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269-271. https://doi.org/10.
1007/BF01386390

Floyd RW (1962) Algorithm 97: Shortest path. Commun ACM 5(6):345. http://doi.acm.org/10.1145/367766.368168

Fortunato S (2009) Community detection in graphs. CoRR abs/0906:0612. http://arxiv.org/abs/0906.0612

Gao J, Zhou C, Zhou J, Yu JX (2014) Continuous pattern detection over billion-edge graph using distributed framework.
In: 2014 |EEE 30th International Conference on Data Engineering. pp 556-567. https://doi.org/10.1109/icde.2014.
6816681

Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin MJ, Stoica | (2014) Graphx: Graph processing in a distributed dataflow
framework. In: 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI), vol. 14.
Broomfield, Berkeley. pp 599-613

Helbing D, Brockmann D, Chadefaux T, Donnay K, Blanke U, Woolley Meza O, Moussaid M, Johansson A, Krause J, Schutte
S, Perc M (2014) Saving human lives: What complexity science and information systems can contribute. J Stat Phys
158. https://doi.org/10.1007/510955-014-1024-9

Hoory S, Linial N, Wigderson A (2006) Expander graphs and their applications. Bull Amer Math Soc:439-561

Jalili M, Perc M (2017) Information cascades in complex networks. J Complex Netw 5:665-693. https://doi.org/10.1093/
comnet/cnx019

Kadry S, Al-Taie MZ (2014) Social network analysis: An introduction with an extensive implementation to a large-scale
online network using pajek. Bentham Science Publishers. https://doi.org/10.2174/97816080581811140101

Kenneth L, Cooke EH (1966) The shortest route through a network with time-dependent internodal transit times. J Math
Anal Appl 14(3):493-498

Lauther U (2004) An extremely fast, exact algorithm for finding shortest paths in static networks with geographical
background. Geoinformation und Mobilitat-von der Forschung zur praktischen Anwendung 22:219-230

Lovész L (1993) Random walks on graphs: A survey. Combinatorics, Paul erdos is eighty 2(1):1-46

Mondal J, Deshpande A (2012) Managing large dynamic graphs efficiently. https://doi.org/10.1145/2213836.2213854

Newman MEJ, Park J (2003) Why social networks are different from other types of networks. Phys Rev E 68:036,122

de Nooy W (2012) Social Network Analysis, Graph Theoretical Approaches to. Springer New York, New York

Pavan A, Tangwongsan K, Tirthapura S, Wu K (2013) Counting and sampling triangles from a graph stream. PVLDB
6(14):1870-1881. http://www.vldb.org/pvldb/vol6/p1870-aduripdf

Perc M, Jordan JJ, Rand DG, Wang Z, Boccaletti S, Szolnoki A (2017) Statistical physics of human cooperation. Phys Rep
687:1-51. https://doi.org/10.1016/j.physrep.2017.05.004. http://www.sciencedirect.com/science/article/pii/
S0370157317301424

Pettie S (2004) A new approach to all-pairs shortest paths on real-weighted graphs. Theor Comput Sci 312(1):47-74

Cormode G, Keralapura R, Ramamirtham J (2006) Communication-efficient distributed monitoring of thresholded counts,
Chicago. https://doi.org/10.1145/1142473.1142507

Seidel R (1995) On the all-pairs-shortest-path problem in unweighted undirected graphs. J Comput Syst Sci
51(3):400-403. https://doi.org/10.1006/jcss.1995.1078

Traud AL, Kelsic ED, Mucha PJ, Porter MA (2011) Comparing community structure to characteristics in online collegiate
social networks. SIAM Rev 53(3):526-543

Ugander J, Karrer B, Backstrom L, Marlow C (2011) The anatomy of the facebook social graph. CoRR abs/1111
abs/1111.4503:4503

Wang L, Xiao Y, Shao B, Wang H (2014) How to partition a billion-node graph. In: IEEE 30th International Conference on
Data Engineering, Chicago. pp 568-579. https://doi.org/10.1109/icde.2014.6816682

Wang W, Bai Y, Yu C, Gu Y, Feng P, Wang X, Wang R (2018) A network traffic flow prediction with deep learning approach
for large-scale metropolitan area network. In: NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management
Symposium. pp 1-9. https://doi.org/10.1109/NOMS.2018.8406252

Williams R (2013) Faster all-pairs shortest paths via circuit complexity. CoRR abs/1312:6680. http://arxiv.org/abs/1312.6680

Yang S, Yan X, Zong B, Khan A (2012) Towards effective partition management for large graphs. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, USA. pp 517-528. https://doi.org/10.1145/2213836.
2213895

Yehuda G, Keren D, Akaria | (2017) Monitoring properties of large, distributed, dynamic graphs. In: 2017 IEEE International
Parallel and Distributed Processing Symposium, IPDPS USA. pp 2-11. https://doi.org/10.1109/ipdps.2017.123

Ziliaskopoulos A, Mahmassani H (1993) A time-dependent shortest path algorithm for real-time intelligent
vehicle/highway system. Transp Res Rec J Transp Res Board 1408:94-100

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/872757.872764
https://doi.org/10.1145/872757.872764
https://doi.org/10.1007/978-3-319-19662-6_3
https://doi.org/10.12988/ces.2018.83126
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
http://doi.acm.org/10.1145/367766.368168
http://arxiv.org/abs/0906.0612
https://doi.org/10.1109/icde.2014.6816681
https://doi.org/10.1109/icde.2014.6816681
https://doi.org/10.1007/s10955-014-1024-9
https://doi.org/10.1093/comnet/cnx019
https://doi.org/10.1093/comnet/cnx019
https://doi.org/10.2174/97816080581811140101
https://doi.org/10.1145/2213836.2213854
http://www.vldb.org/pvldb/vol6/p1870-aduri.pdf
https://doi.org/10.1016/j.physrep.2017.05.004
http://www.sciencedirect.com/science/article/pii/S0370157317301424
http://www.sciencedirect.com/science/article/pii/S0370157317301424
https://doi.org/10.1145/1142473.1142507
https://doi.org/10.1006/jcss.1995.1078
https://doi.org/10.1109/icde.2014.6816682
https://doi.org/10.1109/NOMS.2018.8406252
http://arxiv.org/abs/1312.6680
https://doi.org/10.1145/2213836.2213895
https://doi.org/10.1145/2213836.2213895
https://doi.org/10.1109/ipdps.2017.123

	Abstract
	Keywords

	Introduction
	Related work
	Using LDD graphs for detecting the fastest path in a dynamic traffic graph
	Algorithm for finding the fastest route in LDD graphs
	Algorithm explanation and complexity analysis
	Algorithm completeness and correctness-Initialization
	Algorithm completeness and correctness-Termination
	More results of the algorithm

	Implementation of LDD graphs to the problem of defining communities in smart cities online social networks
	Algorithm and results for the problem of defining communities in an Online Social Network in LDD graphs
	Algorithm explanation and complexity analysis
	Algorithm explanation and complexity analysis
	More results of the algorithm

	Conclusions and future work
	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

