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Abstract
Recent disasters have shown the existence of large variance in recovery trajectories
across cities that have experienced similar damage levels. Case studies of such events
reveal the high complexity of the recovery process of cities, where inter-city
dependencies and intra-city coupling of social and physical systems may affect the
outcomes in unforeseen ways. Despite the large implications of understanding the
recovery processes of cities after disasters for many domains including critical services,
disaster management, and public health, little work have been performed to unravel
this complexity. Rather, works are limited to analyzing and modeling cities as
independent entities, and have largely neglected the effect that inter-city connectivity
may have on the recovery of each city. Large scale mobility data (e.g. mobile phone
data, social media data) have enabled us to observe human mobility patterns within
and across cities with high spatial and temporal granularity. In this paper, we
investigate how inter-city dependencies in both physical as well as social forms
contribute to the recovery performances of cities after disasters, through a case study
of the population recovery patterns of 78 Puerto Rican counties after Hurricane Maria
using mobile phone location data. Various network metrics are used to quantify the
types of inter-city dependencies that play an important role for effective post-disaster
recovery. We find that inter-city social connectivity, which is measured by pre-disaster
mobility patterns, is crucial for quicker recovery after Hurricane Maria. More specifically,
counties that had more influx and outflux of people prior to the hurricane, were able to
recover faster. Our findings highlight the importance of fostering the social
connectivity between cities to prepare effectively for future disasters. This paper
introduces a new perspective in the community resilience literature, where we take
into account the inter-city dependencies in the recovery process rather than analyzing
each community as independent entities.

Keywords: Disaster recovery, Human mobility, Mobile phone data, Inter-city networks,
Social networks

Introduction
Following the recent series of natural hazards with unprecedented severity and magni-
tude, including Hurricanes Harvey, Irma and Maria, the concept of urban resilience has
gained significant global attention (Kull et al. 2016; Gitay et al. 2013). For many cities,
it is of utmost importance to minimize economic loss and maintain the wellbeing of
their citizens (Eakin et al. 2017; Kousky 2014). Recent disasters have shown the existence
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of large variance and disparities in recovery trajectories across communities that have
experienced similar damage levels (Finch et al. 2010; Aldrich 2012). We have witnessed
manifold cases where cities experience significant loss of population even after sufficient
recovery of infrastructure systems (Myers et al. 2008; McCaughey et al. 2018). These case
studies reveal the high complexity of the recovery of cities, where both the inter-city
dependencies and intra-city coupling of social and physical systems may affect the recov-
ery outcomes in an unforeseen and non-linear manner (Klammler et al. 2018; Aerts et al.
2018).
Post disaster population displacement and recovery patterns on the city scale have long

been studied based on surveys and census data (McCaughey et al. 2018; Cutter et al. 2008;
Gray and Mueller 2012; Finch et al. 2010; Fussell et al. 2014; DeWaard et al. 2016; Sadri et
al. 2018; Piguet et al. 2011). Such studies reveal factors that are associated with displace-
ment and recovery; however, they often neglect the effect of interdependencies between
cities. With the increase in the availability of large mobility datasets including mobile
phone call detail records, Global Positioning System (GPS) logs, and social media posts,
it has become possible to observe individual mobility patterns at an unprecedented high
spatio-temporal granularity (Deville et al. 2014; Jiang et al. 2016; Wardrop et al. 2018;
Gonzalez et al. 2008; Schneider et al. 2013). In the context of disasters, several studies
have focused on analyzing human mobility during and after earthquakes (Lu et al. 2012;
Song et al. 2014; Yabe et al. 2016), hurricanes (Wang and Taylor 2014; 2016) and other
anomalous events (Bagrow et al. 2011). Most recently, cross comparative analysis of popu-
lation recovery using large scale mobile phone GPS datasets from multiple disasters have
unraveled general patterns of population recovery (Yabe et al. 2019). Moreover, the het-
erogeneity in initial and long-term displacement rates across various communities were
explained by a set of key universal factors including the community’s median income level,
population size, housing damage rate, and the connectivity to other regions. Despite such
progress, the importance of inter-city dependencies on recovery is under-studied in the
literature. The aforementioned work (Yabe et al. 2019) only focused on the proximity of
regions to other regions on the road network. The proximity of region i to other regions
was defined as dp(i) =

∑
j∈S(i) Nj
Ni

, where Ni denotes the number of households in region
i, and S(i) denotes the set of regions that can be reached within 1 hour by vehicles from
region i. This metric fails to capture the social dimension of the connectivity between
cities.
In this paper, we investigate how inter-city dependencies in both physical as well as

social forms contribute to the recovery of cities after disasters. We investigate this prob-
lem through a case study of the population recovery patterns of 78 Puerto Rican counties
after Hurricane Maria. We analyze mobile phone location datasets, which include the
GPS location data of more than 50,000 unique users from over 6 months before and
after the Hurricane. Various metrics from the spatial networks literature are used to
quantify the node-level characteristics of Puerto Rican counties on social and physical
inter-city networks to understand the types of inter-city dependencies that play an impor-
tant role for effective post-disaster recovery. We find that inter-city social connectivity,
which is measured using pre-disaster mobility patterns, is crucial for quicker recovery
after Hurricane Maria. More specifically, counties that had more influx and outflux of
people prior to the hurricane were able to recover faster. Our findings highlight the
importance of fostering the social connectivity between cities as well as strengthening the
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physical infrastructure, to prepare effectively for future disasters. This paper introduces
a new perspective in the community resilience literature, where we take into account the
inter-city dependencies in the recovery process rather than analyzing each community as
independent entities.
The remainder of the paper is organized as follows. First, we describe the datasets

(mobile phone data, socio-economic data, and disaster damage data) used in this study.
Next, we introduce our methods for 1) estimating the time until recovery using mobile
phone data, 2) computing the node level network statistics that reflect the physical and
social connectivity, and 3) spatial regression analysis. Then, we present the empirical
results using data collected from Puerto Rico after Hurricane Maria in 2017. Finally, the
results are discussed and the study is concluded in the final sections.

Data
Mobile phone data

Mobile phone location data were collected by Safegraph Inc.1 during Hurricane Maria.
GPS data were obtained from mobile phones of individuals who agreed to provide their
location data for research purposes, and all information were anonymized to protect the
identity and security of users. Each observation includes the spatial and temporal infor-
mation (time, longitude, latitude) of mobile phones as well as a hashed unique identifier
(ID), as shown in Table 1. The example ID is masked to protect privacy issues.
Figure 1 shows the probability density of the number of observations per day for a user

in the location dataset. As shown in panel A), the probability density of the number of
GPS logs per user follows a power law distribution. The average number of logs per user
was 83 and the standard deviation was 262. For our analysis of population recovery on the
county scale, it is important to account for the biases in population samples. To ensure
that the data are not spatially biased, we plot the number of samples and sample rate (=
observed IDs / population) proportional to census population in Fig. 1 for Puerto Rico.We
can see that the number of mobile phone samples are highly correlated with census pop-
ulation for each county, with Pearson’s correlation coefficient of 0.985 Fig. 1b. Moreover,
Fig. 1c shows that the sample rates have low correlations with census population. Thus, it
is shown that the mobile phone data have little to no spatial bias in sample distributions.
However, after the Hurricane, the spatial bias in mobile phone user samples increases

due to various reasons, including damages to mobile phone towers cutting off mobile
phone users from the mobile network, and power outages causing people to not be able to
recharge their phones. As explainedmore in depth in the “Methods” section, we overcome
this issue by using data from only the temporal periods where the spatial bias of mobile
phone user sampling rate was minimal.

Socio-demographic data

In this study, population and income data of each county were used for regression analysis,
in accordance with the findings from previous studies (Yabe et al. 2019). Population data
were obtained from the US National Census2, and median income data were obtained
from the American Community Survey3.

1https://www.safegraph.com/
2https://www.census.gov/
3https://www.census.gov/programs-surveys/acs

https://www.safegraph.com/
https://www.census.gov/
https://www.census.gov/programs-surveys/acs
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Table 1 Fields and content of mobile phone location data

Field Description Sample

User ID Hashed unique user ID for each mobile phone user ###HA9K8FH6R

Timestamp Unix time of observation 1505771147

Longitude Longitude coordinate of the GPS observation -66.4304

Latitude Latitude coordinate of the GPS observation 18.2041

Figure 2a and b show spatial plots of the population and income distribution of coun-
ties in Puerto Rico, respectively. We can observe that in Puerto Rico, the majority of the
population is concentrated in the metro areas including San Juan County. The income
disparity is less significant compared to the population disparity.

Disaster damage data

The tropical cyclone Hurricane Maria developed on September 16, 2017 in the Atlantic
Ocean to the northeast of South America, and made landfall in southeastern Puerto
Rico on September 20, 2017 with wind speeds of 155 miles per hour. Damage to Puerto
Rico was severe and widespread following the Hurricane, with heavy rainfall, flooding,
storm surge, and high winds causing considerable damage (Pasch et al. 2018). Various
infrastructure systems were heavily damaged, causing power outages and water shortages
for the entire island for months (United States Department of Energy and Restoration
2017). Fatalities as a consequence of Maria are still under investigation, however the most
recent estimates suggest between 793 to 8,498 excess deaths occurred following the storm
(Kishore et al. 2018). Total economic losses are estimated to be $ 92 billion.
Physical damage caused by the hurricane are measured by the housing damage rates in

each county, which was provided through the “Housing Assistance Data” provided by the
Federal EmergencyManagement Agency (FEMA). The raw data can be found through the
link4. We defined “housing damage rate” for each county as the total number of houses
that were inspected to have had more than $ 10,000 worth of damage due to the target
hurricane, divided by the number of households in that county. Figure 2c shows the spa-
tial distribution of the housing damages in Puerto Rico. They gray dotted lines show the
trajectory of the hurricane, and we can observe higher housing damage rates near the
trajectory. We can observe that many of the counties in Puerto Rico experienced high
housing damage rates, between 20% and 60%.

Methods
Estimating population recovery from fragmented Mobile phone data

To estimate the recovery time of each county, the population displacement dynamics were
estimated from mobile phone observations. First, the home locations of individuals were
estimated from the mobile phone data observed prior to the hurricane. It is well known
that human mobility trajectories show a high degree of temporal and spatial regularity,
each individual having a significant probability to return to a few highly frequented loca-
tions, including his/her home location (Gonzalez et al. 2008). Due to this characteristic,
it has been shown that home locations of individuals can be estimated with high accu-
racy by clustering the individual’s stay point locations over night (Calabrese et al. 2011).
Home locations of each individual were estimated by applying mean-shift clustering to

4https://www.fema.gov/media-library/assets/documents/34758

https://www.fema.gov/media-library/assets/documents/34758
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Fig. 1 Statistics of mobile phone data. a Probability density plots for the number of GPS logs per day for a
user in Puerto Rico. The distribution is a power law, with mean 83 and standard deviation 262. bMobile
phone samples in each county is highly correlated with county-based census population in Puerto Rico. c
Census population of each county has no effect on the mobile phone sampling rates, showing no spatial
bias in the sampling distribution of the data

the nighttime stay points (observed between 8PM and 6AM), weighted by the duration
of stays in each location (Ashbrook and Starner 2003; Kanasugi et al. 2013). Mean shift
clustering was implemented using the scikit-learn package on Python. An individ-
ual was detected to be displaced if the individual is estimated to be staying in a location
outside the city of his/her estimated home location. Such home location estimates were
used to check the representativeness of mobile phone user samples in Fig. 1.
Second, using the longitudinal observations during and after the hurricane, the dis-

placement rate of each county was estimated. The night-time stay points of each

Fig. 2 Spatial plots of socio-demographics of counties in Puerto Rico. a Population distribution from national
census in Puerto Rico. bMedian income data obtained from American Community Survey for Puerto Rico. c
Housing damage rates obtained from FEMA in Puerto Rico due to Hurricane Maria. Path of Hurricane Maria is
shown in gray dotted trajectory
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individual were estimated from their mobile phone location data observed during night
time, using mean-shift clustering of mobile phone observation points weighted by the
length of stay at each point. We spatially aggregated the number of people estimated to
have stayed the night in each county to obtain the daily population count for each county.
However, we found that there was a significant decrease in the number of observed users
during and after Hurricane Maria. The number of mobile phone users observed before,
during and after Hurricane Maria are shown in Fig. 3a. We observe a significant decrease
in the number of users over time, which is assumed to be due to various reasons includ-
ing: 1) no signals due to damage to mobile phone towers, 2) dormant users due to lack
of power to charge their phones, and 3) users who uninstalled their app which collected
location data. However, since our interest is in the displacement rate of the users in each
county, the absolute number of observed mobile phone users is less important in this
study. Rather, whether or not the sampling rate of mobile phone users (# of mobile phone
users estimated to be residents of county i / # of census population of county i) is uniform
across all counties is important for our analysis. The Pearson Correlation between each
county’s census population and observed mobile phone users for each day, are plotted in
Fig. 3b. The red plots indicate days where the correlation is within 1% confidence interval
from the mean correlation after December 15th, where the sample rates are stable. The
blue plots indicate days where the correlation is significantly low, where sample rates of
mobile phone user samples are biased across counties. We observe that until October 7th,
the Pearson Correlation is significantly lower than usual, indicating that there is spatial
inequality in the sampling rates of mobile phone users. However, after October 7th, which
is 16 days from the Hurricane, the spatial bias becomes minimal (high correlation), and
shows that we are able to construct the population recovery dynamics without significant
sampling bias. Thus, we use population displacement data observed after October 7th to
estimate the recovery time to avoid the effects of power outages and mobile phone tower
outages.

Fig. 3 Fragmentation of mobile phone location data due to power outages. a Number of observed mobile
phone users over time b Correlation between census population and number of observed mobile phone
users who live in each county, across all days
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The observed population dynamics are fitted with an exponential function. We use the
exponential model instead of the linear recovery function due to better fit to data (see
“Appendix” section). We define “time until recovery”, denoted by T̃α

i , as the timing of
the first time the city’s population recovers to Mα

i = M∞
i · α, which is characterized by

the long term normalized population after the disaster
(
M∞

i
)
and a constant parameter

0 < α < 1. In cases where the long term population exceeds the original population(
Mbef

i = 1 < M∞
i

)
, the amount of time after exceeding the original population should

not be considered as time used for recover (rather, the population is growing after the
disaster). In these cases, T̃α

i is defined as the timing of the first time the city’s population
recovers to α, which is the population of pre-disaster level multiplied by α. In sum, time
until recovery is defined as the following:

T̃α
i = argmint

(
Mi(t) ≥ min(αM∞

i ,α)
)

(1)

where min(x, y) returns the smaller value between x and y. α = 0.95 is used as the thresh-
old parameter in the further results, since time until recovery are not affected by the
parameter value significantly (see “Appendix” section). For simple notations, we write
T̃0.95
i as Ti and call the variable “Time Until Recovery” in the following analysis. Figure 4

shows the estimated recovery times Ti of each county. We observe a general trend where
the counties around San Juan recover quickly (yellow), and recovery spreads to coastal
cities, then interior regions (red).

Node-level network statistics

Distancemetrics for edge weights

To investigate the effect of various types of inter-city dependencies on post-disaster recov-
ery, we construct multiple networks based on various edge weights between nodes (78
counties in Puerto Rico). Table 2 lists the 5 distance metrics that were used as edge
weights to build the inter-city network N in this study. Given a distance metric x, we
denote the network built using distance metric x as Nx. The distance metrics (edge
weights) are Euclidean distance e, travel time TT, road distance RD, mobility flow F, and
the number of overnight stays S. Euclidean distance is an undirected metric, calculated
by eij =

√
(xi − xj)2 + (yj − yj)2 given center points of two counties (xi, yi) and (xj, yj).

Travel time and road distance between counties i and j were calculated using Google

Maps API5 in the usual conditions (prior to the disaster). Although these metrics are
almost symmetrical, there are differences in travel times and fastest routes depending on
the direction of travel, thus would produce directed networks. The two social distance
metrics are mobility flow F and the number of overnight stays S, which are both observed
using mobile phone data from prior to the disaster. Mobility flow Fij is defined as the
inverse of the average number of travelers from node i to node j in the usual state (prior
to disaster). The number of overnight stays Sij is similar to mobility flow, and is defined
as the inverse of the average number of visitors from node i who stay overnight at node j
in the usual state (prior to disaster).
Figure 5 visualizes the networks built using the 5 distance metrics. Node sizes are pro-

portional to the pre-disaster population of each county prior to the disaster. All of these
metrics can be defined for all origin-destination pairs, however for clarity of the figures,
we only show the edges with the 500 highest edge weights. The weight of each edge is

5https://developers.google.com/maps/documentation/

https://developers.google.com/maps/documentation/
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Fig. 4 Estimated recovery time Ti of each community after Hurricane Maria

shown as the width of each edge. For the direct networks (B-E), sum of the weights on
both directions are visualized. From visual inspection, we can see a large difference in the
structure of networks built based on physical (A-C) and social metrics (D,E). In particular,
in D) and E), we can see that some cities on the coast have large direct weights between
San Juan, which mean that despite the large physical distance, there are many people who
travel and/or stay overnight between these cities.
Table 3 shows the element-wise Pearson correlation between edge weights based on

different distance metrics. We can see that Euclidean distance Ne has high correlations
with road distance NRD and travel times NTT , thus we exclude Euclidean distance from
our analysis, and focus on networks constructed by the four remaining distance metrics.

Network statistics

Using the four different networks built from physical and social distance metrics defined
above, we attempt to understand what type of network statistic on these networks can
explain the time until recovery well in Puerto Rico. Identifying the most highly correlated
network statistic and distance metric could provide insights into the underlying process
that dictates the recovery of counties after disasters. In a similar manner as the distance
metrics, we test various node-level statistics to compute the importance of each node in
each network. Table 4 lists the node-level statistics that we will test on the four different
networks Nx. The six network statistics for node i in network Nx are: weighted in, out,
and total degrees (WI(Nx)i, WO(Nx)i, and W (Nx)i, respectively), weighted clustering
coefficient CC(Nx)i, direct distance from the source of recovery (San Juan in the case of
Puerto Rico)DSJ(Nx)i, and shortest path distance from the source of recovery SPSJ(Nx)i.
Such network statistic measures were proposed in the literature of weighted directed

and spatial networks to quantify the characteristics of each node (Barthélemy 2011; Barrat

Table 2 Distance metrics x that were used as edge weights to build inter-city networkNx

Distance metric x Notation Directed? Category Description

Euclidean distance eij Undirected Physical Euclidean distance between center of counties i
and j

Travel time TTij Directed Physical Driving time from i to j in usual state
(GoogleMaps API)

Road distance RDij Directed Physical Road distance on quickest route from i to j in
usual state (GoogleMaps API)

Mobility flow Fij Directed Social Inverse of the # of travelers from i to j in usual
state (from mobile phones)

# of overnight stays Sij Directed Social Inverse of the # of visitors from county i who stay
overnight in county j in usual state (from mobile
phones)
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Fig. 5 Visualization of distance weights of each network metric
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Table 3 Correlation between edge weights based on distance metricsNx

Ne NTT NRD NF NS

(Ne) 1.000 0.605 0.933 0.271 0.293

NTT 1.000 0.923 0.357 0.341

NRD 1.000 0.307 0.304

NF 1.000 0.509

NS 1.000

et al. 2005; Barrat et al. 2004; Opsahl et al. 2010; Fagiolo 2007). Such metrics are applied
in various domains to assess the importance of nodes in weighted networks, including
urban networks (Zhong et al. 2014), urban traffic networks (DeMontis et al. 2007), airport
networks (Li and Cai 2004), and metabolic processes (Almaas et al. 2004).
A weighted network Nx can be described with a N × N adjacency matrix W, where

wij denotes the (i.j)-th element and the weight assigned to edge i to j. The weighted in,
out, total degrees, weighted clustering coefficient, and weighted betweenness centrality
of node i were calculated for each weighted networkNx. The weighted in-degree of node
i is calculated byWI(Nx)i = ∑

j∈V(i) wji, where V(i) is the set of nodes connected to node
i. Similarly, the weighted out-degree of node i is calculated by WO(Nx)i = ∑

j∈V(i) wij.
The weighted total degree of node i is the sum of in and out degrees W (Nx)i =
WI(Nx)i + WO(Nx)i. The weighted clustering coefficient measures the statistical level
of cohesiveness around node i. In general, this value decays with respect to degrees,
shown in both airplane network and authors network (Barrat et al. 2004). This is because
low degree nodes are connected to highly connected communities, while large degree
nodes are connected to many nodes that are not directly connected. It is computed by

CC(Nx)i = (Ŵ+ŴT )3ii
2TD

i
, where Ŵ =

{

w
1
3
ij

}

and TD
i = dtoti

(
dtoti − 1

) − 2d↔
i , d↔

i = W 2
ii .

The direct distance from San Juan of node i is the simply the distance metric between
node i and San Juan. San Juan is chosen as the destination because it was the major source
of recovery after Hurricane Maria in Puerto Rico. Similarly, we also measure the shortest
path distance from San Juan on networkNx.
Thus, in summary, we construct networks based on four different distance metrics,

and define six node-level statistics for each defined network. This gives us 24 different
network metrics that each quantify the physical and/or social characteristics of each node
from different aspects. In the next section, we test whether these network metrics can
explain the variance in recovery speed across counties in Puerto Rico after Hurricane
Maria.

Table 4 Node-level statistics of node i given inter-city networkNx

Network statistic Notation Description

Weighted in-degree WI(Nx)i Total weighted in-degree of i onNx

Weighted out-degree WO(Nx)i Total weighted out-degree of i onNx

Weighted total degree W(Nx)i Total weighted degree of i onNx

Weighted clustering coefficient CC(Nx)i Weighted clustering coefficient of i onNx

Direct distance from San Juan DSJ(Nx)i Direct distance to i from San Juan onNx

Shortest path distance from San Juan SPSJ(Nx)i Distance of shortest path to i from San Juan onNx
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Spatial regression models

First, ordinary least squares (OLS) method is used to estimate the parameters of the
general regression model specified below.

y = xβ + ε (2)

where, y is an n×1 vector representing the objective variable (recovery time), x is an n×k
matrix of the independent variables, and β is a k × 1 vector of the coefficients. Here, the
error term ε is assumed to be an i.i.d. normal. When there is spatial dependence in the
error term, the i.i.d. normal assumption is violated. Two approaches are taken to deal with
spatial correlation (Ward and Gleditsch 2018). First is the spatial lag model, where the
error term is decomposed into a spatially lagged term for the dependent variable and an
independent error term, ε = ρWy+e, whereW is thematrix that reflects the spatial prox-
imity between areas which is commonly defined by encoding the k-nearest neighbors.
This gives us the spatial lag model, described by the following equation:

y = ρWy + xβ + ε (3)

where ε ∼ N(0, σ 2I). The parameters can be estimated using maximum likelihood
estimation.
The other approach is to assume that the error is spatially correlated, instead of the

objective variables affecting the objective variables of neighboring areas.We can write the
spatial error model as follows:

y = xβ + λW ξ + ε (4)

where ε ∼ N(0, σ 2I). In the following regression analysis, we first test the general regres-
sion model and also test for significance in spatial lag ρ and spatial error λ terms. Then,
we apply the appropriate spatial regression analysis accordingly.

Results
Table 5 shows the statistics of the independent and objective variables. In the regression
models, recovery time Ti is set as the objective variable. The variables in the second block
(county population, median income, and housing damage rate) and one variable from the
third block (network statistics) are used as independent variables for each of the regres-
sion models. The network statistic variables are normalized by the following equation:

x̂ = x − min(x)
max(x) − min(x)

(5)

where max(x) and min(x) are maximum and minimum values of variable x.
The Pearson correlations between recovery time and each independent variable are

shown in the right column of Table 5. We observe that all socio-demographic variables
(county population, median income, and housing damage rate) have moderate correla-
tions with recovery time, as shown in past studies (Yabe et al. 2019). Among the network
statistic variables, all of the node-level statistics of the mobility flow based network and
overnight stay network had significant correlations with recovery time, indicating the
significant effect of inter-city social connectivity on post-disaster recovery. In contrast
to social connectivity, node-level statistics computed from physical networks were less
significantly correlated with recovery time in Puerto Rico. To examine the collinearity
effect of these network statistics, we test the regression models using each node-level
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Table 5 Statistics of independent and objective variables

Variable Min. Max. Med. Mean Std. Dev. Corr. with Ti

Recovery time Ti (days) 1 243 74 80.2 58.2 –

County population 1,818 395,326 34,154 46,862 53,884 -0.476***

Median income ($) 11528 35074 17054.5 18152 4466 -0.489***

Housing damage rate 0.138 0.657 0.339 0.349 0.119 0.384***

WI(NTD) 0 1.0 0.183 0.232 0.197 0.054

WI(NTT ) 0 1.0 0.585 0.581 0.152 0.105

WI(NF) 0 1.0 0.356 0.386 0.208 -0.55***

WI(NS) 0 1.0 0.396 0.404 0.201 -0.43***

WO(NTD) 0 1.0 0.184 0.232 0.198 0.054

WO(NTT ) 0 1.0 0.578 0.580 0.151 0.084

WO(NF) 0 1.0 0.310 0.352 0.205 -0.564***

WO(NS) 0 1.0 0.341 0.350 0.204 -0.498***

W(NTD) 0 1.0 0.184 0.232 0.198 0.054

W(NTT ) 0 1.0 0.582 0.580 0.151 0.094

W(NF) 0 1.0 0.349 0.400 0.217 -0.602***

W(NS) 0 1.0 0.359 0.382 0.220 -0.511***

CC(NTD) 0 1.0 0.182 0.221 0.185 0.098

CC(NTT ) 0 1.0 0.832 0.811 0.151 0.011

CC(NF) 0 1.0 0.361 0.373 0.150 0.533***

CC(NS) 0 1.0 0.509 0.509 0.176 0.570***

DSJ(NTD) 0 1.0 0.367 0.451 0.279 0.092

DSJ(NTT ) 0 1.0 0.431 0.487 0.272 0.187*

DSJ(NF) 0 1.0 0.084 0.185 0.243 0.282**

DSJ(NS) 0 1.0 0.185 0.288 0.263 0.397***

SPSJ(NTD) 0 1.0 0.036 0.064 0.154 0.198*

SPSJ(NTT ) 0 1.0 0.367 0.451 0.279 0.092

SPSJ(NF) 0 1.0 0.117 0.143 0.144 0.326***

SPSJ(NS) 0 1.0 0.173 0.205 0.179 0.482***

network statistics. Figure 6 shows the Akaike Information Criterion (AIC) and adjusted
R2 of each regression model. We observe that the regression model using the weighted
total degree of the mobility flow network (W (NF)) has the lowest AIC and adjusted R2

value. Table 6 shows the detailed regression results of the two regression models with
and without the W (NF) variable. The estimated regression coefficients and their signif-
icance levels are shown in stars. Using the network statistic, both the AIC and adjusted
R2 improve significantly, and we observe that the population variable becomes insignif-
icant when considering the inter-city network variable. Moreover, the results show that
the network metric variable negatively affects recovery time, meaning that the more the
influx and outflux mobility flow before the disaster, the quicker the recovery.
The spatial dependence of recovery time is tested using various metrics in Table 7. All

metrics including the Moran’s I, the lag Lagrange multiplier ρ, and the error Lagrange
multiplier λ are significant, showing significant spatial dependence. Robust tests of both
Lagrange multipliers show that the error Lagrange multiplier λ is more significant. Thus,
we test the Spatial Error Model and compare the results with the OLS Model in Table 8.
Results show that the AIC is lower in the Spatial Error Model, indicating that spatial
dependence in the error term explains the heterogeneity in recovery time across the
counties in Puerto Rico. In both models, income levels and the network metric (W (NF))
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Fig. 6 a AIC and b adjusted R2 of ordinary least squared regression models using different node level
network statistics

have significant effects on the recovery time. Housing damage rates, however, become
insignificant under the spatial error model.

Discussions
Our analyses based on observational data from Puerto Rico after Hurricane Maria con-
firmed that inter-city network metrics, namely the pre-disaster mobility flow, has a
significant positive influence on the speed of recovery. The results imply that the more
socially connected an area is to other counties, the more easier it is for people living
in those communities to receive support and to recovery quickly. This paper introduces
a new perspective in the community resilience literature, where we take into account
the inter-city dependencies in the recovery process rather than analyzing each commu-
nity as independent entities. These insights encourage communities to prepare for future
hazards by not only preparing its physical infrastructure (e.g. roads), but also by strength-
ening their social connectivity with other cities, to have greater chances of receiving
support in case of emergencies.
Now, we discuss future research opportunities that this study enables. First, Puerto Rico

is a unique case study because of its island geography. It is valuable to examine whether
the same rules apply to other regions with different geographical characteristics. We will
start collecting additional data from other disaster events to test the generalizability of
our method between different disaster events. The Haiti Earthquake is an example where
a large disaster struck a low-income island region. Another example where we observe
severe damage is the Tohoku Tsunami (Japan) in 2011, where the coastal cities of the
east coast of the Tohoku region are still struggling to recovery from the disaster. Com-
paring the analysis presented in this study across different disaster instances would be an
interesting topic for future research.

Table 6 Ordinary Least Squares Regression Results withW(NF) as network metric

Socio-demographic only Socio-demographic + network metric

Constant 297.21*** 22.48

ln(Population) -19.18** 10.54

Income -4.06*** -2.78**

Housing Damage 140.6** 140.1**

Network Metric – -145.5***

Adjusted R2 0.329 0.416

AIC 829.21 819.48

*** p < 0.01, ** p < 0.05
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Table 7 Spatial dependence tests

Moran’s I 7.433***

Lag multiplier ρ 24.82***

Error multiplier λ 31.60***

Robust lag multiplier ρ 0.747

Robust error multiplier λ 7.53***

*** p < 0.01

Second, modeling the underlying process of recovery was not in the scope of this study.
This work was limited to testing the statistical significance of network metrics using
econometric models. To better understand, predict and control the recovery of commu-
nities after disasters, there is a need to model the underlying process that dictates the
population recovery. Developing agent based models and system dynamics models for
predicting community recovery based on the insights obtained from this study will be the
next steps in our research.
Thirdly, the reliability of the results in this study could improve if we could increase the

diversity of datasets to quantify the social connectivity between counties. One candidate
would be Twitter data, where we can use text-mining to determine counties that have fre-
quent contacts via messaging or retweeting. Also, call records of mobile phones would be
a good data source to quantify social connections between two counties. In Puerto Rico,
social connectivity measured by the mobility of people was shown to explain recovery
times. It would be valuable to investigate whether the social measures used in this study
would apply to other regions with different social norms, such as Japan or mainland US.
Using more datasets to investigate such questions on the inter-city dependencies in the
recovery process would be the focus of future studies.

Conclusions
Using large scale mobile phone data collected from Puerto Rico, we revealed the impor-
tance of inter-city social connectivity on disaster recovery after Hurricane Maria. More
specifically, we showed that observing the mobility patterns between counties prior to
the disaster can increase the predictability of time until recovery of communities. These
insights highlight the importance of communities and policy makers to invest more into
developing the social networks across counties or nearby cities through the interaction
of people prior to the disaster to prepare for future disasters, as well as investing into the
physical infrastructure networks.

Table 8 Regression results of spatial error model

Non-spatial Spatial error model

Constant 22.48 78.40

ln(Population) 10.54 12.31

Income -2.78** -3.17**

Housing damage 140.1** 10.86

Network metric -145.5*** -155.49***

λ – 0.78***

AIC 819.48 796.84

*** p < 0.01, ** p < 0.05
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Appendix
On the choice of the exponential recovery model

The normalized population data were fitted using two different functions to denoise the
observations. We test two functions: 1) linear model and 2) exponential model.
The exponential model is defined as follows:

Mi
(
t|τi,M0

i ,M∞
i

) = M∞
i − (

M∞
i − M0

i
)
exp

(

− t − T0
τi

)

(6)

where, τi is the recovery speed of city i,M0
i is the initial population rate of city i, andM∞

i
is the long term population rate of city i. t = T0 denotes the timing of initial population
rate. Figure 7a shows an illustration of the exponential model.
The alternative is the linear model, defined as the following:

Mi
(
t|βi,M0

i ,M∞
i

) =
{
M0

i + βi(t − T0)(t ≤ Tc)

M∞
i (t > Tc)

(7)

where, βi is the coefficient of the linear recovery speed of city i,M0
i is the initial population

rate of city i, andM∞
i is the long term population rate of city i. t = Tc denotes the timing

where the linear recovery line reaches M∞
i . Figure 7b shows an illustration of the linear

model.
We chose the model by testing which model is able to fit the empirical data obtain

from Puerto Rico after Hurricane Maria. Parameters (τi, βi and M∞
i ) of the models were

fitted using least squares method. M0
i , which is the initial population rate, is defined as

M0
i = mint Mi(t). Squared error (SE) and Pearson’s correlation coefficient ρ between the

observed and fitted time series were used as evaluation metrics. SE is defined as:

SE
(
M(t), ˆM(t)

)
=

√
(
M(t) − ˆM(t)

)2
(8)

where M(t) and ˆM(t) are observed and fitted values of the time series, and T is the total
number of time steps. Pearson’s correlation coefficient ρ is defined as:

ρ
(
M(t), ˆM(t)

)
= Cov(M(t), ˆM(t))

σM(t)σ ˆM(t)
(9)

where Cov(x, y) is the covariance between x and y, σx is the standard deviation of x.
Figure 8 shows the histograms of the two metrics for the two models, to evaluate the

goodness of fit of the two models. We can observe that the exponential model has lower

Fig. 7 Illustration of the approximations of population recovery times. a Exponential fitting model based on
insights from (Yabe et al. 2019). The parameter that characterizes the model is τi . b Recovery curve fitted to
linear functions. The parameter that characterizes the model is βi . c Recovery time defined as the timing Tα

i
thatMi(t) exceedsMα

i which is characterized by constant parameter α
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Fig. 8 Evaluation of the goodness of fit of the two models. a, cMean squared error (MSE) of observation and
fitted models. Exponential model has lower MSE. b, d Pearson’s correlation between observation and fitted
models. Exponential model has higher correlation

SE and higher correlation, meaning that it is able to better approximate the observations.
Thus, in our further analysis, we use the results obtained by fitting the observations to the
exponential model.

On the robustness against parameter α for recovery time estimation

As shown in Fig. 9, Pearson’s correlation coefficients between T̃0.80
i , T̃0.85

i , T̃0.90
i , T̃0.95

i are
all very high (ρ > 0.96). This implies that the T̃α

i values do not depend highly on the
values of α. Thus, we use α = 0.95 as a parameter for our further analysis. For nota-
tional simplicity, we write T̃0.95

i as T̃i and call the variable “time until recovery” in the
analysis.

Fig. 9 Robustness on the choice of α values. High linear correlation between T̃0.95i and T̃α
i values in Puerto

Rico
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