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Abstract
Important data mining problems such as nearest-neighbor search and clustering admit
theoretical guarantees when restricted to objects embedded in a metric space. Graphs
are ubiquitous, and clustering and classification over graphs arise in diverse areas,
including, e.g., image processing and social networks. Unfortunately, popular distance
scores used in these applications, that scale over large graphs, are not metrics and thus
come with no guarantees. Classic graph distances such as, e.g., the chemical distance
and the Chartrand-Kubiki-Shultz distance are arguably natural and intuitive, and are
indeed also metrics, but they are intractable: as such, their computation does not scale
to large graphs. We define a broad family of graph distances, that includes both the
chemical and the Chartrand-Kubiki-Shultz distances, and prove that these are all
metrics. Crucially, we show that our family includes metrics that are tractable.
Moreover, we extend these distances by incorporating auxiliary node attributes, which
is important in practice, while maintaining both the metric property and tractability.

Keywords: Metric spaces, Graph distances, Graph matching, Graph isomorphism,
Convex optimization, Spectral algorithms

Introduction
Graph similarity and the related problem of graph isomorphism have a long history in
data mining, machine learning, and pattern recognition (Conte et al. 2004; Macindoe and
Richards 2010; Koutra et al. 2013). Graph distances naturally arise in this literature: intu-
itively, given two (unlabeled) graphs, their distance is a score quantifying their structural
differences. A highly desirable property for such a score is that it is a metric, i.e., it is
non-negative, symmetric, positive-definite, and, crucially, satisfies the triangle inequal-
ity. Metrics exhibit significant computational advantages over non-metrics. For example,
operations such as nearest-neighbor search (Clarkson 2006; 1999; Beygelzimer et al.
2006), clustering (Ackermann et al. 2010), outlier detection (Angiulli and Pizzuti 2002),
and diameter computation (Indyk 1999) admit fast algorithms precisely when performed
over objects embedded in a metric space. To this end, proposing tractable graph metrics
is of paramount importance in applying such algorithms to graphs.
Unfortunately, graph metrics of interest are often computationally expensive. A well-

known example is the chemical distance (Kvasnička et al. 1991). Formally, given graphsGA
and GB, represented by their adjacency matrices A,B ∈ {0, 1}n×n, the chemical distance
dPn(A,B) is defined in terms of a mapping between the two graphs that minimizes their
edge discrepancies, i.e.:

dPn(A,B) = minP∈Pn ‖AP − PB‖F , (1)
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where P
n is the set of permutation matrices of size n and ‖ · ‖F is the Frobenius norm

(see “Notation and preliminaries” section for definitions). The Chartrand-Kubiki-Shultz
(CKS) (Chartrand et al. 1998) distance is an alternative: CKS is again given by (1) but,
instead of edges, matrices A and B contain the pairwise shortest path distances between
any two nodes.
The chemical and CKS distances have important properties. First, they are zero if and

only if the graphs are isomorphic, which appeals to both intuition and practice; second,
as desired, they are metrics over the quotient space defined by graph isomorphism (see
“Notation and preliminaries” section); third, they have a natural interpretation, capturing
global structural similarities between graphs. However, finding an optimal permutation P
is notoriously hard; graph isomorphism, which is equivalent to deciding if there exists a
permutation P such that AP = PB (for both adjacency and path matrices), is famously a
problem that is neither known to be in P nor shown to be NP-hard (Babai 2016). There is a
large and expanding literature on scalable heuristics to estimate the optimal permutation
P (Klau 2009; Bayati et al. 2009; Lyzinski et al. 2016; El-Kebir et al. 2015). Despite their
computational advantages, unfortunately, using them to approximate dPn(A,B) breaks the
metric property.
This significantly degrades the performance of many important tasks that rely on

computing distances between graphs. For example, there is a clear separation on the
approximability of clustering over metric and non-metric spaces (Ackermann et al. 2010).
We also demonstrate this empirically in “Experiments” section (c.f. Fig. 1): attempt-
ing to cluster graphs sampled from well-known families based on non-metric distances
significantly increases the misclassification rate, compared to clustering using metrics.

Fig. 1 Clustering Misclassification Error. A clustering experiment using metrics and non-metrics (y-axis) for
different clustering parameters (x-axis). We sample graphs with n = 50 nodes from the six classes, shown in
Table 3. We compute distances between them using nine different algorithms from Table 2. Only the
distances in our family (DSL1, DSL2, ORTHOP, and ORTHFR) are metrics. The resulting graphs are clustered
using hierarchical agglomerative clustering (Hartigan 1975) using Average, Centroid, Complete,Median, Single,
Ward,Weighted as a means of merging clusters. Colors represent the fraction of misclassified graphs, with the
minimal misclassification rate per distance labeled explicitly. Metrics outperform other distance scores across
all clustering methods. The error rate of a random guess is ≈ 0.8.
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An additional issue that arises in practice is that nodes often have attributes not asso-
ciated with adjacency. For example, in social networks, nodes may contain profiles with
a user’s age or gender; similarly, nodes in molecules may be labeled by atomic numbers.
Such attributes are not captured by the chemical or CKS distances. However, in such
cases, only label-preserving permutations P may make sense (e.g., mapping females to
females, oxygens to oxygens, etc.). Incorporating attributes while preserving the metric
property is thus important from a practical perspective.

Contributions

We seek generalizations of the chemical and CKS distances that (a) satisfy the metric
property and (b) are tractable: by this, we mean that they can be computed either by
solving a convex optimization problem, or by a polynomial time algorithm. Specifically,
we study generalizations of (1) of the form:

dS(A,B) = minP∈S ‖AP − PB‖ (2)

where S ⊂ R
n×n is closed and bounded, ‖ · ‖ is a matrix norm, and A,B ∈ R

n×n are
arbitrary real matrices (representing adjacency, path distances, weights, etc.). We make
the following contributions:

• We prove sufficient conditions on S and norm ‖ · ‖ under which (2) is a
pseudometric, i.e., a metric over a quotient space defined by equivalence relation
dS(A,B) = 0. In particular, we show that dS is a pseudometric when:

(i) S = P
n and ‖ · ‖ is any entry-wise or operator norm;

(ii) S = W
n, the set of doubly stochastic matrices, ‖ · ‖ is an arbitrary entry-wise

norm, and A,B are symmetric; a modification on dS extends this result to both
operator norms as well as arbitrary matrices (capturing, e.g., directed graphs);
and

(iii) S = O
n, the set of orthogonal matrices, and ‖ · ‖ is the operator or entry-wise

2-norm.

We also characterize the corresponding equivalence classes (see “Main
results” section). Relaxations (ii) and (iii) are very important from a practical
standpoint. For all matrix norms, computing (2) with S = W

n is tractable, as it is a
convex optimization. For S = O

n, (2) is non-convex but is still tractable, as it reduces
to a spectral decomposition. This was known for the Frobenius norm (Umeyama
1988); we prove this is also the case for the operator 2-norm.

• We include node attributes in a natural way in the definition of dS as both soft (i.e.,
penalties in the objective) or hard constraints in Eq. (2). Crucially, we do this without
affecting the pseudometric property and tractability. This allows us to explore label
or feature preserving permutations, that incorporate both (a) exogenous node
attributes, such as, e.g., user age or gender in a social network, as well as (b)
endogenous, structural features of each node, such as its degree or the number of
triangles that pass through it. We numerically show that adding these constraints can
speed up the computation of dS.

From an experimental standpoint, we extensively compare our tractable metrics to sev-
eral existing heuristic approximations.We also demonstrate the tractability of ourmetrics
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by parallelizing their execution using the Alternating Direction Method of Multipliers
(ADMM) (Boyd et al. 2011), which we implement over a compute cluster using Apache
Spark (Zaharia et al. 2010).

RelatedWork

Graph distance (or similarity) scores find applications in varied fields such as in image
processing (Conte et al. 2004), chemistry (Allen 2002; Kvasnička et al. 1991), and social
network analysis (Macindoe and Richards 2010; Koutra et al. 2013). Graph distances
are easy to define when, contrary to our setting, the correspondence between graph
nodes is known, i.e., graphs are labeled (Papadimitriou et al. 2010; Koutra et al. 2013;
Soundarajan et al. 2014). Beyond the chemical distance, classic examples of distances
between unlabeled graphs are the edit distance (Garey and Johnson 2002; Sanfeliu and
Fu 1983) and themaximum common subgraph distance (Bunke and Shearer 1998; Bunke
1997), both of which also have versions for labeled graphs. Both are pseudometrics and
are hard to compute, while existing heuristics (Riesen and Bunke 2009; Fankhauser et
al. 2011) do not satisfy the triangle inequality. The reaction distance (Koca et al. 2012)
is also a pseudometric, and is directly related to the chemical distance (Kvasnička et
al. 1991) when edits are restricted to edge additions and deletions. Jain (Jain 2016)
also considers an extension of the chemical distance, limited to the Frobenius norm,
that incorporates edge attributes. However, it is not immediately clear how to relax the
above pseudometrics (Jain 2016; Koca et al. 2012) to attain tractability, while keeping the
pseudometric property.
A pseudometric can also be induced by embedding graphs in a metric space and mea-

suring the distance between embeddings (Riesen et al. 2007; Ferrer et al. 2010; Riesen
and Bunke 2010). Several works follow such an approach, mapping graphs, e.g., to spaces
determined by their spectral decomposition (Zhu and Wilson 2005; Wilson and Zhu
2008; Elghawalby and Hancock 2008). In general, in contrast to our pseudometrics, such
approaches are not as discriminative, as embeddings summarize graph structure. Con-
tinuous relaxations of graph isomorphism, both convex and non-convex (Lyzinski et al.
2016; Aflalo et al. 2015; Umeyama 1988), have found applications in a variety of contexts,
including social networks (Koutra et al. 2013), computer vision (Schellewald et al. 2001),
shape detection (Sebastian et al. 2004; He et al. 2006), and neuroscience (Vogelstein et
al. 2011). Lyzinski et al. (Lyzinski et al. 2016) in particular show (both theoretically and
experimentally) that a non-convex relaxation is advantageous over one of the relaxations
we consider here (namely, dS with S = W

n, ‖ · ‖ = ‖ · ‖F ) in recovering the optimal per-
mutation P. They also incorporate features via a trace penalty as we do in “Incorporating
metric embeddings” section (c.f. Eq. (17)). None of the above works however focus on the
metric properties of the resulting relaxations, which several fail to satisfy (Vogelstein et
al. 2011; Koutra et al. 2013; Sebastian et al. 2004; He et al. 2006; Lyzinski et al. 2016).
Metrics naturally arise in data mining tasks, including clustering (Xing et al. 2002; Har-

tigan 1975), Nearest Neighbour (NN) search (Clarkson 2006; 1999; Beygelzimer et al.
2006), and outlier detection (Angiulli and Pizzuti 2002). Some of these tasks become
tractable, or admit formal guarantees, precisely when performed over a metric space. For
example, finding the nearest neighbor (Clarkson 2006; 1999; Beygelzimer et al. 2006) or
the diameter of a data-set (Indyk 1999) become polylogarithimic under metric assump-
tions; similarly, approximation algorithms for clustering (which is NP-hard) rely onmetric
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assumptions, whose absence leads to a deterioration of known bounds (Ackermann et al.
2010). Our search for metrics is motivated by these considerations.
The present paper is an extended version of a paper by the same authors that appeared

in the 2018 SIAM International Conference on Data Mining (Bento and Ioannidis 2018),
which did not contain any proofs. In addition to the material included in the conference
version, the present paper contains (a) proofs of all main theorems, establishing sufficient
conditions under which a solution to (2) yields a pseudo-metric, (b) a polynomial-time
spectral algorithm for computing (2) over the Stiefler manifold, (c) extensions of our
metrics to graphs of unequal sizes, and (d) an extended experiment section.

Notation and preliminaries
Webegin by introducing some terminology that we use throughout the paper. A summary
of our notation can be found in Table 1.

Graphs We represent an undirected unweighted graph G(V ,E) with node set V =[ n]≡
{1, . . . , n} and edge set E ⊆[ n]×[ n] by its adjacency matrix, i.e. A =[ ai,j]i,j∈[n] ∈ {0, 1}n×n

such that aij = aji = 1 if and only if (i, j) ∈ E. In particular, A is symmetric, i.e. A = A�.
We denote the set of all real, symmetric matrices by Sn. Directed unweighted graphs are

Table 1 Notation Summary

[ n] Set {1, . . . , n}
R
n×n The set of real n × nmatrices.

S
n The set of real, symmetric matrices.

I The identity matrix of size n × n.

1 The n-dimensional vector whose entries are all equal to 1.

σmax(·) Largest singular value of a matrix.

tr(·) The trace of a matrix.

conv(·) The convex hull of a set.

G(V , E) Graph with vertex set V and edge set E.

A, B Matrices [ ai,j]i,j∈[n] , [ bi,j]i,j∈[n] .
‖ · ‖p Operator or entry-wise p-norm.

‖ · ‖F Frobenius norm.

P
n Set of permutation matrices of size n × n, c.f. (4)

W
n Set of doubly stochastic matrices (a.k.a. the Birkhoff polytope) of size n × n, c.f. (5)

O
n Set of orthofonal matrices (a.k.a. the Stiefel manifold) of size n × n, c.f. (6)

�, �̃ Sets over which a metric is defined.

d(x, y) A metric over space �.

d̄(x, y) The symmetric extension of d(x, y).

(�, d) A metric space.

GA ,GB Graphs with adjacency matrices A, B.

P,W ,O n × nmatrices.

S A closed and bounded subset of Rn×n .

dS(A, B) A class of distance scores defined by minimization (12) over set S.

dPn Pseudometric dS , where S is the set of permutation matrices.

dWn Pseudometric dS , where S is the set of doubly stochastic matrices.

dOn Pseudometric dS , where S is the set of orthogonal matrices.

�n
�̃

Set of all embeddings from [ n]→ �̃, where (�̃, d̃) is a metric space.

ψA ,ψB Embeddings in �n
�̃
of nodes in graphs GA and GB , respectively.

DψA ,ψB n× nmatrix of all pairwise distances between images of nodes in GA and GB , under embeddings ψA and ψB .
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represented by (possibly non-symmetric) binary matrices A ∈ {0, 1}n×n, and weighted
graphs by real matrices A ∈ R

n×n.

Matrix Norms. Given a matrix A =[ aij]i,j∈[n] ∈ R
n×n and a p ∈ N+ ∪ {∞},

its induced or operator p-norm is defined in terms of the vector p-norm through
‖A‖p = supx∈Rn:‖x‖p=1 ‖Ax‖p, while its entry-wise p-norm is given by ‖A‖p =
(
∑n

i=1
∑n

j=1 |aij|p)1/p, for p ∈ N+, and ‖A‖∞ = maxi,j |ai,j|. We denote the entry-wise
2-norm (i.e., the Frobenius norm) as ‖ · ‖F . Recall that all matrix norms on R

n×n are
equivalent: given two norms ‖ · ‖, ‖ · ‖′, there exist constants c1, c2 > 0 such that

c1‖A‖′ ≤ ‖A‖ ≤ c2‖A‖′ for all A ∈ R
n×n. (3)

Permutation, Doubly Stochastic, and Orthogonal Matrices. We denote the set of
permutationmatrices as

P
n ≡ {P ∈ {0, 1}n×n : P1 = 1,P�1 = 1}, (4)

the set of doubly-stochasticmatrices (i.e., the Birkhoff polytope) as

W
n ≡ {W ∈[ 0, 1]n×n : W1 = 1,W�1 = 1}, (5)

and the set of orthogonal matrices (i.e., the Stiefel manifold) as

O
n ≡ {U ∈ R

n×n : UU� = U�U = I}. (6)

Note that

P
n = W

n ∩ O
n, (7)

i.e., permutation matrices are precisely the matrices that are both doubly stochastic and
orthogonal. Moreover, the Birkoff-von Neumann Theorem (Birkhoff 1946) states that

W
n = conv(Pn)

=
{
W ∈[ 0, 1]n×n : W = ∑

P∈Pn θPP, for some θ ∈ R
|Pn|
+ s.t. θ�1 = 1

}
,

(8)

i.e., the Birkoff polytope is the convex hull of Pn. Hence, every doubly stochastic matrix
can be written as a convex combination of permutation matrices.

Metrics Given a set �, a function d : � × � → R is called a metric, and the pair (�, d)

is called ametric space, if for all x, y, z ∈ �:

d(x, y) ≥ 0 (non-negativity) (9a)

d(x, y)=0 iffx=y (pos. definiteness) (9b)

d(x, y) = d(y, x) (symmetry) (9c)

d(x, y)≤d(x, z)+d(z, y) (triangle inequality) (9d)

A function d is called a pseudometric if it satisfies (9a), (9c), and (9d), but the positive
definiteness property (9b), also known as the identity of indiscernibles, is replaced by the
(weaker) property:

d(x, x) = 0 for all x ∈ �. (9e)

If d is a pseudometric, then d(x, y) = 0 defines an equivalence relation x ∼d y over �. A
pseudometric is then a metric over �/∼d, the quotient space of ∼d.
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A function d that satisfies (9a), (9b), and (9d) but not the symmetry property (9c) is
called a quasimetric. If d is a quasimetric, then its symmetric extension d̄ : � × � → R,
defined as

d̄(x, y) = d(x, y) + d(y, x), (10)

is a metric over �.

Graph Isomorphism, Chemical Distance, and CKS Distance. Let A,B ∈ R
n×n be the

adjacency matrices of two graphsGA andGB. Then,GA andGB are isomorphic if and only
if there exists P ∈ P

n s.t.

P�AP = B or, equivalently, AP = PB. (11)

The chemical distance, given by (1), extends the second relationship in (11) to capture
distances between graphs. More generally, let ‖ · ‖ be a matrix norm in R

n×n. For some
� ⊆ R

n×n, define dS : � × � → R+ as:

dS(A,B) = minP∈S ‖AP − PB‖, (12)

where S ⊂ R
n×n is a closed and bounded set, so that the infimum is indeed attained.

Note that dS is the chemical distance (1) when � = R
n×n, S = P

n and ‖ · ‖ = ‖ · ‖F .
The Chartrant-Kibiki-Shultz (CKS) distance (Chartrand et al. 1998) can also be defined
in terms of (12), with matrices A,B containing pairwise path distances between any two
nodes; equivalently, CKS is the chemical distance of two weighted complete graphs with
path distances as edge weights.

TheWeisfeiler-Lehman (WL) Algorithm. TheWL algorithm (Weisfeiler and Lehman
1968) is a heuristic for solving the graph isomorphism problem. We use this algorithm
to (a) describe the quotient space over which (12) is a metric when S = W

n

(see “Main results” section), and (b) to generate node embeddings in our experiments
(see “Experiments” section).
To gain some intuition on the algorithm, note that two isomorphic graphsmust have the

same degree distribution. More broadly, the distributions of k-hop neighborhoods in the
two graphs must also be identical. Building on this observation, to test if two undirected,
unweighted graphs are isomorphic, WL colors the nodes of a graph G(V ,E) iteratively.
At iteration 0, each node v ∈ V receives the same color c0(v) := 1. Colors at iteration
k + 1 ∈ N are defined recursively via

ck+1(v) := hash
(
sort

(
clistkv

))
(13)

where hash is a perfect hash function, and

clistkv =[ ck(u) : (u, v) ∈ E)] (14)

is a list containing the colors of all of v’s neighbors at iteration k.
Intuitively, two nodes in V share the same color after k iterations if their k-hop neigh-

borhoods are isomorphic. WL terminates when the partition of V induced by colors is
stable from one iteration to the next. This coloring extends to weighted directed graphs
by appending weights and directions to colors in clistkv .
After coloring two graphs GA,GB, WL declares a non-isomorphism if their color distri-

butions differ. If not, then they may be isomorphic and WL gives a set of constraints on
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candidate isomorphisms: a permutation P under which AP = PB must map nodes in GA
to nodes in GB of the same color.

Main results

Motivated by the chemical and CKS distances, we establish general conditions on S and
‖ · ‖ under which dS is a metric over �, for arbitrary weighted graphs. For concreteness,
we focus here on distances between graphs of equal size. Extensions to graphs of unequal
size are described in “Graphs of different sizes” section.

A family of graphmetrics

Optimization over Permutation Matrices. Our first result establishes that dPn is a
pseudometric over all weighted graphs when ‖ · ‖ is an arbitrary entry-wise or operator
norm.

Theorem 1 If S = P
n and ‖·‖ is an arbitrary entry-wise or operator norm, then dS given

by (12) is a pseudometric over � = R
n×n.

Hence, dPn is a pseudometric under any entry-wise or operator norm over arbitrary
directed, weighted graphs.

Optimization over the Birkhoff Polytope. Our second result states that the pseu-
dometric property extends to the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.

Theorem 2 If S = W
n and ‖ · ‖ is an arbitrary entry-wise norm, then dS given by (12)

is a pseudometric over � = S
n×n. If ‖ · ‖ is an arbitrary entry-wise or operator norm, then

its symmetric extension d̄S(A,B) = dS(A,B) + dS(B,A) is a pseudometric over � = R
n×n.

Hence, if S = W
n and ‖ · ‖ is an arbitrary entry-wise norm, then (12) defines a pseudo-

metric over undirected graphs. The symmetry property (9c) breaks if ‖ · ‖ is an operator
norm or graphs are directed. In both of these two cases dS is a quasimetric over the
quotient space �/∼d, and symmetry is attained via the symmetric extension d̄S.
Theorem 2 has significant practical implications. In contrast to dPn and its exten-

sions implied by Theorem 1, computing dWn under any operator or entry-wise norm
is tractable, in the sense that involves minimizing a convex function subject to linear
constraints (Boyd and Vandenberghe 2004; Nesterov and Nemirovskii 1994; Bertsekas
1997).

Optimization over the Stiefler Manifold. A more limited result applies to the case
when S is the Stiefel manifold O

n:

Theorem 3 If S = O
n and ‖ · ‖ is either the operator (i.e., spectral) or the entry-wise (i.e.,

Frobenius) 2-norm, then dS given by (12) is a pseudometric over � = R
n×n.

Though (12) is not a convex problem when S = O
n, it is also tractable. Umeyama

(Umeyama 1988) shows that the optimization can be solved exactly when ‖ · ‖ = ‖ · ‖F
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and� = S
n (i.e., for undirected graphs) by performing a spectral decomposition onA and

B. We extend this result, showing that the same procedure also applies when ‖ · ‖ is the
operator 2-norm (see Thm. 7 in “Metric computation over the Stiefler manifold” section).
In the general case of directed graphs, (12) is a classic example of a problem that can be
solved through optimization on manifolds (Absil et al. 2009).

Equivalence Classes. Observe that the equivalence of matrix norms, as stated by Eq. (3),
implies that if dS(A,B) = 0 for one matrix norm ‖ · ‖ in (12), it will be so for all. As a
result, pseudometrics dS defined through (12) for a given S have the same quotient space
�/∼dS , irrespectively of norm ‖ ·‖. We therefore turn our attention to characterizing this
quotient space in the three cases when S is the set of permutation, doubly stochastic, and
orthononal matrices.
When S = P

n, �/ ∼dPn is the quotient space defined by graph isomorphism: any
two adjacency matrices A,B ∈ R

n×n satisfy dPn(A,B) = 0 if and only if their (possibly
weighted) graphs are isomorphic.
When S = W

n, the quotient space �/∼dWn has a connection to theWeisfeiler-Lehman
(WL) algorithm (Weisfeiler and Lehman 1968) described in “The Weisfeiler-Lehman
(WL) Algorithm” section: Ramana et al. (Ramana et al. 1994) show that dWn(A,B) = 0 if
and only if GA and GB receive identical colors by the WL algorithm (see also (Tinhofer
1986) for another characterization of this quotient space). This equivalence relation is
sometimes called called fractional linear isomorphism (Ramana et al. 1994).
Finally, if S = O

n and � = S
n, i.e., graphs are undirected, then �/∼dOn is determined

by co-spectrality: dOn(A,B) = 0 if and only if A,B have the same spectrum. When � =
R
n×n, dOn(A,B) = 0 implies that A,B are co-spectral, but co-spectral matrices A,B do

not necessarily satisfy dOn(A,B) = 0. Put differently, the quotient space �/ ∼dOn in this
case is a refinement of the quotient space of co-spectrality.

Incorporating metric embeddings

We have seen that the chemical distance dPn can be relaxed to dWn or dOn , gaining
tractability while still maintaining the metric property. In practice, nodes in a graph often
contain additional attributes that one might wish to leverage when computing distances.
In this section, we show that such attributes can be seamlessly incorporated in dS either
as soft or hard constraints, without violating the metric property.

Metric Embeddings. Given a graphGA of size n, ametric embedding ofGA is a mapping
ψA :[ n]→ �̃ from the nodes of the graph to ametric space (�̃, d̃). That is,ψA maps nodes
of the graph to �̃, where �̃ is endowed with a metric d̃. We refer to a graph endowed with
an embedding ψA as an embedded graph, and denote this by (A,ψA), where A ∈ R

n×n is
the adjacency matrix of GA. We list two examples:
Example 1: Node Attributes.Consider an embedding of a graph to (Rk , ‖·‖2) in which

every node v ∈ V is mapped to a k-dimensional vector describing “local” attributes. These
can be exogenous: e.g., features extracted from a user’s profile (age, binarized gender, etc.)
in a social network. Alternatively, attributes may be endogenous or structural, extracted
from the adjacency matrix A, e.g., the node’s degree, the size of its k-hop neighborhood,
its page-rank, etc.
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Example 2: Node Colors. Let �̃ be an arbitrary finite set endowed with the Kronecker
delta as a metric, that is, for s, s′ ∈ �̃,

d̃(s, s′) =
⎧
⎨

⎩

0, if s = s′

∞, o.w.
(15)

Given a graph GA, a mapping ψA :[ n]→ �̃ is then a metric embedding. The values of �̃

are invariably called colors or labels, and a graph embedded in �̃ is a colored or labeled
graph. Colors can again be exogenous or structural: e.g., if the graph represents an organic
molecule, colors can correspond to atoms, while structural colors can be, e.g., the out-
put of the WL algorithm (see “The Weisfeiler-Lehman (WL) Algorithm” section) after k
iterations.
As discussed below, node attributes translate to soft constraints in metric (12), while

node colors correspond to hard constraints. The unified view through embeddings allows
us to establish metric properties for both simultaneously (c.f. Theorems 4 and 5) .

Embedding Distance. Consider two embedded graphs (A,ψA), (B,ψB) of size n that are
embedded in the same metric space (�̃, d̃). For u ∈[ n], a node in the first graph, and
v ∈[ n], a node in the second graph, the embedded distance between the two nodes is given
by d̃(ψA(u),ψB(v)). Let DψA,ψB =[ d̃(ψA(u),ψB(v))]u∈V ,v∈V ∈ R

n×n+ be the corresponding
matrix of embedded distances. After mapping nodes to the samemetric space, it is natural
to seek P ∈ P

n that preserve the embedding distance. This amounts to finding a P ∈ P
n

that minimizes:

tr
(
P�DψA,ψB

) = ∑
u,v∈[n] Pu,vd̃(ψA(u),ψB(v)). (16)

Note that, in the case of colored graphs and the Kronecker delta distance, minimizing
(16) finds a P ∈ P

n that maps nodes inA to nodes in B of equal color. It is not hard to verify
that minP∈Pn tr

(
P�DψA,ψB

)
induces a metric between graphs embedded in (�̃, d̃). In fact,

this follows from the more general theorem we prove below (Theorem. 4) for A = B = 0,
i.e., for distances between embedded graphs with no edges.
Despite the combinatorial nature of Pn, the problem of minimizing (16) over Pn is a

maximum weighted matching problem, which can be solved through, e.g., the Hungarian
algorithm (Kuhn 1955), in O(n3) time (Jonker and Volgenant 1987). We note that this
metric is not as expressive as (12): depending on the definition of the embeddingsψA,ψB,
attributes may only capture “local” similarities between nodes, as opposed to the “global”
view of a mapping attained by (12).

A Unified, Tractable Metric. Motivated by the above considerations, we focus on
unifying the “global” metric (12) with the “local” metrics induced by arbitrary graph
embeddings. Given a metric space (�̃, d̃), let �n

�̃
= {ψ :[ n]→ �̃} be the set of all

mappings from [ n] to �̃. Then, given two embedded graphs (A,ψA), (B,ψB) ∈ R
n×n×�n

�̃
,

we define:

dS ((A,ψA), (B,ψB)) = min
P∈S

[‖AP − PB‖ + tr(P�DψA,ψB)
]

(17)

for some compact set S ⊂ R
n×n and matrix norm ‖ · ‖. Our next result states that

incorporating this linear term does not affect the pseudometric property of dS.



Bento and Ioannidis Applied Network Science           (2019) 4:107 Page 11 of 27

Theorem 4 If S = P
n and ‖·‖ is an arbitrary entry-wise or operator norm, then dS given

by (17) is a pseudometric over the set of embedded graphs � = R
n×n × �n

�̃
.

We stress here that this result is non-obvious: it is not true that adding any lin-
ear term to dS leads to a quantity that satisfies the triangle inequality. It is precisely
because DψA,ψB contains pairwise distances that Theorem 4 holds. We can similarly
extend Theorem 2:

Theorem 5 If S = W
n and ‖ · ‖ is an arbitrary entry-wise norm, then

dS given by (17) is a pseudometric over � = S
n × �n

�̃
, the set of symmet-

ric graphs embedded in (�̃, d̃). Moreover, if ‖ · ‖ is an arbitrary entry-wise or
operator norm, then the symmetric extension d̄S of (17) is a pseudometric over
� = R

n×n × �n
�̃
.

Adding the linear term (16) in dS has significant practical advantages. Beyond
expressing exogenous attributes, a linear term involving colors, combined with a
Kronecker distance, translates into hard constraints: any permutation attaining a
finite objective value must map nodes in one graph to nodes of the same color.
Theorem 5 therefore implies that such constraints can thus be added to the opti-
mization problem, while maintaining the metric property. In practice, as the number
of variables in optimization problem (12) is n2, incorporating such hard con-
straints can significantly reduce the problem’s computation time; we illustrate this
in “Experiments” section. Note that adding (16) to dOn does not preserve the
metric property.

Proofs of Main results
Proof of Theorems 1–3

We define several properties that play a crucial role in our proofs.

Definition 1 We say that a set S ⊆ R
n×n is closed under multiplication if P,P′ ∈ S

implies that P · P′ ∈ S.

Definition 2 We say that S ⊆ R
n×n is closed under transposition if P ∈ S implies that

P� ∈ S, and closed under inversion if P ∈ S implies that P−1 ∈ S.

Definition 3 Given amatrix norm ‖·‖, we say that set S ⊆ R
n×n is contractivew.r.t. ‖·‖

if ‖AP‖ ≤ ‖A‖ and ‖PA‖ ≤ ‖A‖, for all P ∈ S and A ∈ R
n×n. Put differently, S is

contractive if and only if every linear transform P ∈ S is a contraction w.r.t. ‖ · ‖.

The proofs of Theorems 1–3 rely on several common lemmas. The first three establish
conditions under which (12) satisfies the triangle inequality (9d), symmetry (9c), and weak
property (9e), respectively:

Lemma 1 Given a matrix norm ‖·‖, suppose that set S ⊆ R
n×n is (a) contractive w.r.t. ‖·

‖, and (b) closed under multiplication. Then, for any A,B,C ∈ R
n×n, dS given by (12)

satisfies dS(A,C) ≤ dS(A,B) + dS(B,C).
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Proof Consider P′ ∈ arg minP∈S ‖AP − PB‖, and P′′ ∈ arg minP∈S ‖BP − PC‖. Then,
from closure under multiplication, P′P′′ ∈ S. Hence,

dS(A,C) ≤ ‖AP′P′′ − P′P′′C‖ = ‖AP′P′′ − P′BP′′ + P′BP′′ − P′P′′C‖
≤ ‖AP′P′′ − P′BP′′‖ + ‖P′BP′′ − P′P′′C‖
= ‖(AP′ − P′B)P′′‖ + ‖P′(BP′′ − P′′C)‖
≤ ‖AP′ − P′B‖ + ‖BP′′ − P′′C‖ = dS(A,B) + dS(B,C),

where the last inequality follows from the fact that P′,P′′ are contractions.

Lemma 2 Given a matrix norm ‖ · ‖, suppose that S ⊂ R
n×n is (a) contractive w.r.t. ‖ · ‖,

and (b) closed under inversion. Then, for all A,B ∈ R
n×n, dS(A,B) = dS(B,A).

Proof Observe that property (b) implies that, for all P ∈ S, P is invertible and P−1 ∈ S.
Hence,

‖AP−PB‖ = ‖PP−1AP − PBP−1P‖=‖P(P−1A−BP−1)P‖≤‖BP−1−P−1A‖,
as P is a contraction w.r.t ‖ · ‖. We can similarly show that ‖BP−1 − P−1A‖ ≤ ‖AP − PB‖,
hence ‖AP − PB‖ = ‖BP−1 − P−1A‖. As S is closed under inversion,

min
P∈S

f (P) = min
P:P−1∈S

f (P),

for every f : S → R. Hence

dS(A,B) = min
P∈S

‖BP−1 − P−1A‖ = min
P:P−1∈S

‖BP−1 − P−1A‖

= min
P∈S

‖BP − PA‖ = dS(B,A).

Lemma 3 If I ∈ S, then dS(A,A) = 0 for all A ∈ R
n×n.

Proof Indeed, if I ∈ S, then 0 ≤ dS(A,A) ≤ ‖AI − IA‖ = 0.

Both the set of permutation matrices P
n and the Stiefel manifold O

n are groups
w.r.t. matrix multiplication: they are closed under multiplication, contain the identity I,
and are closed under inversion. Hence, if they are also contractive w.r.t. a matrix norm
‖ · ‖, dPn and dOn defined in terms of this norm satisfy all assumptions of Lemmas 1–3.
We therefore turn our attention to this property.

Lemma 4 Let ‖ · ‖ be any operator or entry-wise norm. Then, S = P
n is contractive

w.r.t. ‖ · ‖.

Proof Observe first that all vector p-norms are invariant to permutations of a vector’s
entries; hence, for any vector x ∈ R

d, if P ∈ P
n, ‖Px‖p = ‖x‖p. Hence, if ‖ · ‖ is

an operator p-norm, ‖P‖ = 1, for all P ∈ S. Every operator norm is submultiplicative;
as a result ‖PA‖ ≤ ‖P‖‖A‖ = ‖A‖ and, similarly, ‖AP‖ ≤ ‖A‖, so the lemma fol-
lows for operator norms. On the other hand, if ‖ · ‖ is an entry-wise norm, then ‖A‖ is
invariant to permutations of either A’s rows or columns. Matrices PA and AP precisely
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amount to such permutations, so ‖PA‖ = ‖AP‖ = ‖A‖ and the lemma follows also for
entrywise norms.

Hence, Theorem 1 follows as a direct corollary of Lemmas 1–4. Indeed, dPn is non-
negative, symmetric by Lemmas 2 and 4, satifies the triangle inequality by Lemmas 1 and
4, as well as property (9e) by Lemma 3; hence dPn is a pseudometric over Rn×n. Our next
lemma shows that the Stiefel manifold O

n is contractive for 2-norms:

Lemma 5 Let ‖·‖ be the operator (i.e., spectral) or the entry-wise (i.e., Frobenius) 2-norm.
Then, S = O

n is contractive w.r.t. ‖ · ‖.

Proof Any U ∈ O
n is an orthogonal matrix; hence, ‖U‖2 = ‖U‖F = 1. Both norms are

submultiplicative: the first as an operator norm, the second from the Cauchy-Schwartz
inequality. Hence, for U ∈ O

n, we have ‖UA‖ ≤ ‖U‖‖A‖ = ‖A‖.
Note that an alternative proof can be obtained by the fact that both norms are unitarily

invariant (see Lemma 12).

Theorem 3 therefore follows from Lemmas 1–3 and Lemma 5, along with the fact that
O

n is a group. Note that On is not contractive w.r.t. other norms, e.g., ‖ · ‖1 or ‖ · ‖∞.
To prove Theorem 2, we first show that Lemma 4 along with the Birkoff-von Neumann

theorem imply thatWn is also contractive:

Lemma 6 Let ‖·‖ be any operator or entry-wise norm. Then,Wn is contractive w.r.t. ‖ · ‖.

Proof By the Birkoff-con Neumann theorem (Birkhoff 1946),

W
n = conv(Pn).

Hence, for anyW ∈ W
n there exist Pi ∈ P

n, θi > 0, i = 1, . . . , k, such thatW = ∑k
i=1 θiPi

and
∑k

i=1 θi = 1. Both operator and entrywise p-norms are convex functions; hence, for
any A ∈ R

n×N :

‖WA‖ =
∥
∥
∥
∑k

i=1 θiPiA
∥
∥
∥ ≤ ∑k

i=1 θi ‖PiA‖ , by Jensen’s ineqality,
≤ ∑k

i=1 θi ‖A‖ , by Lemma 4,
= ‖A‖

The statement ‖AW‖ ≤ ‖A‖ follows similarly.

Unfortunately, the Birkhoff polytope Wn is not a group, as it is not closed under inver-
sion. Nevertheless, it is closed under transposition; in establishing (partial) symmetry of
dWn , we leverage the following lemma:

Lemma 7 Suppose that ‖ · ‖ is transpose-invariant, and S ⊆ R
n×n is closed under

transposition. Then, dS(A,B) = dS(B,A) for all A,B ∈ S
n.

Proof By transpose invariance and the symmetry of A and B, we have that:

‖AP − PB‖ = ‖BP� − P�A‖.
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Moreover, as S is closed under transposition, for every f : S → R,

min
P∈S

f (P) = min
P:P�∈S

f (P).

Hence, dS(A,B) = minP∈S ‖BP� − P�A‖ = minP:P�∈S ‖BP� − P�A‖ = dS(B,A).

The first part of Theorem 2 therefore follows fromLemmas 1, 3, 6, and 7: this is because
W

n contains the identity I and is closed under both transposition and multiplication,
while all entry-wise norms are transpose invariant.
To prove the second part, observe that operator norms are not transpose invariant.

However, if ‖·‖ is an operator norm, or� = R
n×n, then Lemma 6 and Lemma 1 imply that

dWn satisfies non-negativity (9a) and the triangle inequality (9d), while Lemma 3 implies
that it satisfies (9e). These properties are inherited by extension d̄S, given by (10), which
also satisfies symmetry (9c), and the second part of Theorem 2 follows.

Proof of Theorems 4 and 5

We begin by establishing conditions under which dS satisfies the triangle inequality (9d).
We note that, in contrast to Lemma 1, we require the additional condition that S ⊆ W

n,
which is not satisfied by On.

Lemma 8 Given a norm ‖ · ‖, suppose that S ⊆ R
n×n is (a) contractive w.r.t. ‖ · ‖, (b)

closed under multiplication, and (c) is a subset of Wn, i.e., contains only doubly stochastic
matrices. Then, for any (A,ψA), (B,ψB), (C,ψC) in R

n×n × ��̃,

dS((A,ψA), (C,ψB)) ≤ dS((A,ψA), (B,ψB)) + dS((B,ψB), (C,ψC)).

Proof Consider

P′ ∈ arg min
P∈S

(
‖AP − PB‖ + tr

(
P�DψA,ψB

))
,

and

P′′ ∈ arg min
P∈S

(
‖BP − PC‖ + tr

(
P�DψB,ψC

))
.

Then, from closure under multiplication, P′P′′ ∈ S. We have that

dS((A,ψA), (C,ψC)) ≤ ‖AP′P′′ − P′P′′C‖ + tr
[
(P′P′′)�DψAψC

]

As in the proof of Lemma 1, we can show that

‖AP′P′′ − P′P′′C‖ = ‖AP′P′′ − P′BP′′ + P′BP′′ − P′P′′C‖
≤ ‖AP′P′′ − P′BP′′‖ + ‖P′BP′′ − P′P′′C‖
= ‖(AP′ − P′B)P′′‖ + ‖P′(BP′′ − P′′C)‖
≤ ‖(AP′ − P′B)‖‖P′′‖ + ‖P′‖‖(BP′′ − P′′C)‖
≤ ‖AP′ − P′B‖ + ‖BP′′ − P′′C‖

using the fact that both P′ and P′′ are contractions. On the other hand,

tr
[
(P′P′′)�DψAψC

] =
∑

u,v∈[n]

∑

k∈[n]

(
P′
ukP

′′
kvd̃(ψA(u),ψC(v)))

)
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≤
∑

u,v∈[n]

∑

k∈[n]

[
P′
ukP

′′
kv

(
d̃(ψA(u),ψB(k)) + d̃(ψB(k),ψC(v))

)]

(as d̃ is a metric, and P′,P′′ are non-negative)

=
∑

u,k∈[n]
P′
uk d̃(ψA(u),ψB(k))

∑

v∈[n]
P′′
kv+

∑

k,v∈[n]
P′′
kvd̃(ψB(k),ψC(v))

∑

u∈[n]
P′
uk

≤ tr
(
(P′)�DψA,ψB

)
+ tr

(
(P′′)�DψB,ψC

)
,

where the last inequality follows as both P,P� are ‖ · ‖1-norm bounded by 1 for every
P ∈ S.

The weak property (9e) is again satisfied provided the identity is included in S.

Lemma 9 If I ∈ S, then dS((A,ψA), (A,ψA)) = 0 for all A ∈ R
n×n.

Proof Indeed, 0 ≤ dS((A,ψA, (A,ψA)) ≤ ‖AI − IA‖+∑
u∈[n] d̃(ψA(u),ψA(u)) = 0.

To attain symmetry over � = R
n×n × �n

�̃
, we again rely on closure under inversion, as

in Lemma 2; nonetheless, in contrast to Lemma 2, due to the linear term, we also need to
assume the orthogonality of elements of S.

Lemma 10 Given a norm ‖ · ‖, suppose that S (a) is contractive w.r.t. ‖ · ‖, (b) is closed
under inversion, and (c) is a subset of On, i.e., contains only orthogonal matrices. Then,
dS((A,ψA), (B,ψB)) = dS((B,ψB), (A,ψA)) for all (A,ψA), (B,ψB) ∈ R

n×n × ��̃.

Proof As in the proof of Lemma 2, we can show that contractiveness w.r.t. ‖ · ‖ along
with closure under inversion imply that: ‖AP − PB‖ = ‖BP−1 − P−1A‖. As S is closed
under inversion, minP∈S f (P) = minP:P−1∈S f (P) for all f : S → R, while orthogonality
implies P−1 = P� for all P ∈ S. Hence, dS((A,ψA), (B,ψB)) equals

min
P∈S

[
‖AP − PB‖ + tr

(
P�DψA,ψB

)]
= min

P∈S
[‖BP−1 − P−1A‖ + tr

(
P−1DψA,ψB

)]

= min
P∈S

[
‖BP−1 − P−1A‖ + tr

((
P−1)� D�

ψA,ψB

)]

= min
P∈S

[
‖BP−1 − P−1A‖ + tr

((
P−1)� DψB,ψA

)]

= min
P:P−1∈S

[
‖BP−1 − P−1A‖ + tr

((
P−1)� DψB ,ψA

)]

= dS((B,ψB), (A,ψA)).

Theorem 4 therefore follows from the above lemmas, as S = P
n contains I, it is closed

under multiplication and inversion, is a subset of Wn ∩ O
n by (7), and is contractive

w.r.t. all operator and entrywise norms. Theorem 5 also follows by using the following
lemma, along with Lemmas 8 and 9.
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Lemma 11 Suppose that ‖ · ‖ is transpose invariant, and S is closed under transposition.
Then, dS((A,ψA), (B,ψB)) = dS((B,ψB), (A,ψA)) for all (A,ψA), (B,ψB) ∈ S

n × ��̃.

Proof By the transpose invariance of ‖ · ‖ and the symmetry of A and B, we have that:
‖AP−PB‖ = ‖BP� −P�A‖. Moreover, as S is closed under transposition, minP∈S f (P) =
minP:P�∈S f (P) for any f : S → R. Hence, dS((A,ψA), (B,ψB)) equals

min
P∈S

[
‖AP − PB‖ + tr

(
P�DψA,ψB

)]
= min

P∈S

[
‖BP� − P�A‖ + tr

(
PD�

ψA,ψB

)]

= min
P:P�∈S

‖BP� − P�A‖ + tr
(
(P�)�DψB,ψA

)

= dS((B,ψB), (A,ψA))

Metric computation over the Stiefler manifold.

In this section, we describe how to compute the metric dS in polynomial time when
S = O

n and ‖ · ‖ is the Frobenius norm or the operator 2-norm. The algorithm for the
Frobenius norm, and the proof of its correctness, is due to Umeyama (Umeyama 1988);
we reprove it for completeness, along with its extension to the operator norm.
Both cases make use of the following lemma:

Lemma 12 For any matrix M ∈ R
n×n and any matrix P ∈ O

n we have that ‖PM‖ =
‖MP‖ = ‖M‖, where ‖ · ‖ is either the Frobenius or operator 2-norm.

Proof Recall that the operator 2-norm ‖ · ‖2 is ‖M‖2 = supx�=0 ‖Mx‖2/‖x‖2 =
√

σmax(M�M) = √
σmax(MM�) = ‖M�‖2. where σmax denotes the largest singular

value. Hence, ‖PM‖2 = supx�=0 ‖PMx‖2/‖x‖2 = √
σmax(M�P�PM) = √

σmax(M�M) =
‖M‖2. as P�P = I. Using the fact that ‖M‖2 = ‖M�‖2 for all M ∈ R

n×n, as well as that
PP� = I, we can show that ‖MP‖2 = ‖P�M�‖2 = ‖M�‖2 = ‖M‖2.
The Frobenius norm is ‖M‖F = √

tr(M�M) = √
tr(MM�) = ‖M�‖F , hence ‖PM‖F =

√
tr(M�P�PM) = √

tr(M�M) = ‖M‖F and, as in the case of the operator norm, we can
similarly show ‖MP‖F = ‖P�M�‖F = ‖M�‖F = ‖M‖F .

In both norm cases, for A,B ∈ S
n, we can compute dS using a simple spectral decom-

position, which dominates computations and can be performed in O(n3) time. Let A =
U�AUT and B = V�BVT be the spectral decomposition of A and B. As A and B are real
and symmetric, we can assume U ,V ∈ O

n. Recall that U−1 = U� and V−1 = V�, while
�A and�B are diagonal and contain the eigenvalues ofA and B sorted in increasing order;
this ordering matters for computations below.
The following theorem establishes that this decomposition readily yields the distance

dS, as well as the optimal orthogonal matrix P∗, when ‖ · ‖ = ‖ · ‖F :

Theorem 6 (Umeyama 1988) dS(A,B) � minP∈S ‖AP − PB‖F = ‖�A − �B‖F and the
minimum is attained by P∗ = UV�.

Proof The proof makes use of the following lemma by Hoffman andWielandt (Hoffman
and Wielandt 1953):
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Lemma 13 ((Hoffman and Wielandt 1953)) If A and B are Hermitian matrices with
eigenvalues a1 ≤ a2 ≤ ... ≤ an and b1 ≤ b2 ≤ ... ≤ bn then ‖A − B‖2F ≥ ∑n

i=1(ai − bi)2.

Note that if�A and�B are diagonal matrices with the ordered eigenvalues of A and B in
the diagonal, then the conclusion of Lemma 13 can be written as ‖A−B‖F ≥ ‖�A−�B‖F .
For any P ∈ O

n and ‖ · ‖ = ‖ · ‖F we have

‖AP − PB‖ = ‖(A − PBP−1)P‖ Lemma 12= ‖A − PBP�‖ = ‖U�AU� − PV�BV�P�‖
= ‖U(�A − U�PV�BV�P�U)U�‖ Lemma 12= ‖�A − U�PV�BV�P�U‖
= ‖�A − ��B��‖

where we define � ≡ U�PV . As a product of orthogonal matrices, � ∈ O
n. Notice that

‖�A − ��B��‖ = ‖�A − ��A�� + �(�B − �A)��‖ ≤ ‖�A − ��A��‖ + ‖�(�B − �A)��‖
Lemma 12= ‖�A − ��A��‖ + ‖�B − �A‖.

Therefore, for any P ∈ O
n, ‖�A−�B‖ ≤ dS(A,B) ≤ ‖�A−��A��‖+‖�B−�A‖, where

the first inequality follows by Lemma 13 if we notice that ‖AP−PB‖ = ‖A−PBP−1‖ and
that PBP−1 and B have the same spectrum for any P. If we choose P = UV� then � = I
and the result follows.
We can compute dS when S = O

n and ‖ · ‖ is the operator norm in the exact same way.

Theorem 7 Let ‖ · ‖ = ‖ · ‖2 be the operator 2-norm. Then, dS(A,B) � minP∈S ‖AP −
PB‖2 = ‖�A − �B‖2 and the minimum is attained by P∗ = UV�.

Proof The proof follows the same steps as the proof of Theorem 6, using Lemma 14
below instead of Lemma 13.

Lemma 14 If A and B are Hermitian matrices with eigenvalues a1 ≤ a2 ≤ ... ≤ an and
b1 ≤ b2 ≤ ... ≤ bn then ‖A − B‖2 ≥ maxi |ai − bi|.

Proof This is the second exercise following Corollary 6.3.4 in Horn and Johnson (Horn
and Johnson 2012). We reprove this here for completeness.

Let B̃ = −B have eigenvalues b̃1 ≤ b̃2 ≤ ... ≤ b̃n and let C = A + B̃ have eigenvalues
c1 ≤ c2 ≤ ... ≤ cn. We make use of the following lemma by Weyl (see Theorem 4.3.1
(Weyl), page 239, in (Horn and Johnson 2012)) to lower-bound cn.

Lemma 15 (Weyl) If X and Y are Hermitian with eigenvalues x1 ≤ ... ≤ xn and y1 ≤
... ≤ yn and if X+Y has eigenvalues w1 ≤ ... ≤ wn then xi−j+1+yj ≤ wi for all i = 1, . . . , n
and j = 1, . . . , i.

If we choose X = B̃, Y = A and i = n we get aj + b̃n+1−j ≤ cn for all j = 1, . . . , n.
Since b̃n+1−j = −bj we get that aj − bj ≤ cn, for any j. Similarly, by exchanging the role
of A and B, we can lower bound the largest eigenvalue of B − A, say dn, by bj − aj for any
j. Notice that, by definition of the operator norm and the fact that A − B is Hermitian,
‖A−B‖2 ≥ |cn| and ‖B−A‖2 ≥ |dn|. Since ‖B−A‖2 = ‖A−B‖2 we have that ‖A−B‖2 ≥
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max{|cn|, |dn|} ≥ max{cn, dn} ≥ max{aj − bj, bj − aj} = |aj − bj| for all j. Taking the
maximum over j we get that ‖A − B‖2 ≥ maxj |aj − bj|, and the lemma follows.
Note again that if �A and �B are diagonal matrices with the ordered eigenvalues of A

and B in the diagonal, then the conclusion of Lemma 14 can be written as ‖A − B‖2 ≥
‖�A−�B‖2. The proof of Thm. 7 proceeds along the same steps as the above proof, using
again the fact that, by Lemma 12, ‖M‖2 = ‖MP‖2 = ‖PM‖2 for any P ∈ O

n and any
matrixM, along with Lemma 15.

Graphs of different sizes
For simplicity, we have described distances over graphs of equal sizes. There are several
applications (Hu et al. 2016; Shen et al. 2015; Lyzinski et al. 2016; Pachauri et al. 2013)
where by design we want to compare (and align the nodes of) equal-sized graphs. E.g., in
computer vision, one might want to establish a correspondence among the nodes of two
graphs, each representing a geometrical relation among m special points in two images
of objects of the same type. When poses of objects do not differ significantly, the same
number, m, of special points will be extracted from each image, and hence the graphs
being compared will have the same size.
We can nevertheless extend our approach to graphs of different sizes. We can do so by

extending two graphs, GA and GB, with dummy nodes such that the new graphs G′
A and

G′
B have the same number of nodes. Many papers follow this approach, e.g. (Zaslavskiy

et al. 2009b; 2009a; Narayanan et al. 2011; Zaslavskiy et al. 2010; Zhou and De la Torre
2012; Gold and Rangarajan 1996; Yan et al. 2015; Solé-Ribalta and Serratosa 2010; Yan et
al. 2015). If GA has nA nodes and GB has nB nodes we can, for example, add nB dummy
nodes to GA and nA dummy nodes to GA. Once we have G′

A and G′
B of equal size, we can

use the methods we already described to compute a distance between G′
A and G′

B and
return this distance as the distance between GA and GB.
Possible graph extensions differ in how the dummy nodes connect to existing graph

nodes, how dummy nodes connect to themselves, and what kind of penalty we introduce
for associating dummy nodes with existing graph nodes.

Method 1. One way of extending the graphs is to add dummy nodes and leave them iso-
lated, i.e., with no edges to either existing nodes or other dummy nodes. Although this
might work when both graphs are dense, it might lead to non desirable results when one
of the graphs is sparse. For example, let GA be 3 isolated nodes and GB be the complete
graph on 4 nodes minus the edges forming triangle {(1, 2), (2, 3), (3, 1)}. Let us assume
that S = P

n, such that, when we compute the distance betweenGA andGB, we produce an
alignment between the graphs. One desirable outcome would be forGA to be aligned with
the three nodes in GB that have no edges among them. This is basically solving the prob-
lem of finding a sparse subgraph inside a dense graph. However, computing dS(A′,B′),
where A′ and B′ are the extended adjacency matrices, could equally well alignGA with the
3 dummy nodes of G′

B.

Method 2. Alternatively, one could add dummy nodes and connect each dummy node to
all existing nodes and all other dummy nodes. This avoids the issue described for method
1. However, this creates a similar non-desirable situation: since the dummy nodes in each
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extended graph form a clique, we might align GA, or GB, with just dummy nodes, instead
of producing an alignment between existing nodes in GA and existing nodes in GB.

Method 3. If both GA and GB are unweighted graphs, a method that avoids both issues
above (aligning a sparse graph with isolated dummy nodes or aligning a dense graphs with
cliques of dummy nodes) is to connect each dummy node to all existing nodes and all
other dummy nodes with edges of weight 1/2. This method works because, when S = P

n,
it discourages alignments of edges between existing nodes inGA to dummy-dummy edges
or dummy-existing node edges in GB, and vice versa.

Method 4. One can also discourage aligning existing nodes with dummy nodes by intro-
ducing a soft linear term as in (17), penalizing mappings between dummy and existing
nodes.

Method 5. Finally, a method of ensuring that the graphs have equal size is repeating
them, i.e., creating “super” graphs that consist of multiple replicas of the same graph as
connected components, resulting in two graphs of size equal to the least common multi-
ple (LCM) of the sizes of the two original graphs. This is most appropriate when a spectral
approach is used, like the ones used to optimize over On: this is because repetition, in
effect, only changes the multiplicity of each value in the spectrum, which can be done (a)
without affecting the spectrum structure, and (b) efficiently, once the LCM is computed.

Experiments
We experimentally study the properties of different graph distance measures, including
metrics from our family, over several graph classes. Our main observation is that com-
puting a heuristic estimate P̂ of P∗ = argminP∈Pn‖AP − PB‖, and using P̂ to estimate
dPn(A,B) leads to violations of the metric property. In contrast, our proposed approach
of computing dS(A,B) for some S for which d a metric, and for which its computation
is tractable, yields significantly improved performance in tasks such as clustering graphs
(see Fig. 1).

Experimental setup

Graphs We use synthetic graphs from six classes summarized in Table 3: Barabasi Albert
with degree d (Bd), Erdos Renyi with probablity p (Ep), Power Law Tree (P), Regular with
degree d (Rd), Small World (S), Watts Strogatz with degree d (Ws). In addition, we use a
dataset of small graphs, comprising all 853 connected graphs of 7 nodes. Finally, we use a
collaboration graphwith 5242 nodes and 14496 edges representing author collaborations.

Algorithms We compare our metrics to several competitors outlined in Table 2. All
receive only two unlabeled undirected simple graphs A and B and output a matching a
matrix P̂ either in W

n or in P
n estimating P∗. If P̂ ∈ P

n, we compute ‖AP̂ − P̂B‖1. If
P̂ ∈ W

n, then we compute both ‖AP̂ − P̂B‖1 and ‖AP̂ − P̂B‖F ; all norms are entry-
wise. We also implement our two relaxations dW and dOn , for two different matrix norm
combinations.
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We briefly review here additional impementation details about the algorithms summa-
rized in Table 2.

• NetAlignBP, IsoRank, SparseIsoRank and NetAlignMR are described by (Bayati
et al. 2009). Natalie is described in (El-Kebir et al. 2015). All five algorithms output
P ∈ P

n.
• The algorithm in (Lyzinski et al. 2016) outputs one P ∈ P

n and one P′ ∈ W
n. We use

P ∈ P
n to compute ‖AP − PB‖1 and call this InnerPerm. We use P′ ∈ W

n to
compute ‖AP′ − P′B‖1 and ‖AP′ − P′B‖2 and call these algorithms InnerDSL1 and
InnerDSL2 respectively. We use our own CVX-based projected gradient descent
solver for the non-convex optimization problem the authors propose.

• DSL1 and DSL2 denote dS(A,B) when S ∈ W
n and ‖ · ‖ is ‖ · ‖1 (element-wise) and

‖ · ‖F , respectively. We implement them in Matlab (using CVX) as well as in C, aimed
for medium size graphs and multi-core use. We also implemented a distributed
version in Apache Spark (Zaharia et al. 2010) that scales to very large graphs over
multiple machines based on the Alternating Directions Method of Multipliers (Boyd
et al. 2011).

• ORTHOP andORTHFR denote dS(A,B) when S ∈ O
n and ‖ · ‖ is ‖ · ‖2 (operator

norm) and ‖ · ‖F respectively. We compute them using an eigendecomposition.
• For small graphs, we compute dPn(A,B) using our brute-force GPU-based code. For

a single pair of graphs with n ≥ 15 nodes, EXACT already takes several days to
finish. For ‖ · ‖ = ‖ · ‖1 in dS (element-wise or matrix norm), we have implemented
the chemical distance as an integer value LP and solved it using branch-and-cut. It
did not scale well for n ≥ 15.

• We implemented the WL algorithm over Spark to run, multithreaded, on a machine
with 40 CPUs.

We use all public algorithms as black boxes with their default parameters, as provided by
the authors.

Table 2 Competitor Distance Scores & Our Metrics

(Non-metric) Distance Score Algorithms

NetAlignBP Network Alignment using Belief Propagation (Bayati et al. 2009)

IsoRank Neighborhood Topology Isomorphism using Page Rank (Singh et al. 2007)

SparseIsoRank Neighborhood Topology Sparse Isomorphism using Page Rank (Bayati et al. 2009)

InnerPerm Inner Product Matching with Permutations (Lyzinski et al. 2016)

InnerDSL1 Inner Product Matching with Matrices inW
n and entry-wise 1-norm (Lyzinski et al. 2016)

InnerDSL2 Inner Product Matching with Matrices inW
n and Frobenius norm (Lyzinski et al. 2016)

NetAlignMR Iterative Matching Relaxation (Klau 2009)

Natalie (V2.0) Improved Iterative Matching Relaxation (El-Kebir et al. 2015)

Metrics from our Family (2)

EXACT Chemical Distance via brute force search over GPU

DSL1 Doubly Stochastic Chemical Distance dWn with entry-wise 1-norm

DSL2 Doubly Stochastic Chemical Distance dWn with Frobenius norm

ORTHOP Orthogonal Relaxation of Chemical Distance dOn with operator 2-norm

ORTHFR Orthogonal Relaxation of Chemical Distance dOn with Frobenius norm
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Experimental results

Clustering Graphs. The difference between our metrics and non-metrics is striking
when clustering graphs. This is illustrated by the clustering experiment shown in Fig. 1.
Graphs of size n = 50 from the 6 classes in Table 3 are clustered together through hierar-
chical agglomerative clustering.We compute distances between them using nine different
algorithms; only the distances in our family (DSL1, DSL2, ORTHOP, and ORTHFR) are
metrics. The quality of clusters induced by our metrics are far superior than clusters
induced by non-metrics; in fact, ORTHOP and ORTHFR can lead to no misclassifi-
cations. This experiment strongly suggests our produced metrics correctly capture the
topology of the metric space between these larger graphs.

Triangle Inequality Violations. Given graphs A, B and C and a distance d, a Triangle
Inequality Violation (TIV) occurs when d(A,C) > d(A,B)+d(B,C). Being metrics, none
of our distances induce TIVs; this is not the case for the remaining algorithms in Table 2.
Figure 2 shows the TIV fraction across the synthetic graphs of Table 3 while Fig. 3 shows
the fraction of TIVs found on the 853 small graphs (n = 7). NetAlignMR also produces
no TIVs on the small graphs, but it does induce TIVs in synthetic graphs. We observe
that it is easier to find TIVs when graphs are close: in synthetic graphs, TIVs abound for
n = 10. No algorithm performs well across all categories of graphs.

Effect of TIVs on Clustering. Next, to investigate the effect of TIVs on clustering, we
artificially introduced triangle inequality violations into the pairs of distances between
graphs. We then re-evaluated clustering performance for hierarchical agglomerative clus-
tering using theWardmethod, which performed best in Fig. 1. Figure 4 shows the fraction
of misclassified graphs as the fraction of TIVs introduced increases. To incur as small
a perturbation on distances as possible, we introduce TIVs as follows: For every three
graphs, A,B,C, with probability p, we set d(A,C) = d(A,B)+d(B,C). Although this does
not introduce a TIV w.r.t. A,B, and C, this distortion does introduce TIVs w.r.t. other
triplets involving A and C. We repeat this 20 times for each algorithm and each value of p,
and compute the average fraction of TIVs, shown in the x-axis, and the average fraction
of misclassified graphs, shown in the y-axis. As little as 1% TIVs significantly deteriorate
clustering performance. Note that the fraction of TIVs is computed over the total number
of TIVs possible, which grows cubicly with the number of graphs being clustered. We also
see that, even after introducing TIVs, clustering based on metrics outperforms clustering
based on non-metrics.

Table 3 Synthetic Graph Classes

Description

Bd Barabasi Albert of degree d (Albert and Barabási 2002)

Ep Erdős-Rényi with probability p (Erdös and Rényi 1959)

P Power Law Tree (Mahmoud et al. 1993)

Rd Regular Graph of degree d (Bollobás 1998)

S Small World (Kleinberg 2000)

Wd Watts Strogatz of degree d (Watts and Strogatz 1998)
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Fig. 2 Fraction of triangle inequality violations (TIVs) for different algorithms on random graphs of different
types and sizes (a n = 10, b n = 50, c n =100): DSL1, DSL2, ORTHOP, and ORTHOP, are not shown since, as
pseudometrics, they have zero TIVs. a n = 10, b n = 50, c n = 100

Fig. 3 Triangle Inequality Violations (TIVs) over the small graphs dataset
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Fig. 4 Effect of introducing triangle inequality violations on the performance of different algorithms on the
clustering experiment of Fig. 1 when using the Ward method

Comparison to Chemical Distance. We compare how different distance scores relate to
the chemical distance EXACT through two experiments on the small graphs (computa-
tion on larger graphs is prohibitive). In Fig. 5a), we compare the distances between small
graphs with 7 nodes produced by the different algorithms and EXACT using the DIS-
TATIS method of (Abdi et al. 2005). Let D ∈ R

835×835+ be the matrix of distances between
graphs under an algorithm. DISTATIS computes the normalized Laplacian of this matrix,
given by L = −UDU/‖UDU‖2 where U = I − 11�

n . The DISTATIS score is the cosine
similarity of such Laplacians (vectorized). We see that our metrics produce distances
attaining high similarity with EXACT, thoughNetAlignBP has the highest similarity. We
measure proximity to EXACT with an additional test. Given D, we compute the nearest
neighbor (NN) meta-graph by connecting a graph in D to every graph at distance less
than its average distance to other graps. This results in a (labeled) meta-graph, which we
can compare to the NN meta-graph induced by other algorithms, measuring the fraction
of distinct edges. Figure 5b shows that our algorithms perform quite well, thoughNatalie
yields the smallest distance to EXACT.

Incorporating Constraints. Computation costs can be reduced through metric embed-
dings, as in (17). To show this, we produce a copy of the 5242 node collaboration graph

Fig. 5 a Cosine similarity between the Laplacian of distances produced by each algorithm and the one by
EXACT, measured via DISTATIS (Abdi et al. 2005). b Edit distance between nearest neighbor (NN)
meta-graphs induced by different algorithms and NN meta-graph induced by EXACT
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Table 4 Effect of coloring/hard constraints

k ‖P‖0 ‖AP−PA‖0 τ

1 3,747,960 100.569 133s

2 239,048 3004 104s

3 182,474 2036 136s

4 182,016 2030 169s

5 182,006 2030 200s

Effect of coloring/hard constraints on the numbers of variables (‖P‖0) and terms of objective (‖AP − PA‖0) using k iterations of
the WL coloring algorithm. The last column shows the execution time of WL on a 40 CPU machine using Apache Spark (Zaharia et
al. 2010)

with permuted node labels. We then run theWL algorithm (Weisfeiler and Lehman 1968)
to produce structural colors, which induce coloring constraints on P ∈ W

n. The WL
algorithm reaches a fixed point after k = 5 iterations. The support of P (i.e., the num-
ber of variables in the optimization (12)), the support of AP − PA (i.e., the number of
non-zero summation terms in the objective of (12)), as well as the execution time τ of the
WL algorithm, are summarized in Table 4. The original unconstrained problem involves
52422 ≈ 27.4M variables. However, after using WL and induced costraints, the effective
dimension of the optimization problem (12) reduces considerably. This, in turn, speeds up
convergence time, shown in Fig. 6: including the time to compute constraints, a solution
is found 110 times faster after the introduction of the constraints.

Conclusion
Our work suggests that incorporating soft and hard constraints has a great potential
to further improve the efficiency of our metrics. In future work, we intend to inves-
tigate and characterize the resulting equivalence classes under different soft and hard
constraints, and to quantify these gains in efficiency. We also plan to develop scalable
distributed solvers for our family of metrics. A good starting point is the Alternating
DirectionMethod ofMultipliers (Gabay andMercier 1976; Glowinski andMarroco 1975),
which enjoys several useful properties. Specifically, under proper tuning and mild con-
vexity assumptions, it achieves the convergence rate of the fastest-possible first-order
method (França and Bento 2016; Nesterov 2013), it can be less affected by the topology

Fig. 6 Convergence of ADMM algorithm (Boyd et al. 2011) computing DSL2 on two copies of the
collaboration graph as a function of time, implemented using Apache Spark (Zaharia et al. 2010) on a 40 CPU
machine



Bento and Ioannidis Applied Network Science           (2019) 4:107 Page 25 of 27

of the communication network in a cluster than, e.g. gradient descent (França and Bento
2017a; 2017b), and it parallelizes well both on share-memory multiprocessor systems,
GPUs and computer clusters (Boyd et al. 2011; Parikh and Boyd 2014; Hao et al. 2016).
Determining the necessity of the conditions used in proving that dS is a metric is also
an open problem. Finally, we are investigating generalizations of our family of metrics to
multi-metrics, i.e. we want to define a tractable closeness score for a set of n > 2 graphs
that satisfies a generalization of the properties of metrics for more than two elements
(Safavi and Bento 2018).
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Kvasnička V, Pospíchal J, Baláž V (1991) Reaction and chemical distances and reaction graphs. Theor Chem Acc Theory

Comput Model (Theoretica Chimica Acta) 79(1):65–79
Lyzinski V, Fishkind DE, Fiori M, Vogelstein JT, Priebe CE, Sapiro G (2016) Graph matching: Relax at your own risk. IEEE

Trans Pattern Anal Mach Intell 38(1):60–73
Macindoe O., Richards W. (2010) Graph comparison using fine structure analysis. In: SocialCom. https://doi.org/10.1109/

socialcom.2010.35
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