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Abstract
Dynamical processes running on different networks behave differently, which makes
the reconstruction of the underlying network from dynamical observations possible.
However, to what level of detail the network properties can be determined from
incomplete measurements of the dynamical process is still an open question. In this
paper, we focus on the problem of inferring the properties of the underlying network
from the dynamics of a susceptible-infected-susceptible epidemic and we assume that
only a time series of the epidemic prevalence, i.e., the average fraction of infected
nodes, is given. We find that some of the network metrics, namely those that are
sensitive to the epidemic prevalence, can be roughly inferred if the network type is
known. A simulated annealing link-rewiring algorithm, called SARA, is proposed to
obtain an optimized network whose prevalence is close to the benchmark. The output
of the algorithm is applied to classify the network types.

Introduction
Graphs are the underlying structures of many systems and many dynamic processes
on those systems can be modeled by a spreading process on their underlying graphs
(Pastor-Satorras et al. 2015; Anderson et al. 1992; Harris 1974). The difference in the
underlying graphs may lead to contrasting dissimilar behavior of the process. One well-
known result is that the mean-field epidemic threshold of the spreading process vanishes
with the size of the scale-free network (Pastor-Satorras and Vespignani 2001; Chatterjee
and Durrett 2009), while the threshold of a sparse homogeneous network is non-zero.
Another key difference is that a near-threshold spreading process is localized just above
the threshold in a heterogeneous network, but delocalized in a homogeneous network
(Goltsev et al. 2012; Liu and Mieghem 2019). Moreover, the autocorrelation of the infec-
tion state of each node in a regular graph is irrelevant to the curing rate in the steady
state (Liu and Van Mieghem 2018). In a real scenario, reviewing of the spreading data of
cholera in London in 1854 under the susceptible-infected-susceptible (SIS) model indi-
cates that the trajectory of the prevalence reflecting network properties supporting the
hypotheses that the Broad Street pump was the source of the cholera outbreak and that
cholera does not spread via the air (Paré et al. 2018). Since the dynamics of different net-
works behave differently, the inverse question raises: “How much can we deduce about
the underlying contact network by measuring the dynamics on the network?” The inverse
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question is meaningful when the direct measurement of the underlying graph is unavail-
able. For example, a disease control agency usually has the statistics of disease infection,
but the underlying graph bearing the spreading of the disease is generally unknown.
Much work on the inverse problem exists (Mateos et al. 2019; Dong et al. 2019). Most

of the papers focus on reconstructing the underlying graphs by measuring the time-
dependent dynamical state of each node (Shandilya and Timme 2011; Berry et al. 2012;
Timme and Casadiego 2014; Nitzan et al. 2017; Prasse and Van Mieghem 2018; Netra-
palli and Sanghavi 2012; Myers and Leskovec 2010; Sefer and Kingsford 2015; Gomez
Rodriguez et al. 2010). With the complete dynamics of each node, the network may be
approximately reconstructed by different heuristic algorithms, e.g., the Bayesian methods
(Friston 2002; Pajevic and Plenz 2009), the conflict-basedmethod (Ma et al. 2015), statisti-
cal inference based method (Ma et al. 2018) and the compressed sensing or lasso methods
(Shen et al. 2014). Different networked dynamical processes have been studied, such as
the evolutionary game model (Han et al. 2015; Li et al. 2017), the SIS model (Shen et al.
2014) and the Ising model (Ma et al. 2018). Apart from reconstructing simple networks,
there are many works on the reconstruction of the stochastic temporal networks (Li and
Li 2017), multilayer networks (Mei et al. 2018), weighted networks (Ching et al. 2015) and
directed networks (Hempel et al. 2011).
All of the above methods are based on the data from all or at least most nodes, but in

real scenarios, individual-level observations of spreading are hard to obtain while most
of the epidemic data are population-level (Shaman and Kohn 2009; Shaman et al. 2010).
Motivated by the incompleteness of realistic situations, we study how much about the
underlying network can be deduced with incomplete measurements. We assume that only
the prevalence, which is the average fraction of infected nodes in the network is mea-
sured, but not the infection state of each node. Under this setting, network reconstruction
does not seem possible, but inferring some network properties may be possible, in par-
ticular, when additional information apart from the prevalence is available. In this work,
we confine ourselves to four types of classical network models: the scale-free (SF) graphs
(Goh et al. 2001), the Barabási-Albert (BA) graphs (Barabási and Albert 1999), the
Erdős-Rényi (ER) random graphs (Erdős and Rényi 1959) and the Watts-Strogatz (WS)
small-world graphs (Watts and Strogatz 1998). The network size N of these networks
considered in this work is not larger than 2000. Additionally, we focus on the SIS epi-
demic process on networks, which is one of the basic models resembling the dynamics of
many networked systems and assume that the infection and curing rate of the SIS process
are known. Under our assumptions, part of the network properties can be inferred, pro-
vided that the network type is additionally given. Furthermore, the network type among
the four above-mentioned graphs can be identified, given the network size N and the
average degree E[D], which is also emphasized by recent work from a different approach
(Di Lauro et al. 2019): the ER, regular and BA graphs are distinguished by the epidemic
prevalence.
The paper is organized as following: In “The SIS process” section, we briefly review

the SIS process on networks. In “Correlations between the SIS prevalence and network
metrics” section, we evaluate the correlation between the network metric difference and
the corresponding SIS prevalence difference given the network type. A high correlation
implies that, if an estimated network, whose prevalence is close to the benchmark preva-
lence, can be found, then the metric of this estimated network may be also close to the
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metric of the benchmark network. We further verify the possibility of estimating the
network metrics, whose differences are highly correlated with the prevalence difference.
In “Distinction between network types” section, we propose a simulated annealing link-
rewiring algorithm (SARA) to find a possible network whose prevalence is close to the
benchmark. The output of the algorithm is applied to classify the network types. In
“Estimating the topology of small networks and prevalence” section, we test the perfor-
mance of SARA by inferring the structure of small networks and by forecasting the future
trend of the prevalence. Finally, we conclude in “Summary” section.

The SIS process
We consider the SIS process on an unweighed, undirected network without self-loops.
In the network, all the nodes are divided into two compartments: infected nodes and
susceptible (healthy) nodes. An infected node can infect each healthy neighbor with rate β

and the infected node can be cured spontaneously with rate δ, both as Poisson processes.
If we denote the infection state of node i at time t by a Bernoulli random variable Xi(t),
with Xi(t) = 1 being infected and Xi(t) = 0 being healthy, the exact SIS process of node i
in an N-node network is governed by the following equation,

dE[Xi(t)]
dt

= E
[
−δXi(t) + [1 − Xi(t)]β

N∑
k=1

akiXk(t)
]
, (1)

where aki ∈ {0, 1} is the element of the adjacency matrix A of the network. In the brackets
of the right-hand side of (1), the first term represents the curing process and the second
term represents the infection process. If the effective infection rate τ � β/δ is above an
epidemic threshold, then the infection can persist in the network; below the threshold, the
epidemic dies out exponentially fast for sufficiently long time. The endemic phase and all-
healthy phase are identified by the time-dependent prevalence y(t) = 1

N
∑N

i=1 E[Xi(t)].
In this paper, the SIS prevalence is generated by an event-driven simulation based on the
Gillespie algorithm (Gillespie 1977; Liu and Van Mieghem 2017; St-Onge et al. 2019).

Correlations between the SIS prevalence and networkmetrics

Preliminaries

Two different networks may produce a similar prevalence, and thus we need to under-
stand which network properties are important factors in the SIS process. If the SIS
prevalence is sensitive to a specific network metric, then the prevalence generated by
two networks with different values of this metric may be distinct. Assume that we have
a benchmark network with a metric Mb and an estimated network with the metric
Me. If the time series of the prevalence on the benchmark and estimated networks
are {yb(i�t)}i=0,...,T−1 and {ye(i�t)}i=0,...,T−1, respectively, then their correlation can be
evaluated by computing the prevalence difference

Dp � 1
T

T−1∑
i=0

∣∣ye(i�t) − yb(i�t)
∣∣ (2)

and the metric difference

DG � |Me − Mb|. (3)
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If we have n corresponding realizations of the differences (Dpi,DGi) for i = 1, . . . , n,
then we can compute their correlation by the Pearson correlation coefficient (Van
Mieghem 2014, p. 26),

ρ(Dp,DG) �

n∑
i=1

(Dpi − Dp)(DGi − DG)√
n∑

i=1
(Dpi − Dp)

2
√

n∑
i=1

(DGi − DG)
2
. (4)

Only if ρ(Dp,DG) approaches one, then the metricM and the prevalence y(t) are highly
correlated, which indicates that inferring the metric from the prevalence may be possible.

Evaluated network metrics

The graph metrics considered in this section are shown in Table 1.

The assortativity ρD, which is the degree correlation between connected nodes (Van
Mieghem et al. 2010), can be calculated as

ρD = 1 −
∑

i∼j (di − dj)2

N∑
i=1

di3 −
(
N∑
i=1

di2)2

2L

, (5)

where di and dj are the degrees of nodes at the end of a link i ∼ j, and L is the number of
links.
The average clustering coefficient CG, which is the probability that the node pairs with

same neighbors are also connected, can be computed as

CG = 1
N

N∑
i=1

Ci = 1
N

N∑
i=1

2�i
di(di − 1)

,

where �i is the number of triangles containing node i.
Some of the above metrics can be strongly correlated with the prevalence y(t). For

example, the epidemic threshold τHMF
c derived from the heterogeneous mean-field

(HMF) approach (Pastor-Satorras et al. 2015) is

τHMF
c = E[D]

E[D2]
,

Table 1 Graph metrics

N Network size (the number of nodes)

E[D] Average degree

E[D2] Second moment of degree

dmax Largest degree

E[H] Average shortest path length (the average hop-count)

E[1/H] Global efficiency

λ1 Spectral radius (the largest eigenvalue of the adjacency matrix)

μN−1 Algebraic connectivity (the second smallest eigenvalue of the Laplacian matrix)

ρD Assortativity

CG Average clustering coefficient
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whereD is the degree of a randomly selected node and the epidemic threshold τ
(1)
c derived

from NIMFA (Mieghem et al. 2009) is

τ (1)
c = 1

λ1
.

Many graph metrics can also be bounded. For example, the average degree follows
E[D]� λ1 in connected graphs (Van Mieghem 2010) and the largest eigenvalue of the
Laplacian matrix μ1 �

N
N − 1

dmax, while the algebraic connectivity is μN−1 � dmin.

Correlation analysis

For any pair of networks, the prevalence difference Dp and the metric difference DG can
be calculated based on (2) and (3). For each network metric, we calculate the correla-
tions via (4) between a set of metric differences DG and their corresponding prevalence
differences Dp on four network models: the SF graphs (Goh et al. 2001), the BA graphs
(Barabási and Albert 1999), the ER random graphs (Erdős and Rényi 1959) and the WS
small-world graphs (Watts and Strogatz 1998). Specifically, the SF graphs are generated
by the configuration model (Goh et al. 2001; Catanzaro and Pastor-Satorras 2005) and the
degree exponent parameter γ is uniformly at random chosen in the interval [2.5, 3.0] in
this paper.
Specifically, we first randomly generate the four kinds of networks each with 100 real-

izations. The network sizes N and the average degrees E[D] are chosen uniformly at
random in the interval [1000, 2000] and [4, 12], respectively. The effective infection rate
is set as τ = 3.0, which is above the epidemic threshold of every network realization. Two
kinds of initial state are chosen: y0 = 0.2 or y0 = 1.0, which means that 20% of the nodes
are randomly chosen to be infected or all nodes are infected initially. For each network
and initial state, a corresponding time series of the prevalence is obtained by averaging
over 100 realizations of the SIS simulation. We mark the prevalence difference Dp under
initial condition y0 as Dp(y0). We further denote the metric difference DG for one spe-
cific metric as DG(metric). All metrics shown in “Evaluated network metrics” section
are considered and the Pearson correlation coefficients ρ

(
Dp(y0),DG(metric)

)
are calcu-

lated by Eq. (4). The sample size of each correlation coefficient is
(100

2
) = 4950. Table 2

and Table 3 indicate that there are generally strong correlations between the difference of
the prevalence Dp and the differences of the average degree E[D], the second moment of
degree E[D2], the average shortest path length E[H], the global efficiency E[1/H] and the
spectral radius λ1. A strong positive correlation indicates that themetric between two net-
works with the same network type can be similar if they have similar prevalence curves.

Table 2Matrics with strong positive correlations

ρ
(
Dp(y0),DG(metric)

)
DG(E[D] ) DG(E[D2] ) DG(λ1) DG(E[H] ) DG

(
E

[
1

H

])
ER graphs,Dp(y0 = 0.2) 0.941 0.856 0.940 0.953 0.939

WS graphs,Dp(y0 = 0.2) 0.877 0.826 0.921 0.952 0.958

BA graphs,Dp(y0 = 0.2) 0.940 0.838 0.871 0.952 0.945

SF graphs,Dp(y0 = 0.2) 0.944 0.612 0.561 0.861 0.823

ER graphs,Dp(y0 = 1.0) 0.947 0.866 0.944 0.948 0.932

WS graphs,Dp(y0 = 1.0) 0.905 0.818 0.927 0.952 0.954

BA graphs,Dp(y0 = 1.0) 0.945 0.856 0.908 0.954 0.948

SF graphs,Dp(y0 = 1.0) 0.948 0.631 0.459 0.792 0.783
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Table 3Matrics with weak positive correlations

ρ
(
Dp(y0),DG(metric)

)
DG(dmax) DG(CG) DG(μN−1) DG(ρD) DG(N)

ER graphs,Dp(y0 = 0.2) 0.821 0.477 0.490 −0.014 −0.059

WS graphs,Dp(y0 = 0.2) 0.805 −0.036 −0.002 0.624 −0.012

BA graphs,Dp(y0 = 0.2) 0.386 0.358 0.854 0.595 −0.031

SF graphs,Dp(y0 = 0.2) 0.398 0.182 0.657 0.013 −0.038

ER graphs,Dp(y0 = 1.0) 0.856 0.525 0.524 0.082 −0.018

WS graphs,Dp(y0 = 1.0) 0.807 −0.031 0.081 0.666 −0.039

BA graphs,Dp(y0 = 1.0) 0.284 0.410 0.813 0.535 −0.003

SF graphs,Dp(y0 = 1.0) 0.247 0.100 0.659 0.006 0.034

However, there are relatively weak correlations between the difference of the prevalence
Dp and the differences of the network size N , the largest degree dmax, the algebraic con-
nectivity μN−1, the assortativity ρD and the average clustering coefficient CG. Moreover,
the initial state has very slightly influence on the correlations.
To summarize, if the type of the underlying graph is given, then inferring the network

properties, whose differencesDG are highly correlated to the difference of the prevalence
Dp, is possible. A straightforward method is randomly generating the network realiza-
tions by the corresponding network model and selecting the one realization produces
minimum prevalence difference Dp.

Inferring network metrics given the network type

We further try to infer the network metrics based on the prevalence from a single realiza-
tion of the SIS process given the network type. Specifically, for each network type, we first
generate 1000 benchmark networks whose network sizes N and average degrees E[D] are
chosen uniformly at random in the interval [200, 500] and [4, 8], respectively. For each
benchmark network, one corresponding benchmark prevalence is generated from only
one realization of the SIS process.
We then try to estimate the network metrics of each benchmark network as follows. For

each benchmark, 1000 networks with the same network type as the benchmark network
are generated. The network sizes N and average degrees E[D] of the generated networks
are also chosen uniformly at random in the interval [200, 500] and [4, 8], respectively. The
network with the smallest prevalence difference Dp to the benchmark is selected as the
estimated network. The metrics of this estimated network are regarded as the estimated
metrics of the benchmark network.
We measure the performance of the metric inference under the mean absolute error

(MAE) and the mean squared error (MSE). The MAE andMSE for n underlying graphs is
given by

MAE = 1
n

n∑
i=1

|Mei − Mbi| (6)

and

MSE = 1
n

n∑
i=1

(Mei − Mbi)
2, (7)

where Mei and Mbi denote the estimated and real metrics of the benchmark network Gi,
i = 1, 2, · · · , n.
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Tables in the Additional file 1 show MAE and MSE of each network metric for differ-
ent network types (the ER random graphs, the WS small-world graphs, the BA graphs
and the SF graphs). For the treatment group, we calculate MAE and MSE of each met-
rics which are estimated by selecting the network whose prevalence is closest to the
benchmark. For the control group, we calculate MAE and MSE of each metrics which
are estimated by randomly generating a network whose network sizes N and average
degrees E[D] are chosen uniformly at random in the interval [200, 500] and [4, 8]. For
the network metrics whose differences are closely correlated with the prevalence differ-
ence Dp, i.e., the average degree E[D], the second moment of degree E[D2], the average
shortest path length E[H], the global efficiency E[1/H] and the spectral radius λ1, their
MAE and MSE of the treatment group are much less than those of the control group,
which indicates that these metrics can be roughly deduced based on the prevalence given
the network type. However, for the network metrics whose differences are weakly corre-
lated with the prevalence difference Dp, i.e., the network size N , the largest degree dmax,
the algebraic connectivity μN−1, the assortativity ρD and the average clustering coeffi-
cient CG, their MAE and MSE of the treatment group are close to those of the control
group.

Distinction between network types
In this section, we try to distinguish the type of the underlying network given the time
series of the prevalence {yb(i�t)}i=0,...,T−1, the network size N, the number of links L and
the effective infection rate τ . We propose a simulated annealing link-rewiring algorithm
(SARA) to optimize a network whose prevalence can be close to the input prevalence
benchmark and the performance difference between different rewiring mechanisms in
SARA can be applied to identify the graph type.

Simulated annealing link-rewiring algorithm

The basic principle of SARA is that the links of an estimated network are continually
rewired based on different rewiring methods to minimize the prevalence difference Dp
between the optimized network and the benchmark network.
The algorithm operates iteratively and a random network is initialized. In each iteration,

the network will be renewed by rewiring the links of partial nodes. A new corresponding
time series of the prevalence {ye(i�t)}i=0,...,T−1 can be generated by simulating the SIS
process on the network and its difference Dp to the benchmark time series of the preva-
lence {yb(i�t)}i=0,...,T−1 is calculated. If the difference Dp decreases, then the rewired
network will be accepted. If Dp increases, then the rewired network is accepted with an
acceptance probability p and rejected with rejection probability 1 − p to prevent local
optima. Moreover, a stable final converging result is obtained provided that the accep-
tance probability p decreases with the iterations. The final result of this algorithm is an
estimated graph, whose corresponding prevalence is almost the same as the benchmark
prevalence. Inspired by the generation processes of ER graphs and BA scale-free graphs,
we consider two different rewiring methods: randomly connecting (RC) and preferen-
tial attachment (PA). In RC, the selected nodes are rewired uniformly at random to the
rest of the nodes in the network, and in PA, the selected nodes are rewired to a node
with probability proportional to the node’s degree. The pseudo-code of SARA is shown
in Algorithm 1.



Ma et al. Applied Network Science            (2019) 4:93 Page 8 of 13

Algorithm 1: Pseudo-code of the simulated annealing link-rewiring algorithm
(SARA)
Input : {y(i�t)}i=0,...,T−1, N , L, τ , initial temperature Vtmp, cooling rate 0 < r < 1

and step length SN
Output: Estimated network Ge, final prevalence difference Dp

1 An initial network is chosen uniformly at random from the set of all networks with
N nodes and L links.

2 for iteration bound do
3 Uniformly randomly choose Nc = round(SN × Dp) nodes.
4 Delete all links of each chosen node and then rewire these links to new neighbors.
5 If we randomly choose new neighbors without preference (RC), the probability

pi that the rewired link is connected to a neighbor i is pi = 1/(N − Nc), where
node i belongs to the N − Nc uncollected nodes.

6 If we rewire links based on preferential attachment mechanism (PA) , the
probability pi that the rewired link is connected to a neighbor i is pi = di/

∑
j
dj,

where di is the degree of node i in residual network and the sum is made over all
unselected nodes.

7 If n isolated nodes appear after the rewiring process in step 5 or step 6, we
remove n links uniformly at random and rewire them to the isolated nodes
based on the RC or PA mechanism, respectively. This step continues until there
is no isolated node in the network.

8 Simulate the SIS process on the new network and calculate the prevalence
difference D2 to the benchmark.

9 ifD2 < D then
10 D ←− D2; G ←− G2;
11 else if Exp(−(D2 − D)/Vtmp) > random(0, 1) then
12 D ←− D2; G ←− G2;
13 end
14 Vtmp = r × Vtmp;
15 end

Distinction between the network types

We try to distinguish four kinds of graphs (the SF graphs, the BA graphs, the ER random
graphs and the WS small-world graphs) based on the optimized prevalence curves gen-
erated by SARA. The experiment and the results are as follows. For each network model,
we generate 100 network realizations with N = 1000 nodes and L = 4000 links as the
benchmark networks. For the SF graphs, the degree exponent γ ranges in the interval
γ ∈[2.5, 3.0]. For the SW graphs, the rewiring probability pr ∈[0.5, 1.0]. The correspond-
ing time series of the prevalence are obtained by averaging 10 realizations with effective
infection rate τ = 1, which is above the epidemic threshold for benchmark networks. For
each benchmark graph realization and corresponding prevalence, we apply SARA with
RC and PA mechanisms separately and obtain two corresponding prevalence differences
DRC and DPA from the final output of the optimization, respectively. The performance
difference between these two rewiring mechanisms provides a possibility of identifying
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the types of underlying graphs by applying different rewiring methods in SARA. We then
try to classify the networks by the difference value DRC − DPA. Figure 1 shows that these
four kinds of networks can be almost exactly classified by the difference valueDRC−DPA.
Indeed, DRC > DPA for almost all SF and BA graphs while DRC < DPA for almost all
ER and SW graphs as shown in Fig. 1a. We exam the classification performance by the
receivers operating characteristic (ROC) curve, which is a curve of the True Positive Rate
(TPR)

RTPR(d) = NTP(d)

NTP(d) + NFN(d)

against the False Positive Rate (FPR)

RFPR(d) = NFP(d)

NFP(d) + NTN(d)
,

where d is the threshold of the difference valueDRC −DPA, NTP(d) is the number of true
positives of DRC − DPA > d, NFP(d) is the number of false positives of DRC − DPA > d.

Fig. 1 The classification of network types. a and b: The results for the initial state y0 = 0.2. c and d: The results
for the initial state y0 = 1.0. The time series of the prevalence are obtained by averaging over 10 realizations
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The denominatorsNTP(d)+NFN(d) andNFP(d)+NTN(d) are the number of real positives
and real negatives ofDRC − DPA > d, respectively.
The area under the ROC curve (AUROC) depicts the accuracy of classification. If

AUROC = 1, then the classification is perfect. In Fig. 1b and Fig. 1d, the ROC curves
of the difference value DRC − DPA between any two kinds of networks show that these
networks can be distinguished almost exactly.

Estimating the topology of small networks and prevalence
The network output of SARA: an example

In this section, we test the feasibility of approximately reconstructing small graphs from
the prevalence. We show example output of SARA under the benchmark of a small tree
network and a small wheel network. In SARA, the initialized networks are chosen uni-
formly at random from all networks with the same number of nodes and links as the
benchmark networks. The rewiring methods are selected to be the one with a smaller
difference of the prevalence in the output. As shown in Fig. 2, the main features of the
benchmark networks are captured fairly well by the final output of SARA.

Forecast the future trend of epidemic prevalence

Any benchmark prevalence from either homogeneous or heterogeneous networks can be
fitted well by SARA. Therefore, we can further analyze the feasibility of predicting the
future prevalence evolution by fitting the few initial prevalence observations.

Fig. 2 The reconstruction of a tree network and a wheel network. The left parts are the benchmark
underlying network and the right parts are the estimated networks. The curves are the difference of
prevalence against the number of iterations. The difference of prevalence is already small when the number
of iterations is around 150. The prevalence curves are obtained by averaging 500 realizations and only the
central node is infected initially
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We fit only the initial part (10%) of the time series of the prevalence
{y(i�t)}i=0,...,�T/10�−1 generated by four different benchmark networks and compare the
whole prevalence output of the algorithm with the benchmark prevalence. RC rewiring
is applied for ER and WS graphs, and PA rewiring is applied for BA and SF graphs. As
shown in Fig. 3a about the ER and WS graphs, the estimated prevalence (dashed curves)
are close to the benchmark (solid curves). However, as shown in Fig. 3b, the prediction is
inaccurate for BA and SF graphs.

Summary
We study the feasibility of inferring properties of the underlying graphs based on the
SIS prevalence. Pearson’s correlations (4) between the differences of prevalence and the
network metrics are evaluated. Given network type, the difference of the epidemic preva-
lence is highly related to the differences of some network metrics, such as the average
degree E[D], the second moment of degree E[D2], the average shortest path length E[H],
the global efficiency E[1/H] and the spectral radius λ1. If the network type is known, then
these metrics can be roughly estimated by finding a network whose prevalence curve is
close to the benchmark. To distinguish the network type, we further propose an algorithm
SARA, which can find a network whose epidemic prevalence is close to the benchmark.
Given network size and the number of links, four network types (the SF graphs, the BA
graphs, the ER random graphs and the WS small-world graphs) can be classified by dif-
ferent rewiring methods combined with SARA. Visually, the output network of SARA
captures the features of small benchmark networks well. Finally, we show that it is pos-
sible to predict the later prevalence from the initial stage prevalence for homogeneous
networks.
The prevalence in the SIS model resembles the population-level observations.

Population-level observations lose details of nodal infection but may still provide infor-
mation about the underlying network. In real scenarios, the population-level observations
are available for many different infectious diseases, such as influenza, Ebola virus disease,
Zika virus disease, etc. Disease control agencies may take advantage of the population-
level observations to understand the detailed spreading pattern, further forecast the
outbreaks more accurately and control the diseases more efficiently. For example, a small

Fig. 3 Forecast the future trend of epidemic prevalence. a The results about ER graphs and WS graphs. b The
results about BA graphs and SF graphs. Two kinds of initial states are chosen: y0 = 0.2 and y0 = 1.0. The time
series of the prevalence are the mean of 10 propagation
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diameter of the network inferred by the population-level observations implies that mod-
ern transportation plays a role; a large clustering coefficient means that spreading is
effectively exploring a community or geographical area; using the initial stage prevalence,
it is possible to approximately reconstruct the small-size local network containing the ini-
tial infections. Limitations like those in our experiments, such as the demanding of extra
parameters apart from the prevalence, still exist, but on the other side, additional known
knowledge, e.g. population distribution, may be available and helps the inference of the
network properties.
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