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Introduction

The fundamental problem of the theory of complex networks is to choose the “right”
measure of complexity. For the theory of logical networks (and the theory of algorithms in
general), the “right” measures are based on estimates of the resources required for solving
the most difficult tasks from given classes. The theory of complex networks aims to study
any type of object (brain, social network, or otherwise) that is considered “complex” by
definition. The more data that are collected, the better the hope of understanding the
nature of a complex system—i.e., dataism, or the principle of “brute force of data” There
is an established opinion (Krioukov 2014) that “as far as the brain and other complex
systems and networks are concerned, we are at a rather Ptolemaic stage, collecting the
data, awaiting for Copernicus” Is there clear representation of which data we must collect
or when the process of “mining of big data” could well suffice? Could it be something like
“Waiting for Godot”?*

!Samuel Beckett, “Waiting for Godot”.
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Herein, we study the approach “from simplicity to complexity” (see (Donetti et al.
2006)) as applied to evolving complex networks, with a special emphasis on the esti-
mation of different complexity measures: algorithmic complexity, running complexity,
informational complexity and topological complexity. Although it has been empirically
established that different real-world networks (brain, technological, social) have “almost
the same” nontrivial topological features, it remains a mystery as to whether one type
or another of graph topology is better suited for solving problems. There is a good rea-
son to believe that methods and results of the computational complexity theory can be
useful both for justifying the choice of the topology of complex networks to be designed
and for understanding the real complex networks. In (Helbing et al. 2014), different cases
of the “minimally invasive” principle of “chaos control” in complex networks with simul-
taneously extremely variable and highly predictable behavior are discussed. Designing
networks that demonstrate this principle with precision is the primary goal of our paper.

For any real-world, evolving complex network, the basic stages of evolution (at least,
from the algorithmic point of view) are almost identical. In the initial moment, “a set of
the basic elements” comes into being that will define the future of the evolving network.
As a rule, any evolving system—from genetic networks to computer networks to trans-
portation networks—tends to utilize, as much as possible, any useful decision made at
a previous stage of selection. In fact, the main principle of evolving complex networks
design is scaling—at least, if the new design is working sufficiently well.

The term “complex networks” includes two different (vast and entangled) conceptions:
network and complexity. Even if a network is described by a simple graph (indirect,
unweighted edges containing no graph loops or multiple edges) with nodes without
attributes, the problem of graph classification is challenging. The resolution of such a
problem is likely impossible without more detailed research in the field of the methods of
deterministic network synthesis. Recall that studying such practical problems as the cre-
ation of resilience networks calls for deeper research of regular or “almost regular” graphs,
such as the families of Cayley, Cages and Ramanujan graphs. In (Donetti et al. 2006),
the authors report finding topologies of deterministic “almost regular” graphs, called
interwoven (entangled) graph structures. Their method (Donetti et al. 2006) requires sub-
stantial computer resources to find “almost regular” graphs, even for small numbers of
graph vertices.

It is well known that graph theory serves as a theoretical basis for network design. In
particular, in the seminal work (Erdos and Rényi 1960), it was established for the first
time that the topological behavior of probabilistic graphs with V vertices and E edges,
namely, the appearance of subgraphs of a given type (trees, cycles of given order, complete
subgraphs, etc.) depends on the ratio V/E. Almost all results of (Erdds and Rényi 1960)
were asymptotic, with E ~ o(V1/2) or E ~ const(V1/?), e.g., when the graphs have a small
density. But the density of some real-world objects, for example, computer networks and
transcription networks (Sorrells and Johnson 2015), is close to 1. Thus, the topological
properties of deterministic graphs with overlapping cliques are of chief interest.

One of main goals of our work is to describe a new approach to the design of special
classes of the deterministic networks that are both simple from the viewpoint of algo-
rithmic complexity and entangled from the viewpoint of topological complexity. These
features can be ensured by a special method of labeling network nodes in some metric
space. Thus far, this approach has not commonly been used in network synthesis theory,
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and at first glance, it might seem too sophisticated. In reality, this approach is no more
exotic than identifying logical elements in computer networks. It should be especially
emphasized that, with this approach, one uses a deterministic method for designing net-
works with exactly predictable topological parameters (at least, for the parameters being
checked in numerical modeling).

Assume that we are designing a network S that can be represented by a simple graph
G = G(V,E) and the corresponding graph of cliques Gcr.(G) = G(Vcr, Ecr), where
|V is the number of vertexes of graph G(S), and |V | is the number of cliques (pos-
sibly overlapping) in graph G¢r(G). A special class of networks is represented by a tree
directed graph that realizes the Boolean vector-functions By ,,, i.e., kK Boolean functions
of m variables. Let G(By, ;) be the graph of Boolean network S(By, ,).

Assume that the graphs G(S) = G(V,E), Gcr(G) = G(Vcr, Ect) and G(By, ) =
G(Vp, Ep) are characterized by the following parameters:

“general dimension” m;

e number of vertexes N = | V;

e global overlapping index (as a “clusterness” measure) G¢r(G);
e diameter D of G(S);

e algorithmic complexity K (S(m));

e density graphs G (S(m)) and G¢r (G (S(m))); and

e information costJ (G(Bk_m)).

Let Q (m) be the following set of conditions (constraints)?:

[V = O(exp m);

[Ver| = O(exp m);

K (S(m)) = O(log m);

Vm (m > 3) density Gcr (G (S(m))) = 1;

VYm (m > 3) D(G(S)) < 3;and

vk, m] (G(Bm,k)) = O(p~'m*k), where p is the probability of error for any of the
edges.

S T o

Boolean networks were proposed by Kauffman (Kauffman 1969) to study gene regu-
latory networks (GRNs). A directed graph of GRNs is comprised of labeled nodes—the
genes and their regulators. The inputs of theses nodes are proteins (different transcription
factors (TF)), and the outputs are the levels of gene expression. When modeling GRN by
Boolean networks, estimating the information cost of computation in Boolean networks
is especially desirable for detailed researching of the information flows. We will show
that there is the network S(By, ,,,) when computing the Boolean vector-functions By, ,, for
which constraint 6 holds true.

Aside from the Boolean networks, in this paper, we are studying a special class of
labeled networks S(m1). Our main goal is the analysis of labeling methods that allow for
the synthesis of graphs matching conditions 1-5 listed above. It opens the door to deter-
ministic synthesis of networks with optimal robustness features. We develop labeling
methods that may come close to meeting this goal. Numerical modeling shows that there

2 All exact definitions for these parameters are given in the subsequent sections.
3 As usual, O(- - - ) means “some function bounded above in absolute value by a constant times what is in the parentheses”.
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is deterministic method for the synthesis of networks G (S(m)) for m = 3, ...,9 matching
conditions 2 (m).

The paper is structured as follows. In Section 1, we introduce two functionals that are
complexity measures for the Boolean network. The first, the so-called entropy volume of
computation, quantifies the total “occupation” of all circuit channels under a given distri-
bution of input values. The second one—the information cost of computation—evaluates
the capacity of a circuit’s elements with respect to information transmission. For any By, ,,,,
one can design a network S*(By, ), such that the upper bound for entropy volume and
the information cost of computation for $*(B,,, ;) grows with # as p log® (L(Fn, m)), where
p > 0is a desired error of computation, L(By, ) is the complexity of B, ,,, and ¢ < 4 is a
constant.

In Section 2, we present an explicit construction of deterministic models of complex
networks. In these models, the labels of nodes are different partitions of the integer mz>
(m > 3) into at most m integer parts, and connections between nodes are defined by the
metric distance between partitions. The values of some topological parameters of graphs
from different families are presented analytically, whereas the values of other parameters
(size and number of cliques, diameter, average distance, energy and so on) can be com-
puted numerically. A characteristic feature of these deterministic models is the simplicity
of the network-generating algorithm, which nevertheless allows for the design of large and
very attractive, as far as resilience is concerned, topological objects. It is not inconceivable
that the predictability of the topological parameters of these networks is a consequence of
their low K-complexity. Some results of numerical experiments on estimating the robust-
ness of these partition networks (quantified by the proportion of nodes and cliques that
can be removed before the network loses connectivity) were presented in (Goryashko et
al. 2019).

It should be noted that the basic features of the deterministic model from this section
were published in our paper (Goryashko et al. 2019).

Finally, Section 5 is focused on a discussion of the perspectives on the design of complex
networks in the form of attributed graphs and connections of this approach to the current
state of the art.

Informational complexity bounds for computing Boolean functions by
combinational circuits

In analyses of complex networks, the most commonly used static complexity measures
are the number of elements (nodes or edges of the graph) or the topological parameters
of the network’s graph. However, with a focus on functional complexity, the values of
such dynamical properties as, for example, the “number of elements in [an] activity state
on each computing step’, can be no less important. For the semiconductor elements of
logical networks, it can be naturally assumed that the element “activity” is connected with
changing element output values. Similar problems were studied with regard to the theory
of complexity beginning 60 years ago in Russia. Now, with the increased study of real-
world complex networks (biological, technological, and social), it seems useful to discuss

the definitions of a network’s activeness in the process of information transmission.*

4The results of Section 1 were established in (Goryashko and Nemirovski 1978); in view of the unavailability of
(Goryashko and Nemirovski 1978) to Western readers (i.e., until 80 yh, the Journal had not been translated into English),
we reproduce the original proofs below to make the paper self-contained.
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Preliminary explanation

In the initial stages of very-large-scale integration (VLSI) design, the most important
problem was to reduce the power dissipated by a circuit (see, e.g., (Yajima and Inagaki
1974)).

However, most of the proposed approaches were ad hoc and did not allow for a
general understanding of limits on energy consumption when computing the arbitrary
Boolean vector-functions. Moreover, in the optimal model (in terms of the number
of logical-element synthesis methods), starting with the classic results of C. Shannon,
the number of active elements is proportional to the total number of elements, that
is, for most of the functions, it grows exponentially with the number of variables. In
(Goryashko and Nemirovski 1978), for the first time, to the best of our knowledge,
it was shown that the “energy cost of computation” is proportional to the informa-
tion cost of computation rather than to the number of elements in the circuit. We
believe that this observation is, in particular, useful when investigating real-life neu-
ral networks. A biological neuron, as is the case for most basic biological channels
(axons), utilizes the principles implemented in (Goryashko and Nemirovski 1978)—after
becoming active, they switch themselves off for refractory period, where no energy
is consumed.

This, combined with appropriate changes in circuit synthesis as compared to the
standard synthesis methods of that time, allows us to arrive at the results on energy
consumption and reliability of computation stated in Theorems 1-4.

When an “active” element is defined as an element of logical network for which the
output value or some of the input values changes, then every Boolean function can
be implemented by a network with O(#2) active elements. It is unknown whether this
estimate is unimprovable.

For the problem in which we are interested, every network S (combinational cir-
cuits) is characterized by two functionals. The first, the so-called “entropy volume
of computation’, quantifies the total “occupation” of all network channels under a
given distribution of input values. The second—the information cost of computation—
evaluates the capacity of the circuit’s elements with respect to the information

transmission.

Let network S (f x1,..., xn)) represent combinational circuits from elements AND, OR,
NOT, and during the computation in S input variables for x, ..., x,, and let the value
of the boolean function f(x1, ..., x,) appear in the output at each instance of time, ¢t =
0,7,27,...,kt,....

Let W(x) = W(xy,...,x,) be a distribution of input vectors xj,...,xr, and all input

vectors are independent, with distributions W (x).

Let graph Gs(V, E) be a directed graph, where v € V are elements of network S, and
e € E are connections between the elements.

Assume that each vertex v € V has a discrete binary source without memory and
that each edge e € E is a discrete binary noiseless channel. Each distribution ¥ (x) in
S (f(xl, . ,xn)) can be used to set up the distribution @, of binary symbols for each
source s. For each e € E, weight H, ¢ can be assigned, where H, y is the entropy of the
incident source when W(x) is the input distribution.

Definition 1. The computation of entropy volume for the Boolean function f(x1, ..., %,)
is defined as
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H(n,m, V) = irsleHe,q, )
ecE

where the infimum is taken across all networks S (f (n, m)) in computing the Boolean

vector-function f(n,m) = f1(X1, .., %n)s - > frn (X1, - - ., %Xp)-
Theorem 1. Vu,m Vf(n,m) VYW (x) EIS(f(n,m)): {H(f(n,m)) < (B +

n2m)} & { |S (f(n, m)) ‘ <3m-2" }, where |S| is the number of elements in network S, and
c is a constant.

The proof is given by describing the construction of circuit S and verifying that this
circuit indeed meets the theorem’s conclusion. We will soon describe the construction
only; the computation of H (S (f (n, m))) and |S] is straightforward.

The part of the network that can realize any set of different conjunctions of # variables
is named the universal decoder (UD(#n)). The network (UD(4)) is depicted in Fig. 1 and
Fig. 2.

The network UD(4) is depicted in Fig. 2. Here, each rank j (j = O,...,n — 1) consists
of 2/ blocks, and each block realizes 2(# — j) conjunctive terms with j + 1 letters (input
variables). For each block & (¢ = (1,2,..., 2)), a conjunction in rank j is (xi”, ... ,x;rj)xu,
where |01, ..., 05| = & and x, is taken as X1 1, %j41, . . ., ¥4, X4. Rank O contains only 7 NO
elements; the other ranks are built up from AND elements with two inputs. Each conjunc-

0j Oj+1 Ojt+2

. . . . . . . . o1 _
tion in rank j 4 1 is formed from two conjunctions in rank j 4+ 1 asx7" - - KK Ky =

gj Oj agj Oj .
at e -xj’ x; T &t ~xj’ xjfzz. Therefore, the outputs of rank # — 1 are 2" different con-
junctions (x‘ln, ...,xy"). Universal junction (UJ) is used to realize any function f(n, m),

made up of the OR elements, with two inputs.

Model for a channel with memory

Let C(Q + 1) be a binary channel with a set of states S = Sp, S1,...,Sq, and S(¢) is state
of the channel in time step t. The state Sp will be named as “active” and other states as
“passive”. The state transition graph is shown in Fig. 3. If the channel is active, its output

equals its input; otherwise, its output is 0. After the transition So — S;foranyi=1,...,Q
A0 e @ e o
[ I ] o O [ I ] [ I ]

[ I [ I

X%z e @ e e e o 0 o
e 6 o o e 6 o o
I e e e o e @ ® & o6 o o o
x® OF xn® O% Hn® % u® o3
X Xy X3 Xy

Fig. 1 Universal decoder network for four variables. The different conjunctions of input binary variables are
realized from this network

Page 6 of 21
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X, X, X, X,

j=n-— 2 @ 0 i ereeseeaaen ®

j= 2 [ ] o o [

j=1 e o

X X

j=0 °
Fig. 2 Tree directed graph of the universal decoder for four variables. Each rankj (j = 0,. .., n — 1) consists
of 2j blocks, and each block realizes 2(n — j) conjunctive terms with j + 1 letters (input variables)

the channel will be passive during the Q time step®. In a seminal work (Gallager 1970),
general definitions of channel capacity with memory were provided as follows:

C = lim Cyp, 1)
T—o0

C = lim ET,
T—o00

Cr

T~ ! max min Jp (F(xT);xT> s
PxT) S(to)

andCr = T~! max max/Jp (F (xT);xT) .
PxT) S(to)

Here, S(to) is the initial state of channel; P(x”) is the distribution of input words with
length T; I'(x7) is the output words after transmission through I'; and Jp (' (x7); xT) is
the mutual information of random values % and I'(x7), assuming that the distribution of
input words is P(xT).

Theorem 2. For C(Q + 1), the following statements are true:

1. CQ+1)=CQ+1)=C(Q+1)=—In(1 — p*), where p* is the root of the
equationlnp = (1 + Q) In(1 — p), and p, (1 — p) are probabilities of 1 and 0 as
channel outputs, accordingly;

2. CQ+1 <[In(Q+1D+1]/(Q+1).

The proofs of Theorem 2 and Theorems 3 and 4 are also in the Appendix.

Network Sq (f(n, m)) in a Q-basis and the information cost of computation
Definition 2. The Q-basis (Qg) has such logical elements AND, OR, and NOT such that
for each logical element of Qp,

e Delay equals zero;
e The number of outputs equals r (r > 1); and

® Each output channel has memory equaling Q.

>Our model of a channel is similar to a physiological model of muscle cells or neurons, where there is such a condition as
that called the refractory period.
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. . . ............ .
0101 g, s, s, So

Fig. 3 State transition graph. The state Sp will be named “active” and other states “passive”. When a channel
is active, it transmits an input signal to the output. After signal transition, the channel will be passive during
the Q time step

Definition 3. The capacity of element e(j) € Qp is
C(Q =7 (e()) - C(Q(e()))

, where C (Q (e(j))) is the capacity of output channel e(j).

Define the output of the ideal network Sy (f (n, m)), i.e., the network with Q = 0, with
Y1, Y2 - - ., Y1, where each y; consists of m bits of the f(n, m) values. If for the network
So (f (n, m)), Q > 0, any channel C(Q + 1) translates without error only the part with
unit symbols. As a result of our network, Sq (f (n, m)) will be unreliable, where output
is z1,2y,...,27. Let it be reasoned that error exists if y; # z;. The total error during T
computing steps is defined as o(y!,zT). Let W(x) = W(xy,...,x,) for the distribution of
input vectors xj, . . ., X7, and ;LZ is a random sequence of T signals in channel k € K, and
H(T, k) is entropy of this sequence in the case of distribution W (x) for the input vector x” .
Definition 4. The entropy volume of computation for network Sq (f (n, m)) is

H(S, V) = Tlgnoo(l/T)]%:(H(T,k).

Definition 5. The information cost of network Sq (f (n, m)) is
J(So(frnm)) = > Q.
j€So(f (mm))
Definition 6. The error of the computing function f (n, m) by the network Sq (f (n, m)) at
time T is the quantity
p (Sq(fon,m), T) = 1/T) Y p(y",2") wT(x").
xT

(Note that the definition of this quantity is nothing but the definition of error probability
in a sequence of T symbols (Gallager 1970).)
The error of computing f (n, m) by network Sq (f (n, m)) is defined as

o (So (f(m,m), T) = Tli_)moo pw (Sq (f(n,m)), T).

Definition 7. The information cost of the computing function f(n, m) with error p is
defined as

J(n,m, p) = inf] (S (f(n,m)),

where the infimum is taken across all networks S, computing f (n, m) with an error that,
at most, is p.
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In (Goryashko and Nemirovski 1978), it was proven that given a function f(#n, m) and
any distribution of inputs W (x), it is possible to select the values of Q for all elements of
the network described in Theorem 1 to ensure the validity of the following statement.
Theorem 3. Vu,m (n > m), there exists a network S, (f(n, m)) that computes f(n, m)

with error not exceeding p such that
{7 (Sp (Form)) < 4p™ nm} & {[S, (F(n,m))| < 3m 2"}

In (Goryashko and Nemirovski 1978), it was also shown that the method of synthesis
from Theorem 3 provides the following upper bound of informational cost: if the error of
computing f(n, m) is p + Y 1 pir then J(S,) < p~tnt + 13 37 (o)7L
Theorem 4. Vu, m(m < n) YV X) Yfym Yo(o > 0) IA(fium) computing f,, ,, with error
< 0): URFm)) < 4o~ n*m)&{|A(fm)| < 3m2").

Graphs labeling by partition: basic definitions
Our basic goal is to invent a method for the synthesis of simple graphs that possess the
following properties:

e Jow algorithmic complexity;
o the ability to create rich, evolving topological structures; and

e low time consumption for the numerical simulation of the resulting structure.

It turns out that all these properties can be achieved by a special method of attributing
graph nodes, which in (Goryashko et al. 2019) was named partition family graphs. Here,
we restate the basic definitions.

Definition 8. A (n, m)-partition of n into no more than m parts is defined as a sequence
of nonnegative integersay; > ay > --- > ay > 0, such thatn = ay +ay + - - - + a,,. The set
of all feasible (n, m)-partitions is denoted by P(n, m)°.

Definition 9. For (n, m)-partition o = (ay, . . ., am), the gaps between parts are the values
ki =a;i —aiy1 (1 < i < m — 1). A partition whose gaps k; are the same as and equal
to some specific k > 2 is called a partition with uniform gaps, and the set of all these
partitions is denoted by UGPy(m). Note that any partition set P(m?, m) where m > 3
contains UGPy(m), which is the sequence of odd numbers 2m — 1,2m — 3,...,3,1).
Definition 10. The distance between partitions « = (ay,...,ay) and B = (b1,...,by)
(a, B € P(n, m)) is defined as

p(a, ) = max |a; — by, )
i=1,...m

Foralla, B € P(n,m) (@ # B),itholds that 2 < p(«, ) < 2n(1 — 1/m). The least upper
bound is achieved for @ = (#,0,...,0) and B8 = (n/m,n/m, ..., n/m).
Definition 11. Let a graph G(Vp, E) consist of a set of vertices (nodes) V, where each node
has unique label a € P C P(n, m), and every two nodes vy, vg € Vp are connected by an
edgee € Eiifp(a, B) = 1.

What is the direct descendant partition family?
In (Goryashko et al. 2019), the so-called trinomial partition family TPF(m) was intro-
duced as the set of partitions « = (ay, . . ., a,,) with the head partition 1 = 2m — 1, 2m —

There exist an optimal algorithm and recurrent rules for the exact computation of the number of partitions in the
classes P(n, m) (Knuth 2011).
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3,...,1) and for which p(o, ) = 1, i.e., any partition « € TPF(m) is adjacent to a head
(with a head being the hub of a graph for TPF(m)). Therefore, for any two nodes o, 4,
the sequence R,, = (61,82,...,8x), where §; = h; — aj, is ternary sequence permitting
the values (1,0,—1) and ) _§; = 0. It is known (Andrews 1971; 1990) that the number
of permutations ,, exactly equals the values of the trinomial triangle (generalization of
Pascal’s Triangle) depicted in Fig. 4.

Following the notation (Andrews 1971), the trinomial coefficient (Z’)2 with m > 0 and
—m < k < m is given by the coefficient of ™k in the expansion of (1 + x + x2)™.

The central trinomial coefficient (k = 0) for m = 3,4,5,6,7,8,9, 10, ... is given by the
sequence 7, 19,51, 141, 393,1107,3139,8953, ... (sequence A002426 in the OEIS (OEIS
Foundation Inc 2018)). If k = 1, kK = —1 trinomial coefficients is given by the sequence 6,
16,45,126,357,1016,2907, 8350, . .. (sequence A005717 in the OEIS). The central trino-
mial coefficient is asymptotic: a(m) ~ d -3"/./m, where d = \/3/7 /2 (OEIS Foundation
Inc 2018).

Now, we will examine the extended class of partitions which will be named as the direct
descendant partition family (DDPF(#n, m)), which contains partitions with m parts but
with different values of n (“spectrum” of values n = m?+1,1=012,...,m—2m>2).

For a partition set DDPF (1, m1), subset DDPF (m?)—i.e., when [ = 0—will be named
a progenitor for any family from DDPF(#n, m) because any set of partitions F(m,n) €
DDPE(n, m) is created easily from the subset P(m?) = P.

Thus, we have the possibility of estimating a priori the number of adjacent partitions
for progenitor. More importantly, it turns out that there is a simple recurrent procedure

for designing the graphs G(Vp, E) and, consequently, the graph G(VF (), E).

Recurrent procedure for designing the graph of G(Vp, E)

The procedure under examination is founded on the special labeling of graph nodes by
trinomial partitions and, due to such labeling on the design of the graph with partitions,
P(m?) from the graph with partitions P ((m — 1)2) using simple arithmetical operations.

e Step 0. Let us have the initial partition P(9, 3) (Fig. 5a).

e Step 1. First, to create partitions in accordance with the central trinomial coefficient
for P(16,4), we prepend the odd number a; = 2m — 1 to all partitions from Step 0
(Fig. 5b, red color).

1
1 1 1
1 2 3 2 1

1 3 6 7 6 3 1
1 4 10 16 19 16 10 4 1

Fig. 4 First 5 rows of the trinomial triangle. The sum of emphasized trinomial coefficient values in each line m
equals the number of nodes in the labeling networks S(m)
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6,6,2,2 7,5,4,0 8,5,2,1
6,5,3,2 7,5,2,2 8,4,4,0
6,5,4,1 7,4,3,2 8,4,3,1
6,4,4,2 7,4,4,1 8,4,2,2
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Fig. 5 An example of the adjacency matrix design. A set of (16,4)-partitions ¢ (16,4) (b), and its adjacency
matrix for G(Vig(16.4), E4) (C). The red squares correspond to the adjacency matrix for G(Vy (93), £3). At each
step (increasing in partition parts m on a unit basis), each adjacency matrix from the previous step becomes
the central part of the new matrix for m + 1

e Step 2. To find two side subsets (k = 1, k = —1) of trinomial coefficients (see Fig. 5b,
green and blue color accordingly) it is sufficient to define all partitions such that the
following holds:

for all partitions, n = m?;

— the first part of all partitions equals 2 when k = 1 (green column);

first part of all partitions equals 2m — 2 when k = 1 (blue column); and
— for all partitions, & p(a, h) = 1.

o Step 3. To design the graph G(Vp(,2 ), Em), we have to connect any nodes «, g iff
p(label o, label 8) = 1.

In Fig. 5¢, the adjacent matrix of G(Vp(164), E4) is depicted.

Let us estimate the designing cost T}, of the graph G(Vp(,2 ), Em) as an upper bound
on its running time. Each partition « € P(m?,m) can be presented by word w(a) from
2log, m binary digits. To find all partitions adjacent to the partition «, it is sufficient to
make 3m arithmetical operations under the numbers w(«). The total number of compu-
tational steps number no more than 3 - 3 - m - L(m) arithmetical operations, where L(m)
is the number of partitions for the central trinomial coefficient. Note that the number of
nodes in G(Vp(2 ), Em) is no greater than 3 - L(m).

At the same time, it is known that for random graphs, the expected runtime is O(N+M),
where N is the number of nodes, and M is the expected number of edges (Miller and
Hagberg 2011).

Except for the running time 7' (m), there is another measure cost: the algorithmic com-
plexity or K-complexity (Kolmogorov 1965). K-complexity (s) is defined for the strings of

characters s as

(s) = min{|P|, T(P) = s}, 3)
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where P is a program that produces the string s when executed on the univer-
sal Turing machine, and |P| is the length of the program P—the number of bits
required to represent P. The K-complexity is upper semicomputable, i.e., only the
upper bound of the value of K-complexity can be computed for a given string
s. As is easy to see from description of this procedure, the upper bound of
the number of bits required to represent the adjacency matrix of G(Vy 2, y» Em)
is O(logm) because only the value of m is necessary to create the appropriate
program.

As is clear from the description of the recurrent procedure and Fig. 5¢ at each step
(increasing the partition parts m on unit basis), the adjacency matrix from the previous
step becomes the central part of the new matrix for m + 1. This principle of iterative
nesting provides for the effect of self-similarity (similar to a Russian matryoshka doll).

The detailed study of topological parameters in real-world objects—most importantly,
biological objects—is of prime interest for possible application of the partition families.
(Strang et al. 2018) shows the results of an analysis of 128 graphs designed from the
experimental results of studying brain communities. It turns out that numerical values
of global efficiency, density and characteristic path length are very close to the values
that were calculated for progenitor DDPF (m?) graphs when m = 6, 7, and connections
between these parameters coincides with the findings of the authors. For example, in
(Strang et al. 2018), for average values, E;loh(G) = 0.5 + Dens(G)), and L*(G) =
(2 — Dens(G)). From Table 1 for DDPF(m?) and m = 6, the value of L(Gg)
1.7, and Dens(Gg) = 0.28. The estimate E;lob(G) = 0.64, and L*(G) = (2 —
0.28) = 1.72. Differences between values from Table 1 and average estimates from
(Strang et al. 2018) increase as m increases, but methods for measuring topologi-
cal parameters for the brain are inexact, especially when they relate to the num-
ber of elements and their density. In any case, such coincidences invite further

investigation.

Table 1 The results of numerical calculation of the graph’s connectivity (parameters MDenV(m) and
MDenCl are calculated for graphs without head nodes)

m |V Node D) DR) D@B) D) DGB) Md MdenG ~ MdenCl  Ov L Cc

37 Deg. 3 6 - - - 34 0.87 1.0 257 143 054
Quant. 6 1 - - -

4 19 Deg. 5 9 18 - - 82 0.39 1.0 258 154 059
Quant. 6 12 1 - -

5 51 Deg. 13 25 50 - - 18.2 0.34 1.0 49 163 056
Quant. 30 20 1 - -

6 141 Deg. 19 35 69 140 - 40.3 0.28 1.0 653 17 052
Quant. 20 90 30 1 -

7 393 Deg. 49 95 191 393 - 879 022 1.0 872 177 047
Quant. 140 210 42 1 -

8 1107 Deg. 69 132 261 533 1106 1947 017 1.0 116 182 042
Quant. 70 553 420 55 1

9 3139  Deg. 181 357 752 1499 3138 4374 0.4 1.0 155 186 037

Quant. 630 1681 755 74 1

The following notation is used: D(j) is the index of specific vertexes degree, Cc(m) is the clustering coefficient, Md(m) is the
average node degree, MDenCl(m) is the density of clique graph G¢(V, £), Ov is the global overlapping index, and L is the
characteristic path length.
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Topological parameters of the progenitor partition family DDPF(m?) graphs

Let us introduce some often-used topological parameters of graphs and provide
reminders of definitions (see details in (Strang et al. 2018)) (the programming tools for
computer estimates of these parameters can be found in (Samokhine 2017)). Beyond this
point, we assume that G(V,E) is a simple graph with |V| = N vertices and |E| = M
edges. The graph density den(G) = 2M/N(N — 1) and d(i, j) represent the distance (the
number of edges in the shortest path between vertices i and j in G(V,E)). If there is
no path connecting i and j, then d(i,j) = oco. The diameter D (G(V,E)) = max;; d(i, ).
The characteristic path length L is the average distance over all pairs of vertices, i.e.,
L=1/(NN—1)) Zi# d(i,j). In (Strang et al. 2018), a measure named the global effi-
ciency was proposed: Egop(G) = 1/ (N(N — 1)) Zi#(l/d(l}]‘))- The local efficiency is the
average of the global efficiencies of all subgraphs G, i.e. Ejoc(G) = (1/N) Y ;e Egop(Gi).
Beyond the common parameters listed above, we are in need of some measure for esti-
mating of overlapping nodes. Let each node i € V from graph G(V, E) be incorporated
into the ¢ (i) cliques such that 0 < ¢ (i) < total cliques of G(V, E). The value ¢ (i) will
named the local overlapping. The global overlapping is the average of the local overlapping

Ov(G) = (1/N) X @ (D).

Overlapping problems

In recent years, interest in clique graphs has grown (see (Evans 2010; Fortunato 2010;
Leskovec et al. 2010) and references herein). A large body of work has been dedi-
cated to community detection methods and identification of overlapping communities in
large real-world networks such as social networks, biochemical networks, and scientific
publications as well as collaboration networks.

Usually, the reasons for the emergence of graph overlapping communities in networks
did not attract the particular interest of scientists, although (Crandall et al. 2008) analyzed
overlapping community models. There, some mechanisms were established by which the
communities in LiveJournal and DBLP networks were growing and changing. In partic-
ular, it was shown that networks’ structural changes directly depend on the quantity of
overlapping clusters.

In the case under study, the numbers and sizes of the cliques’ overlapping depends on
nodes label only. By changing the nodes’ labeling, one can gain insight into the emergent
topological peculiarities of overlapping communities.

In the following, we shall deal also with the graph of cliques G¢;(Cl, E¢;), which is
derivative of a simple graph G(Vp(,2 ), Em) = G. The nodes of G¢;(Cl, E¢y) are all
cliques (size > 3) of G, and set E¢; is the edges set between all cliques. The example
in Fig. 6 shows subgraph G(|V| = 10, |[E| = 19) € G(Vpae,4), Es) and its clique graph
Gci(ICl| = 6,|Ec;| = 14) with global overlapping Ov(G¢;) = 2.2. The density of G equals
0.42, and the density of G¢; = 0.9. Therefore, in this case, the graph cliques are “almost”
one 6-clique. Indeed, although the diameter of graph G is 3 for G¢, the characteristic path
length is 1.71, and G¢; has fewer than half the number of edges of G.

It may appear that this approach using a clique graph is no better than a trick because
the total numbers of nodes and edges in G and G¢; do not change. But in such cases when
the cliques may be thought of as a unified entity (for example, from a point of functional-
ity), such an approach has the potential for yielding information about optimal partition
methods of large objects.
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Fig. 6 The example of overlapping cliques. Graph G(|V| = 9, |E| = 15) € G(Vp(16.4), £4) (top left) and its
3-clique graph G¢i(|Q| = 7, |E] = 19) (top right). The matrix below shows nodes for each clique

For example, one can look at the creation of some large scientific collaboration. Let the
network nodes be scientists and the edges be the connections between the scientists. The
success of the collaboration depends on—to a greater extent than the creative skills of
each one person—the reconcilability (tolerance) of coworkers. If there are some groups of
scientists (“cliques”) that have demonstrated successful interactions in the past, it makes
sense to leave these cliques and create the network as clique graph.

Computer modules of some brain regions (gyrs; see (McCarthy et al. 2014)) have been
studied as clique graphs (Strang et al. 2018) as well. Hence, for real-world biological, tech-
nological and computer networks, the properties of the overlapping communities could
be governing factors, with point representing resilience, effectiveness or density.

Table 2 shows the distributions of the cliques of the progenitor DDPF(1?) that were
established by numerical modeling for m = 3,4, ...,9. The main peculiarity of the data
from Table 2 is their predictability. It turns out that for m = 3,4,...,9, clique sizes are
given by the first | /2] binomial coefficients of Pascal’s triangle, and the total number of
cliques equals 2m — 2. There is good reason to believe that this property is true for any
value m, but it is merely a hypothesis at present.

As one can see from Table 1, the distribution of the degrees of vertices resembles a
binomial distribution (distinct from the power law for random graphs). Naturally, the
diameter of the progenitor graph G (DDPF(mz)) is different from that of a randomly
evolving network as well. For example, the asymptotic estimate of the diameter D for the
Balabos-Riordan network model is D(|V|) = In|V|/InIn|V| (Bollobas and Riordan 2004).
Evidently, for the progenitor graph G (DDPF(mZ)) with head node for any m, the diam-
eter equals 2. It can be proven that if the head node were excluded from the progenitor

Page 14 of 21
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Table 2 The results of numerical calculation of the clique parameters (size and quantity)

Cliques in GY(m)

m 4 (cq, where g is quantity of cliques of the size ¢)

OB H nOH O O G
3 7 33 33 - - - - - - 6
4 19 44 06 44 - - - - - 14
5 51 55 1010 1010 55 - - - - 30
6 141 66 1515 2070 1515 66 - - - 62
7 393 77 21 3535 3535 21 77 - - 156
8 1107 8g 288 5656 7070 5656 2858 8s - 254
9 3139 99 3636 8484 126126 126126 84g4 3636 99 510
* () —binomial coefficient (i = 1,...,8).

graph, then for any m, D (G (DDPF(mZ))) = 3. As shown in Table 1, the characteristic
path length remains less than 2 until m = 9, until the total nodes of graph number greater
than 3000.

More surprising is the behavior of the average index density for the cliques graph. If
the value of the average index density of the graph G (DDPF(mZ)) decreases with m fairly
slowly (approximately as 1/In|V| for m = 4,...,9), and if this represents more-or-less
typical behavior, the cliques progenitor graph for any m will have a density equaling 1.
This effect is reminiscent of the “densification power law” (Leskovec et al. 2010), which
implies the existence of evolving networks for which the density tends to increase. In our
case, the reason behind the “stable maximal density” of the clique graph is its high value
of global overlapping.

Topological parameters of the descendant partition family (DDPF(n, m))
The topological properties of the progenitor networks G (DDPF(mz)) holds for m — 2
different networks only. It turns out that the family DDPF(#, m) with the “spectrum” of
values n = m? + [(m) possesses many topological properties of The family DDPF (m?)
(Goryashko et al. 2019). Experimental results for 0 < I(m) < 4 are partly shown in
Table 3. Although the number of nodes for these graphs G (DDPF(m2 + l(m))) does not
coincide with the graphs G (DDPF(mZ)), the total clique numbers are the almost the same
(2" versus 2" —2). Their topological characteristics, such as the cluster coefficient, global
efficiency, characteristic path length and graph density (with the only exception being the
degrees of nodes distribution) for the networks in Table 3 are practically indistinguishable
from the respective characteristics presented in Table 1.7

Experimental observation. In accordance with the experimental results, it could be
supposed that distributions of clique numbers and sizes are defined by the m and ratio
n/m values only. This would explain why the parameters are highly predictable.

Concluding remarks

The design of networks with attributes described by partitions is a first step on the way to
a theory of evolving networks with prearranged topological properties. There are many
open problems that call for further investigation before this approach could become a

working instrument.

7The numerical values of almost all topological parameters for case of (m? = [, m)-partitions is found to be very close to
previous case (different by less than one percent).
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Table 3 The partition family DDPF(n, m) for n = m? & I(m), where [(m) = 0,1,...,4

m n=m? n=m’+1 n=m’+2 n=m?+3 n=m’+4

Total Global Total Global Total Global Total Global Total Global
nodes  overlap  nodes overlap nodes overlap  nodes overlap  nodes  overlap

2 — 0 7 0 9 0 9 0 — —
3 7 257 19 263 13 246 12 20 — —
4 19 3.57 51 3.56 39 3.23 27 3.18 — —
5 51 4.90 141 4.77 1 443 81 422 50 4.0
6 141 6.53 393 6.38 321 5.96 241 5.65 182 545
7 393 8.72 1107 8.52 924 8.04 714 76 546 7.38
8 1107 11.62 3138 11.39 2674 10.79 2114 10.21 1646 9.92

As in Table 1 the parameters MDenV(m) and MDen(Cl are calculated for graphs without head node. Number of nodes for the
graphs G (DDPF(n, m)) and Global overlapping does not coincidence with graphs for progenitor DDPF(m?). Total cliques
numbers are the almost the same (2™ instead of 2™ — 2) and the topological characteristics such as clustering coefficients, global
efficiency,characteristic path length and graph density (exception is the nodes degrees distribution) for networks of Table 3 are
practically indistinguishable from accordance characteristics in Table 1.

One of the most intriguing problems is robustness, both in technical networks (for
example, computing networks) and biological networks (for example, transcriptional reg-
ulatory networks (TRN)); for more details, see (Whitacre 2012) and references therein. It
is well known that methods providing high robustness that were “invented” through bil-
lions of years of evolution of any living entity from fungi to mammals are fundamentally
different from today’s engineering methods. However, studying the problem of robustness
in the complex networks field as a rule takes its origin in the classical models of logical
networks. As a result, it is difficult to evaluate the advantages of robust topologies in com-
plex regulatory networks achieved through neutral evolution. We speculate that graph
models where labels of each node contain information about specifics and connectivity
of the node (something akin to gene sequences) will be more appropriate for modeling
TRN, with such models including complex regulatory network topologies.

The partition labeling of network nodes makes it possible to develop a fresh approach to
behavioral game theory, in particular, to Colonel Blotto and Lotto games (see (Bocharov
and Goryashko 2017)). The results of numerical experiments show that there is tight
connection between equilibria in mixed strategies in antagonistic Blotto-type games and
topological parameters of networks with nodes labeled by game strategies.

From the viewpoint of practical applications, it is interesting to study network mod-
els where nodes are attributed by economical parameters. For example, each country
could be represented by a network node labeled by a partition with m parts presenting
the percentages of total expenditures going to a specific area—e.g., defense, health, and
education; this maps onto the standard COFOG (Classification of the Function of Gov-
ernment) data. Topological parameters of such a network with N nodes (for N countries)
would provide insight into some special features of international behavior.

We hope that interesting results can eventually be found in this field.

Appendix
Theorem 2. For the channel with memory Q described above, the following takes place:

1. C(Q) —C(Q) = C(Q) = —In(1 — p*), where p* is the root of the equation
Inp =1+ Q)In(1 — p); pand 1 — p are, respectively, the probabilities of having 0
and 1 as the channel’s input; and
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2. CQ =[In(Q+ 1 +1]/(Q+1).
Theorem 3. 1. Vu,mVf,, Vo(p > 0)
J(n,m, p) > Hy (y)m—[ pm + H(p)].

2. Vu,mVfy,Vo(p > 0) for every circuit AR(f,, ,,) computingf;, ,, with error < p, it
holds that

JR(fm)) > R{Hy (y)m—[ pm + H(p)] }.

Here, Hy (y) is entropy per symbol of the output alphabet of circuit 2, V is the input
distribution, and H(p) = pIn(p) + (1 — p) In(1 — p).

Proof. Let the circuit 2 be characterized by the collection of transformations I'7 :
AI' — AT and the circuit A by the collection of transformations I'). : Al — Al
Let Jo (D7 (xT); F(%(xT)) be the mutual information of random variables ['rx?, F(}xT
corresponding to the input distribution W (x7). Then,

Jo (Cral; T9xT) < Jy x5 TraT) < max Jy @I Tral) = TCr ).

By definition, C(2) > lim7_, »Cr (), where C(2l) is the channel capacity of circuit 2
treated as a communication channel.

From the definition of circuits (Section 4, item 3) and information cost of computa-
tion (Section 4, item 7), it is easily seen that J(A(f,,n) > CA(fynm)) and J(UR(Fn, m)) >
RCAR 5 (fm) (with thelatter inequality following from the fact that the total
amount of information passing from level to level cannot be less than the total amount of
information passing from the input to the output of 2X).

Thus, we conclude that if A(AR) computes f, ,, with error < p, then

L JQAfum) > limr oo T (Dra’; T9xT) = Jy; and
2. ](QlR(fn,m)) = R]\IJ'

From this assumption regarding AQARY, imy_ oo T2 ZT(FTxT, F%xT)\IJT(xT) < s

According to the inequality obtained when inverting thex Coding Theorem ([6], p. 98), it
follows that Jy > mHy (y)—[ pm + H(p)]. The theorem is proven.

Theorem 4. Vu, m(m < n) YV X) Yfym Yo(o > 0) IA(firm) computing f,,,, with error
< ) UQUfu) < 4p~ ) &{|A(fym)| < 3m2"),

Proof. Let us point out the rules for selecting memory sizes for the Q-elements of the
UD circuit. Let us make the memory sizes for all elements of a block &; of level j equal
to G(&)). The information cost Jyp of the decoder with a collection of memories Q =
{Q()),j = 0,1,...,n — 1} clearly satisfies the bound

n—i

@) Jup(@Q =) 2n—) Y CQE),
j=0 §jed—j
where A; is the set of binary words of length j. Let us upper-bound the probability of
decoding the error at a given time ¢. Note that with our construction, errors of only one
type are possible, namely, the absence of signals at all 2 output nodes; that is, “erroneous”
output produces a signal. Now, let a vector x input arrive at time . It will be decoded with
error only when at least at one of the levels j the elements of block x/) at time ¢ are in
the non-working state (here x/) € Aj is the vector of the first j symbols in vector X). In
turn, the elements of the block ) can be in the nonworking state only when for at least
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one of the time instants ¢ — 1,..,t — Q(x%, the vector X in the decoder’s input was such
that ) = %%, The conditional probability of the latter event, the condition being that
the input at time ¢ is %, is not greater than Q(x(j))pj - (), where pj(&), & € A, if the
distribution of the first j input symbols is induced by the distribution W.

Consequently, the probability p(err|x) of error at time ¢, the input being x, is no greater
than Z}qz_ol Q(x(j))pj(x(j)), and the unconditional probability p..(¢) of error at time ¢
satisfies the bound

n—1
3) Pa® = D13 QMg x7) | p(a).
xeA, | j=0
By first summing over x and then over j, after straightforward computations, (3) can be
rewritten as

n—1

(4) Pa® =D Y QEPIE.
j=0 &jeA;
Now, let us minimize the right-hand side in (2) under the restriction that the right-hand
side in (4) is no greater than p and utilizing in (2) the bound for C(Q) from Theorem 2
instead of C(Q). From the Lagrange rule, we posit a good guess as

(5) Q&) = M/j(n — ))/pi(E).
With A = 2pn~2 and
(6) Q* &) =[2pv/j(n — j)/n*pi(E)],

the right-hand side in (4), and thus, the probability of decoding error at (any) time ¢ is no
greater than p. Thus, selecting memory according to (6) ensures the required error level.
From (2), we easily obtain the following bound on the information cost of the decoder
yielded by (6):

(7) Jup(Q*) < p~'u.

Let us denote by 9t the decoder just described, and let us select the memory sizes in
the assemblies M1; corresponding to the components f;, ; of the vector-function f;, ,,. Let
B = {b} be the set of outputs of the decoder 9. Let us fix i € {1,...,m} and focus on
assembling 9M;. Let Uy € B, Uj,..., s, s =] log |Up|[ be the set of nodes of the assembly of
levels 0, ..., s, respectively. Note that |1J;| < 257/, For node i € Uj, let Uj(n) be those linked
to the n nodes from the set Uy. Denoting the memory of anoden € U;,0 <j <s—1,by
Q(n), the information cost of assembly 2; satisfies the bound

s—1

®) JOR:, Q) <2 Y C(QMY).

j=0 nel;
To ensure reliability of the assembly, we act as follows. Let M be a decoder with no mem-
ory of the same form as 91, and let p(b) be the probability of getting a signal on the output
b € B of the decoder M when the distribution of inputs is W. Let us compare two cir-
cuits: 2(; comprised of a serial arrangement of decoded 21 and assembly 91; and similar
combination gli of circuits 9 and 95?5 moreover, let them work on the same sequence
of inputs x. Since the only possible error for Mt is the absence of any output signal at
all, from the construction of 90, it is clear that the time instants where 2(; does while
9 does not make errors when processing x7 are the instants where 9t; makes errors.
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Consequently, if the error of 91 is p, and the error of 2; is p;, then the error of the cir-
cuit comprised of 9t and m assemblies My, ..., M, is no greater than p + Zf’;l 0i. Thus,
selecting memories in assemblies that result in the required error of the entire circuit
can be reduced to selecting memories of individual assemblies resulting in appropriate
p; values.

Let us now bound the error of circuit ;. This is nothing but the error of circuit 2;
with the set of input nodes Uy and the probability for a signal to arrive at n € JUj equal to
p(n) (noting that the signal can be absent with positive probability). As with the decoder,
there is only one type of error—no signal at time ¢ on the output of 9; (i.e., “false” sig-
nals on output are impossible). Such an error at time ¢ can happen only when at that
time a signal appears at a certain n € U, and in addition, for some j, 0 < j < s —1,
and £ € U such that for n € U;(£), the elements of £ are in a nonworking state. The
latter, in turn, can happen only when at one of the time instants ¢ — 1,...,t — Q(&),
there was a signal on at least one input from U;(£). The conditional (by the condition
that, at time ¢, there was a signal at a given n € U;(£)) probability of the latter event
is no greater than Q(§) Zn/euj@)p(n/). Denoting by £;() the only node of level j that
is connected to the node n € Uy, the probability of error in 91;, provided that at time
t there is a signal at n € Up, will not exceed le;é {Zn'eu,(g/(n))l’(”/)} Q(j(n)). The
unconditional probability p..(t) of error for 9i; at time ¢ is therefore no greater than

> net, (M) le;é {Zn,ew@j(n))p(n’)} Q(&j(n)); after straightforward manipulations,
this results in

s—1

©) Pa®) =)D QED &),

j=0 éelj

where p;(§) = p(Uj(§)), § € Uj.
The same reasoning as when constructing UD shows that selecting Q(&¢) according to

(10) Q&) =[pi/spj(8)], & € U;

ensures that p,,.(£) < p; for all £.
With the above memory selection, (6) and (7) imply that

JEN) < n’s/p; < p; tn.

Thus, we have built a circuit 2 that computes f,,, with error p + > /*, p; at the

information cost

m
JQ) < pgtnt Yot
i=1

Note that in the resulting circuit, not only the expected fraction of errors but also the
probability of error at every time instant does not exceed py + Y ;-; p;. It remains
necessary to optimize the errors pg, 0 — 1,..., o to ensure the total error p. Clearly,
we should take pg = /np/(Vn + m), pi = p/(Vn + m), i = 1,..,m, resulting in
JRH < n3(ﬁ + m)z/,o; and for m < n, we have JQ) < 4p~'n*m. The proof is complete.
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