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Abstract

The unveiling of communities within a network or graph, and the hierarchization of
its members that results is of utmost importance in areas ranging from social to biochemical
networks, from electronic circuits to cybersecurity. We present a statistical mechanics
approach that uses a normalized Gaussian function which captures the impact of a
node within its neighborhood and leads to a density-ranking of nodes by considering
the distance between nodes as punishment. A hill-climbing procedure is applied to
determine the density attractors and identify the unique parent (leader) of each
member as well as the group leader. This organization of the nodes results in a
tree-like network with multiple clusters, the community tree. The method is tested using
synthetic networks generated by the LFR benchmarking algorithm for network
sizes between 500 and 30,000 nodes and mixing parameter between 0.1 and 0.9.
Our results show a reasonable agreement with the LFR results for low to medium values
of the mixing parameter and indicate a very mild dependence on the size of the network.

Introduction
Many real world phenomena in the physical, biological and social sciences are complex

systems which may be represented as networks. In the field of technology and commu-

nication, smart phones, tablets, and other mobile hardware platforms, blogs and instant

messaging software and communication services, designed with interoperability and

connected to national and global systems, create networks of massive scale and

complexity. The analysis of these networks led to the emergence of network science, a

multidisciplinary area of research focused on the understanding of information flows

and the underlying topological, structural and dynamic aspects of networks. Commu-

nity structure detection is an important component of network science devoted to the

identification of the organizational structure of the network that results from the inter-

actions between its components or members, or nodes in the language of graph theory,

and the grouping of these nodes into clusters or communities. A network is said to

have ‘community structure’ if a set of nodes have a higher probability of being linked

together compared to nodes of other groups. This means that there exist natural

divisions in the network that separate the densely connected nodes from nodes of

other groups to which they are less likely to be connected.
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Earlier methods of community detection, such as the Kernighan-Lin algorithm

(Kernighan & Lin, 1970), the spectral bisection (Fiedler, 1973; Pothen et al., 1990)

and hierarchical clustering (Scott, 2000) based on similarity measures do not lend

themselves to real-world network data such as Internet and web data and biological

and social networks (Newman, 2004). The first community detection algorithm that

proved successful in this context was introduced by Girvan and Newman (Girvan &

Newman, 2002) and turned the area of community detection to a main pillar of

network science research (Schaub et al., 2017). It allowed for the identification of

community structures in both social and biological networks by separating them into

meaningful clusters. The Girvan-Newman algorithm identifies edges that lie between

communities in a network and removes them thereby allowing for the identification

of distinct communities in the network. Its limitation stems from the fact that it is

relatively slow making it impractical for networks of more than a few thousand

nodes. Many new approaches that encompass varying disciplines have been devel-

oped since then, including modularity methods (Newman & Girvan, 2004), Bayesian

and regularized likelihood approaches (Hofman & Wiggins, 2008; Yan, 2016; Daudin

et al., 2008), statistical hypothesis tests (Wang et al., 2017), and spectral methods

(Krzakala et al., 2013; Saade et al., 2014).

Despite the number of methods that deal with community structure and community

detection and the proliferation of a relatively large number of algorithms, community

detection remains a challenging problem and the pursuit of new methodologies that

can handle different types of raw data remains highly desirable and an active area of

research. However, in the absence of ground truth, it is difficult to assess the quality of

any given algorithm, therefore there is great need for robust and firmly established

algorithms that serve as the gold standard, a benchmark against which any new

algorithm can be measured and tested. One of the earlier and popular benchmarks is

that of Girvan and Newman (Girvan & Newman, 2002), referred to as the GN bench-

mark, although it suffers a number of limitations including the fact that all nodes of the

network have the same degree and that the communities are of the same size. This

clearly does not describe real-world networks properly, as these are known to have a

non-uniform degree distribution, generally following a power-law (Barabási, 2017;

Barabási & Albert, 1999), and heterogenous communities. More recently, Lancichinetti,

Fortunato and Radicchi developed a more realistic algorithm (Lancichinetti et al., 2008)

that assumes power-law distributions for the network degrees and the communities as

well as allows for overlapping communities. Today, the algorithm which is referred to as

the LFR benchmark, represents the new gold standard for evaluating the performance of

newly developed community detection algorithms. Moreover, the LFR algorithm yields

true community labels allowing for a simple and easy comparison of communities

obtained with different algorithms, thereby making it an ideal benchmark model.

Our proposed methodology was illustrated in (Felfli et al., 2018) using a synthetic

network which consists of 20 nodes. While the small size of the network helps to

clearly delineate the steps involved in the clustering process, it does not test its limits.

In the present paper, we use larger networks generated by the LFR benchmark in an

attempt to establish the validity and utility of our approach and identify its limitations.

Communities, or clusters, can be determined mathematically by identifying density-

attractors which are local maxima of the overall density (Hinneburg & Keim, 1998).
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Our approach assumes a Gaussian density distribution which is constructed so as to

unveil the relative importance (influence) of the various nodes (members) of the network,

allowing for the identification of the immediate leader of every member and hence the

ranking of all members including the emergence of the group leader. A tree-like network

with multiple clusters emerges. In each cluster, the nodes are ranked according to their

density value, which for a given node reflects its certainty in attracting interaction with all

nodes in the network.

This clustering procedure requires the knowledge of the distance metric, i.e. a

mapping of the network and its topology via the distances between nodes. These

distances can be expressed in terms of path lengths, namely the smallest number of

links or edges needed to connect the nodes within the network. Here, we model the

interactions among nodes based on the concept of randomized shortest path (RSP)

dissimilarity (Kivimäki et al., 2014; Yen et al., 2008; Saerens et al., 2009; Francoisse

et al., 2017), which has its foundation in statistical physics and is derived with the

constraint of fixed relative “distance” entropy. It was originally inspired by the work

of Akamatsu (Akamatsu, 1996) on the decomposition of path choice entropy in

g\eneral transport networks, and motivated by the fact that, generally common

distances do not take into account the global structure of the graph (Francoisse

et al., 2017).

The process of randomization assigns a probability distribution over the set of paths

to be followed by each node, so that chance is favored over choice with the advantage

of exploration versus efficiency. This reveals the degree of connectedness between

nodes where two nodes are considered highly connected or related when they are

linked by many, preferably low-cost, paths (Francoisse et al., 2017). The calculation

involves the search for the optimal path that minimizes the expected cost obtained by

imposing the constraint that the relative entropy has a constant value spread through-

out the network. The knowledge of the dissimilarities for the whole network allows for

the clustering and ranking of the nodes through the mapping of the resulting distance

matrix into a Gaussian kernel matrix.

The paper is organized as follows: in Section 2, the details of the methodology are

highlighted; Section 3 presents and discusses the results of benchmarking; Section 4

concludes the paper, evaluates the performance of our algorithm and addresses its

limitations.

Approach
The first step in the analysis is to map the network and its topology via the distances

between nodes. This step provides a fundamental starting point for interpreting the

network and a powerful tool for further exploration of its characteristics using stand-

ard multivariate statistics or machine learning methods. To explore the structure and

dynamics of the network, we start by modeling the interactions among nodes based

on the concept of randomized shortest path (RSP) dissimilarity (Kivimäki et al., 2014;

Yen et al., 2008; Saerens et al., 2009; Francoisse et al., 2017). The calculation involves

the search for the optimal path that minimizes the expected cost obtained by impos-

ing the constraint that the relative entropy has a constant value spread throughout

the network.
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The expected cost C is defined in (Kivimäki et al., 2014):

C Pif
� � ¼X

rϵRif
Pif rð ÞC rð Þ; ð1Þ

where the path r that the walker follows in going from node i to node f, belongs to all sets

of paths Rif that link these nodes. The relative entropy is simply defined as the Shannon

entropy which has the form −
P

i pi log pi calculated relative to the reference probability,

Pref
if ðr Þ which is the product of the transition probabilities in going from node i to node f

along the path r, and C(r) is the cost for path r, namely,

H ¼
X

rϵRif
Pif rð Þ logPif rð Þ=Pref

if rð Þ ð2Þ

The minimization process constrained by the constant value of the entropy and
P

r∈Rif

Pif ðrÞ ¼ 1 leads to a Gibbs-Boltzmann distribution with partition function Z and an opti-

mal distribution

PRSP
if rð Þ ¼ Pref

if rð Þ exp −β C rð Þð Þ
Zif

ð3Þ

where Zif is given by:

Zif ¼
X

rϵRif
Pref
if rð Þ exp −β C rð Þð Þ ð4Þ

The parameter β, which controls the distribution, plays the role of the inverse-

temperature in thermodynamics. It is shown (Francoisse et al., 2017) that, under the

Gibbs-Boltzmann distribution, the probability of drawing a path connecting two nodes

can easily be computed in closed form by simple matrix inversion. Moreover, in

contrast to common distance measures, such as the Shortest Path (SP) (the length of

the shortest paths between nodes), and the Commute Time (CT) distance (Akamatsu,

1996) (the expected length of paths that a random walker moving along the edges of

the graph takes from one node to the other and back (Kivimäki et al., 2014)), RSP

captures the global structure of the network. This is because it is designed as an

interpolation between the SP and CT distances, thus preserving their advantages while

avoiding their drawbacks. The measure is also shown in experimental results on semi-

supervised classification to be competitive with other state-of-the-art approaches (Fran-

coisse et al., 2017).

Once the dissimilarities are computed for the whole network, the ranking of the

nodes is determined. The distance matrix is mapped into a Gaussian kernel matrix

which is a non-linear Euclidean distance (a radial basis function (RBF) kernel and

commonly used in Support Vector Machine classification). An interesting property of

this kernel function is that it decreases with distance and ranges between zero and one

rendering it a useful metric for weighting observations. In fact, because of its limiting

values, it can readily be interpreted as a similarity measure or a density function.

Our density function first introduced in (Bahrami Bidoni & George, 2014) considers

the distance between nodes as punishment and captures the impact of a node within

its neighborhood. It is therefore equivalent to an influence (Hinneburg & Keim, 1998)

function which allows for the grouping and ranking of the nodes within the network.
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The influence function is applied to each node and the overall density of the network

can be expressed as the sum of the influence function of all nodes:

f i; jð Þ ¼ exp
−d i; jð Þ2
2σ j

2

 !
; ð5Þ

where d(i,j) is a distance function between nodes i and j and σ is the parameter. This

function must be reflexive and symmetric (Hinneburg & Keim, 1998) therefore we use

a symmetrized form of the RSP, the RSP dissimilarity ΔRSP.

Our normalized Gauss influence function takes the form

ρ ið Þ ¼
Xk

j¼1
exp

− ΔRSP
ij

� �2
2σ2

j

0
B@

1
CA=
Xk

i¼1

Xk
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− ΔRSP
ij
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2σ2

j

0
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The variance σj that appears in the Gauss influence function denotes the jth kernel

scale-parameter and reflects the impact of node j on its neighborhood. It is optimized

internally within the code.

The determination of the density attractors is based on a hill climbing procedure, a

local search which determines the solution iteratively. To initiate the climbing proced-

ure, the RSP values for each pair of nodes (distance cost) are sorted in ascending order

which leads to a NxN matrix, with each row ‘i’ representing the closest to the furthest

node j from the ith node. Here N is the size of the network. Now, for each node i, we

loop over j searching for the closest node that ranks higher than i (with respect to its

density) with the constraint that it has a direct link to i. This leads to the identification

of the parent of each node, thereby determining a tree-like network, from which the

communities are identified. To illustrate this outcome, we show in Fig. 1 the results of

our clustering method for LFR- benchmark graphs with N = 250 and mixing parameter,

μ = 0.1, 0.3 and 0.5.

Results
Networks ranging in size from N = 500 through N= 30,000 were generated using the

LFR benchmark (Lancichinetti et al., 2008). All calculations were performed on a Win-

dows server with a dual Intel-Xeon processor and 1536 GB of RAM. The LFR algorithm

requires the input of the two exponents, β and γ which control respectively, the power

Fig. 1 Results of our clustering algorithm corresponding to LFR graphs with N = 250 and (a) μ = 0.1, (b) μ =
0.3 and (c) μ = 0.5
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law that governs the network degrees and that for the communities present in a

given network. This is consistent with the scale-free nature of most real networks

(Barabási, 2017). Moreover, in a real-world network members or nodes do not ne-

cessarily belong to a single community. This fact is taken into account in the LFR

algorithm via a mixing parameter μ, which reflects overlap between communities,

i.e. the fraction of a node’s links or edges that are external to its assigned cluster.

It is clearly more difficult to detect clusters with increasing μ as this corresponds

to poorly defined boundaries between clusters. Different clustering algorithms may

lead to different clustering assignments. A number of similarity metrics have been

introduced in order to more efficiently quantify the performance of a given algo-

rithm against the gold standard, here the LFR benchmark. The most frequently

used metrics are the normalized mutual information (NMI) based on the Shannon

entropy of information theory, and the adjust Rand index (ARI) which counts the

number of pairs of nodes assigned to the same cluster, then normalizes the result

to the total number of pairs of nodes within the network. Another version of the

NMI is the adjusted mutual information (AMI) which we use in the present work

along with the ARI, and two other metrics, the homogeneity score (HS) and com-

pleteness score (CS). The HS expresses the degree to which all clusters contain

only nodes which are members of a single class. CS reflects the degree to which

all nodes that are members of a given class are members of the same cluster. All

metrics are normalized so as to fall between a value of zero and one for no agree-

ment and perfect agreement respectively, with the gold standard.

The first part of the algorithm extracts from the frequency matrix the relevant informa-

tion to calculate of the cost function and the randomized shortest path dissimilarity. In the

calculation of the RSP dissimilarity, the parameter β must be provided instead of the rela-

tive entropy; the value used here is β = 0.9. The density value of each node is determined,

the density attractors extracted allowing for the identification of the clusters. and their

respective leaders. Within each cluster, the unique parent of each node is identified leading

to a ranking of all nodes. We generated directed unweighted networks using the LFR

benchmark for β = 3, γ = 2 and with N ranging from 500 to 30,000. The dependence of the

average degree on the network size and, in the case of scale free networks, to the degree

distribution exponent is quite loose (Orman et al., 2013). Therefore, we considered values

of the average degree, <k > ranging from 3 through 30, then selected those that yielded

optimal mutual information scores. The results are depicted in Fig. 2.

The agreement with the results of the LFR benchmark, quantified by four similarity

measures, are virtually independent of the size of the network (for the sizes considered

here), and deteriorate considerably for values of the mixing coefficient starting at μ =

0.5. The benchmarking procedure allowed us to assess the quality of our present

formulation. Work on extending our methodology so that overlapping communities are

taken into account, is in progress. The aim is to achieve results with greater accuracy,

particularly when the mixing between communities becomes important.

Discussion and conclusions
In the present work we propose an approach to community detection which inherently

leads to hierarchization within the network. A density-based formulation, which permits
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the weighting of different correlation types has been applied to describe the relationship

between nodes linked by edges and identify their relative importance.

The benchmarking process allowed us to assess the performance of our approach.

The results indicate a very mild dependence on the size of the network, a reasonable

agreement with the LFR results for low to medium values of the mixing parameter, but

a clear deterioration for μ ≥ 0.5. We did not check the limitation of the methodology as

a function of the size of the network (beyond 30,000). This is part of our future work,

which also includes the development of an algorithm that considers overlap between

communities with the main objective of improving the quality of our results as the

mixing parameter, μ increases from 0.5.

As it stands the method has many positive aspects. In particular, the communities

emerge naturally from the clustering method, without the knowledge of their size or

number. The method may also be used to model the temporal evolution of network

degrees, i.e. the re-wiring of nodes based on the condition of preferential attachment

(Barabási & Albert, 1999; Felfli et al., 2018). This contributes to gaining insight into the

dynamic and structural changes that occur with time within the network and the

re-organization of members.

Finally, the algorithm can equally handle undirected and directed networks and a

priori, should work well for high-dimensional data sets. The ranking of nodes via the

assignment of scores defined by their density values, the identification of the commu-

nity and group leaders is important from a cyber intelligence standpoint. It leads to the

discovery of nodes (benign or otherwise) operating in concert, the unveiling of control-

ler nodes, and facilitates the exploration of the propagation mechanism of malware and

opens the possibility of dismantling or disrupting malicious network structures.

Abbreviations
ARI: Adjust Rand Index; BA: Barabasi-Albert; CI: Completeness Index; HI: Homogeneity Index; LFR: Lancichinetti,
Fortunato and Radicchi; NGC: Northrop Grumman Corporation; NMI: Normalized Mutual Information

Fig. 2 Variation of (a) the adjusted mutual information (AMI), b adjusted Rand index (ARI), c homogeneity
score (HS) and (d) completeness score (CS) with mixing parameter, μ for network sizes between 500 and 30,000
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