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Abstract

Distributed algorithms for network science applications are of great importance due to
today’s large real-world networks. In such algorithms, a node is allowed only to have
local interactions with its immediate neighbors; because the whole network
topological structure is often unknown to each node. Recently, distributed detection of
central nodes, concerning different notions of importance, within a network has
received much attention. Closeness centrality is a prominent measure to evaluate the
importance (influence) of nodes, based on their accessibility, in a given network. In this
paper, first, we introduce a local (ego-centric) metric that correlates well with the
global closeness centrality; however, it has very low computational complexity. Second,
we propose a compressive sensing (CS)-based framework to accurately recover high
closeness centrality nodes in the network utilizing the proposed local metric. Both
ego-centric metric computation and its aggregation via CS are efficient and distributed,
using only local interactions between neighboring nodes. Finally, we evaluate the
performance of the proposed method through extensive experiments on various
synthetic and real-world networks. The results show that the proposed local metric
correlates with the global closeness centrality, better than the current local metrics.
Moreover, the results demonstrate that the proposed CS-based method outperforms
state-of-the-art methods with notable improvement.
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Introduction
Many real-world systems can be modeled by a network G = (V ,E) of interacting actors.
The actors are demonstrated by a set of nodes V with cardinality |V | that are connected
via the set of edges (links) E with cardinality |E|. The edges can be directed or undirected,
depending on the type of interactions. Some well-known examples of such real-world sys-
tems include technological and transportation infrastructures, communication systems,
biological networks, and social interactions. Centrality measures are means of quantify-
ing the importance of a node within the given network. Some notions of centrality only
consider local properties of the network; however, some of them reflect global proper-
ties. Proper quantification of importance should be done given the application context.
To address applications in which reachability of a node to the entire network is of impor-
tance, researchers have introduced the closeness centralitymeasure. For an arbitrary node
u, its closeness centrality C(u) is defined as the inverse of its average distance to the other
nodes in the network. More formally:

C(u) = |V | − 1
∑

v�=u∈V d(u, v)
(1)
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where d(u, v) is the shortest distance between u and v. Locating public facilities over a
transportation network such that they are easily accessible to everyone or identifying peo-
ple with ideal social network location for information dissemination or network influence
can be mentioned as scenarios in which identifying high closeness centralities is of great
interest (Saxena et al. 2017; Taheri et al. 2017a, 2017b). In these scenarios, we are mainly
interested in efficiently and accurately detecting top-k high closeness centrality nodes in
the network, while their exact relative order compared to each other, as well as the actual
closeness centrality values, are not so important.
A trivial approach to identify top-k closeness centrality nodes consists of the following

steps: (1) Utilizing breadth-first search (BFS) for calculating closeness centrality for each
node in O (|V | + |E|) with a total computational cost of O

(|V ||E| + |V |2); (2) Sorting the
computed values via a sorting algorithm in O

(|V | log(|V |)), then report the top-k nodes.
The high computational cost of O(|V ||E| + |V |2) and the requirement of full knowledge
of the network topology may prevent such a method from being applied on large real-
world networks (Wehmuth and Ziviani 2012). To address this issue, developing scalable
distributed algorithms is of great importance, where each node is only interacting with its
immediate neighbors (You et al. 2017).
To the best of our knowledge, there is no distributed and decentralized algorithm for

the task of detecting top-k high closeness centrality nodes that operates while requiring
each node only to have local interactions with its immediate neighbors. However, several
algorithms are satisfying these properties and compute exact or approximated closeness
centrality of each node in the network. Approximation approaches compute an alternative
centrality score that highly correlates with the global closeness centrality. An efficient
sorting algorithm can then be utilized on top of these methods to identify top-k high
closeness centrality nodes. There are two major shortcomings with such approaches: (1)
Not exploiting the fact that the vector consisting of closeness centrality values has a few
large coefficients (k) and many small coefficients so that it can be well approximated by
a k-sparse vector (signal). In general, a centrality measure (e.g. closeness centrality) must
have a right-skewed probability distribution to be useful in selecting important nodes. (2)
Requiring direct measurement (query) from each node, which is not always possible due
to log-in requirements, API query limits, and treating user data as proprietary.
To address these issues, we transform the problem of detecting top-k closeness cen-

tral nodes to the problem of sparse recovery in networks. The breakthrough of the sparse
recovery problem is compressive sensing (aka compressive sampling) which performs a
few indirect end-to-end measurements on a signal x and recovers a good sparse approxi-
mation of that signal. However, two additional requirements must be taken into account
when these measurements are performed over a graph, rather than an arbitrary signal.
Creating feasible measurements that satisfy these constraints (will be discussed in “Com-
pressive Sensing over Networks” section) has initiated the field of compressive sampling
over graphs.
Our contributions in this paper are two-fold: (1) We propose a local (ego-centric) met-

ric which can be computed in a distributedmanner at each node. The computation can be
carried out requiring each node to have only local knowledge of its immediate neighbor-
hood. In “Experimental Evaluation” section, we experimentally show that the suggested
local metric is highly correlated with the global closeness centrality on many real-world
and synthetic networks. (2) We propose a general compressive sensing framework for
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distributed identification of central nodes in networks based on the introduced local met-
ric using indirect end-to-end (aggregated) measurements. We experimentally show the
superiority of our approach in terms of accuracy for the prediction of high closeness
central nodes compared to the best existing competing methods.
The rest of this paper is organized as follows. In “Preliminaries” section, we briefly

explain the preliminary notations and definitions. We review the related works on dis-
tributed detection of central nodes requiring only local interactions with the neighbors
from each node, in “Related Work” section. In “Proposed Method” section, we introduce
our novel approach in detail and analyze its time and space complexity. Later in “Exper-
imental Evaluation” section, the settings and results of our experimental evaluations are
presented. We conclude the paper in “Conclusion” section.
A preliminary version of this paper has appeared in (Mahyar et al. 2018). Here, we

explain the backgrounds and the intuitions behind the idea in more details. Also, we
comprehensively review the related work and describe their limitations with our corre-
sponding solutions. Moreover, we add three different types of real datasets and several
test scenarios to our extensive experimental evaluations to show the generalization of the
proposed method.

Preliminaries
Compressive Sampling

As an alternative to direct measurements, one can utilize sampling-based approaches.
Based on the Nyquist-Shannon theorem, a general signal x can be completely recovered
by sampling it with the Nyquist rate. However, sampling with the Nyquist rate can be
costly or impossible due to a massive scale in many real-world networks we are facing
today. If the underlying signal is sparse in a suitable basis, sampling with the Nyquist rate
only to recover a relatively small fraction of non-zero elements results in loss of system
resources and induces two sources of error, sampling (collection) error and identification
(compression) error.
The state-of-the-art approach for recovery of sparse signals is Compressive Sens-

ing/Sampling (CS) which addresses these drawbacks. In compressive sampling, one can
simultaneously sample and compress a signal xn×1 through a measurement matrixAm×n
wherem � n to acquire the following linear system:

ym×1 = Am×n xn×1 (2)

The resulting system is under-determined and does not have a unique solution in general.
A is said to satisfy the 2k-restricted isometry property (RIP) if there exists 0 < δ2k < 1,
such that for all 2k-sparse signals x′, it holds:

(1 − δ2k)||x′||2 ≤ ||Ax′||2 ≤ (1 + δ2k)||x′||2 (3)

In case the measurement matrix satisfies the 2k-RIP one can prove uniqueness of a k-
sparse solution to the above linear system (y = Ax). To see this, assume x1 and x2 are
both k-sparse signals and Ax1 = Ax2, so vector x′ = x1 − x2 is a 2k-sparse signal (has at
most 2k non-zero entries). Since A satisfies the 2k-RIP, Eq. (3) can be rewritten for some
0 < δ′

2k < 1 which ensures x1 = x2, as:

(1 − δ′
2k)||x1 − x2||2 ≤ 0 ≤ (1 + δ′

2k)||x1 − x2||2 (4)
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Let x∗ be any arbitrary k-sparse vector, and A be an arbitrary measurement matrix that
satisfies the 2k-RIP property. Then given what we have discussed so far, it is easy to see
that x∗ can be recovered by solving:

min
x

‖x‖0 s.t. y = Ax (5)

where ‖x‖0 indicates the number of non-zero entries in x. Unfortunately, solving this opti-
mization problem is NP-hard. Thus the following relaxation is considered which utilizes
the sparsity inducing �1-norm and is referred to as Basis Pursuit (BP):

min
x

‖x‖1 s.t. y = Ax (6)

It has been shown when the 2k-restricted isometry is satisfied forA, the solution of BP
is x∗. In this case, by utilizing the convexity of BP, the recovery is very efficient and compu-
tationally fast. Note that the strict condition y = Ax within the Basis Pursuit formulation
is very sensitive to imperfect sparsity or noise. The following formulation, known as
LASSO, addresses this by removing the exact constraint and penalizing its violation:

min
x

‖x‖1 + ‖Ax − y‖22 (7)

This objective has extremely fast distributed numerical solvers and will be utilized for the
optimization step in this paper.

Compressive Sensing over Networks

In case the signal to be recovered is defined over a graph (network), three additional con-
straints must be taken into account (Xu et al. 2011; Mahyar et al. 2013a) in CS problems:
(1) Each element Ai,j would be 1 if the node j is visited by measurement i and 0 other-
wise; (2) The nodes visited by a measurement must correspond to a connected induced
sub-graph (Ghalebi et al. 2017; Mahyar et al. 2015b, 2018a, 2017); (3) The signal x which
contains a graph property, defined for each node, is almost always non-negative (x ≥ 0).
Based on the compressive sensing framework, we would like to efficiently recover k

highest closeness centrality nodes from m indirect end-to-end measurements, in a way
that m � n. In the linear system ym×1 = Am×n xn×1, let A be an m × n measurement
matrix, where its i-th row corresponds to the i-th feasible measurement. For i = 1, . . . ,m
and j = 1, . . . , n,Aij = 1 if and only if node j is visited by the i-th measurement, otherwise
Aij = 0. Let x be an n × 1 non-negative vector whose j-th entry is the value of a certain
type of network characteristic (e.g. a global/local centrality metric) over node j ∈ V , and
y ∈ Rm denotes the measurements vector whose i-th entry represents the additive aggre-
gation values of network nodes in the i-th row of the measurement matrixA that induces
a connected sub-graph over G. Note that this way of measurements construction already
satisfies the network topological constraints of the feasibility conditions mentioned in the
beginning of this section.
For the example network shown in Fig. 1 with n = 10 nodes and |E| = 11 links, each

of two measurements m1 and m2 includes a different subset of connected nodes. The
corresponding feasible measurement matrixA with these measurements is:

A =
(
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

m1 1 1 1 0 0 1 1 1 0 0
m2 0 0 1 1 1 0 0 0 1 1

)

(8)
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Fig. 1 A network with 10 nodes and 11 links. The measurementsm1 andm2 are feasible considering the
network topological constraints (each of them induces a connected sub-graph over the network)

To understand how the additive aggregation over connected induced sub-graphs is
motivated for each measurement in practice, we mention an example from (Wang et al.
2012). Consider a network where the nodes represent sensors, and the links represent
communications between sensors. For the set T of active nodes within an arbitrary fea-
sible measurement that induce a connected sub-graph, a node u ∈ T monitors the total
values corresponding to nodes in T. Every node in T obtains values from its children,
if any, and aggregates them with its value on the spanning tree rooted at u, then sends
the sum to its parent. After that, the fusion center can obtain the sum of values corre-
sponding to all the nodes in T by only communicating with u. The explained paradigm
in data acquisition and aggregation is highly utilized within the wireless sensor network
literature for applications such as air quality monitoring, volcanic activity detection, and
object localization (Middya et al. 2017). Some recent work has applied a similar acquisi-
tion and aggregation paradigm in network tomography (Mahyar et al. 2013a), community
detection (Mahyar et al. 2015b) and finding key actors in social networks (Mahyar 2015;
Mahyar et al. 2015a; Grosu et al. 2018).
Based on the above idea, a straight forward approach utilized in practice to construct

measurement matrices satisfying these properties, is to create a correspondence between
every single measurement and a random walk on the graph. Each random walk additively
aggregates values computed by the nodes during the walk. The random walk strategy
and the values computed by the nodes are what separate a method from the others. Per-
formance of these methods and RIP satisfaction can then be verified theoretically or
experimentally (Mahyar et al. 2018; Mahyar 2015; Mahyar et al. 2018a; Xu et al. 2011). An
alternative approach (Mahyar et al. 2018b) employs a well-known randomized method
in compressive sensing literature which satisfies the restricted isometry property with
very high probability and makes deriving theoretical recovery guarantees straightfor-
ward. Also, it is possible to show that each constructed measurement will almost surely
correspond to an induced connected sub-graph.

RelatedWork
In this section, we first review local metrics that highly correlate with the global close-
ness centrality and can be computed in a distributed manner relying only on interactions
of neighboring nodes. After that, we review compressive sensing (CS)-based methods
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that can be utilized to recover top-k central nodes, using the mentioned local metrics by
constructing a feasible measurement matrix.

Local Closeness Metrics

Dist-Exact (You et al. 2017):They proposed a distributedmethod to compute and collect
the set of nodes with an exact distance of h from an arbitrary node u. The parameter h
varies from 1 to D, where D denotes the diameter of the network. The collected sets can
then be utilized to compute the closeness centrality at each node.
Dist-Est (Wang and Tang 2015): They derived a set of affine constraints which are

distributed in nature and characterize closeness centrality according to its original defini-
tion. The derived constraints are used to develop an algorithm, which enables nodes in a
network to cooperatively estimate their closeness centrality.
DACCER (Wehmuth and Ziviani 2012): Let volh(u) denote the sum of degrees for all

nodes in the h-hop neighborhood of u. In this work, the authors showed a high corre-
lation between volh(u),∀u ∈ V and the closeness centrality distribution for h > 0. The
correlation is shown to become stronger as h grows.
Weight-Vol (Kim and Yoneki 2012): This work was an extension to the metric in

DACCER, based on two simple observations. First, closer nodes to a node have more con-
tributions than farther nodes in the dissemination of the node’s information. Second, the
nodes with low clustering coefficients are hubs linking neighboring network parts.

CS-based Methods for Data Aggregation

RW (Xu et al. 2011): This work is one of the state-of-the-art methods in compressive
sensing over graphs that constructs random-walk based measurements. Each mea-
surement in the measurement matrix can be used to aggregate a metric of choice
additively.
TopCent (Mahyar 2015): This method constructs a measurement matrix to recover

top-k degree central nodes in networks. Since degree centrality is highly correlated with
the closeness centrality in some real-world networks, this method is expected to perform
well for the task of detecting closeness centralities, as well.
DICeNod (Mahyar et al. 2018b): This approach does not perform walks to create

a measurement matrix; instead, it utilizes a well-known randomized matrix construc-
tion technique in compressive sensing. They showed that the constructed measurements
correspond to induced connected sub-graphs in networks with high probability.

ProposedMethod
In this section, we introduce the proposed framework in the following steps: (1)
defining a new ego-centric centrality measure; (2) introducing a subroutine, called
CS-HICLOSE-SCORECOMPUTE, which calculates the proposed ego-centric centrality
metric in a distributed and decentralized manner; (3) introducing a subroutine, called
CS-HICLOSE-AGGREGATE, which aggregates the local scores via decentralized mea-
surements construction in compressive sensing. This will be executed only after the
execution of the previous subroutine; and (4) analyzing the overall time and space
complexity of the proposed approach. The pseudo-code of the proposed approach, CS-
HICLOSE, is in Algorithm 1, which mainly calls the two subroutines mentioned in
steps (2) and (3).
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Algorithm 1 The Proposed Method: CS-HICLOSE

Input: V ,m, l, h
V : set of network nodes
m: number of required measurements
l: measurements length
h: neighbourhood radius size at each node
CS-HICLOSE-SCORECOMPUTE(V , h)
x̂ = CS-HICLOSE-AGGREGATE(V ,m, l)

Output: sparse approximation x̂

Proposed Local Metric

We introduce the h-hop ego-centric (local) closeness centrality of node v as:

egoCh(v) =
h∑

τ=1
|Bτ (v)|/τ (9)

where Bτ (v) indicates the set of nodes that have an exact shortest distance of length τ

from node v. The intuition behind this metric is that, the farther nodes from v have lower
effect in dissemination of goods (e.g. information) emerged from it.

Score Computation Subroutine

The computation of the sets Bτ (v) for τ ≤ h,∀v ∈ V can be done by executing a breadth-
first search (BFS) process at each node in parallel, with exploration radius of h. This will
require computational cost of at most O(�h) where � is the maximum degree of the net-
work. The required memory storage at each node is also O(�h). The computed sets can
be utilized to evaluate ego closeness centrality at each node in a distributed and decen-
tralized manner, with O(1) computational and storage cost per node. Thus we will have
the following steps for ego-closeness computation:

(i) For each node v ∈ V in the network, run BFSh(v) to calculate the number of nodes
in its i -hop neighborhood denoted as Bi(v) where i ranges from 1 to h. This step
can be executed in a decentralized manner for each node independently from the
others.

(ii) Once Bi(v) is available for each node v ∈ V , i ranging from 1 to h, one can easily
compute the ego-closeness centrality metric based on Eq. (9). This step can be also
executed in a decentralized fashion for each node independently. The pseudo-code
for this subroutine is in Algorithm 2.

Score Aggregation Subroutine

The proposed compressive sensing-based method for aggregating the computed ego-
centric metric is depicted in Algorithm 3, which contains fours steps:

(i) The first node vfirst is added to the visited set S and all of its neighbors are added to
the neighbor setN (S).

(ii) The next node is selected relative to egoCh(vnext) from the nodes inN (S), which
are already computed in the previous subroutine.
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Algorithm 2 CS-HICLOSE-SCORECOMPUTE(V , h)
Input: V , h

V : set of network nodes
h: neighborhood radius size at each node
Foreach v ∈ V do � In a distributed manner

Calculate BFSh(v) to initialize Bi(v) for i = 1 . . . h
egoCh(v) = ∑h

τ=1 |Bτ (v)|/τ
end for

Output: For each node v ∈ V , its h-hop ego-centric measure egoCh(v) is computed

Algorithm 3 CS-HICLOSE-AGGREGATE(V ,m, l)
Input: V ,m, l

V : set of network nodes
m: number of required measurements
l: measurements length
A = 0m×n
y = 0m×1
for i = 1 → m do � In a distributed manner

Choose vfirst uniformly at random from V
S = {vfirst}
N (S) = N (vfirst)
A[ i, vfirst]= 1
y[ i]= egoCh(vfirst)
for j = 1 → l do

Choose vnext relative to egoCh(vnext) fromN (S)
S = S

⋃{vnext}
N (S) = N (S) \ {vnext}
N (S) = N (S)

⋃
N (vnext)

A[ i, vnext]= 1
y[ i]= y[ i]+egoCh(vnext)

end for
end for
x̂ = min

x
‖x‖1 + ‖Ax − y‖22 � See Eq. (7)

Output: sparse approximation x̂

(iii) The selected next node is added to the visited set S and it is removed from the
neighbor setN (S), then its neighbors are added to the neighbor setN (S).

(iv) The steps (i) − (iii) are fulfilled ‘l ’ times which is the length of a measurement, to
generate a new row for the matrixA and the vector y.

(v) Step (iv) is repeated ‘m’ times (in parallel) to construct a feasible measurement
matrixA with ‘m’ measurements and the corresponding measurement vector y.

(vi) To find the sparse approximation x̂ of x, we optimize the LASSO objective function
subject to the linear sketch of y = Ax, based on Eq. (7).
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In this algorithm, we havem parallel aggregation processes, where each is to be started
from a node selected uniformly at random from V. The random seeds to choose the
starting point of each aggregating process can be fixed in timeO(m). A measurement cor-
responding to a process with a starting node will keep track of two sets S and N (S). The
set S is initialized with vfirst and the set N (S) is initialized by its immediate neighbors,
denoted by N (vfirst). Within l sequential iterations, a candidate vnext from N (S) will be
selected relative to egoCh(vnext), removed fromN (S) and added to S. Moreover the neigh-
bors of vnext that are not already present inN (S) will be added toN (S). In other words S
is the set of visited nodes andN (S) is the set of candidate nodes that are not in S but are
connected to some node(s) in S. This ensures that the set of visited nodes S at each single
iteration corresponds to an induced connected sub-graph from the network. At iteration
i of total l iterations, the maximum size of N (S) is min(i� − i, |V |), thus selection of
a member from N (S) relative to ego-closeness centralities using a binary search will be
possible with computational cost of log (min(i� − i, |V |)). The total cost of applying this
binary search method is O(|V | log(|V |)) in total. To show this, we consider two different
cases. If l ≤

⌊ |V |
�−1

⌋
, then:

l∑

i=1
log (min(i�, |V |)) =

l∑

i=1
log

(
i� − i

) = log
(
l!

) + l log
(
� − 1

)

≤ l log(l) + l log(�) ≤ 2|V | log(|V |)

Otherwise, if l >
⌊ |V |

�−1

⌋
, then:

l∑

i=1
log (min(i�, |V |)) =

⌊ |V |
�−1

⌋

∑

i=1
log

(
i� − i

) + (|V | −
⌊ |V |

� − 1

⌋
)
log(|V |)

= log
(
⌊ |V |

� − 1

⌋

!
) +

⌊ |V |
� − 1

⌋

log
(
� − 1

) + (|V | −
⌊ |V |

� − 1

⌋
)
log(|V |)

≤
⌊ |V |

� − 1

⌋
(
log

( |V |
� − 1

) + log
(
� − 1

)) + (|V | −
⌊ |V |

� − 1

⌋
)
log(|V |)

= |V | log(|V |)

Moreover, the number of deletions from and additions to N (S) are at most |V |. Each
addition/deletion operation can be done efficiently in O(1), using an array structure.
Thus, the total time complexity for the aggregating stage is O(m + |V | log(|V |) + |V |) =
O(|V | log(|V |)), where we have assumedm � |V | aggregating processes (measurements).
The required space for each aggregating process is O(l) to save the visited nodes, and
O(1) for saving the aggregated values of the visited nodes. Also, a space of at most O(|V |)
is required for keeping track of the lists S and N (S). Finally, global space storage of size
O(m) is needed to save the initial measurements seeds.

The Complexity Analysis of CS-HICLOSE

Overall, our approach requires a running time of O(|V | log(|V |) + �h), local storage of
O(�h) at each node and global storage of size O(m) for the seeds. Besides, a local stor-
age space of O(l) is required for each aggregating process (measurement). In the next
section, we will show a high correlation between the proposed ego-centric centrality with
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h = 2 and the global closeness centrality of the nodes in various networks. The exper-
iments indicate that one does not gain much more correlation by increasing h to some
number greater than two, although one will endure � times higher computational and
storage cost to do so, in the worst case. Thus, we suggest h = 2 for satisfactory yet effi-
cient utilization of our algorithm. It is worth noting that in most real-world networks, in
particular social networks, nodes are connected to a tiny portion of the whole network’s
nodes, which means � (and in turn �2) is very small. For example, the maximum num-
ber of connections allowed on Twitter and Facebook is about 5000, that is much smaller
than their network size (Mahyar et al. 2018a). This shows that our approach is practically
efficient and scalable on real-world networks.

Experimental Evaluation
In this section, we experimentally evaluate the performance of the proposed method in
various scenarios over both synthetic and real-world networks.We first introduce the net-
works used for the evaluation. Then, we explain the settings of the experiments. Finally,
the achieved results for each test scenario and their analyses are presented.

Datasets

For the evaluations of the proposed method, we considered both synthetic and real net-
works. We summarize the properties of the real-world networks used in experiments in
Table 1. The four notations 〈deg〉, 〈C〉,D, and δ0.9 represent the “average degree”, “average
clustering coefficient”, “network diameter”, and “90-percentile effective diameter”, respec-
tively. In the case of a disconnected network, we extracted the largest (strongly) connected
component.
We also considered three well-known models (i.e. Barabási-Albert (BA), Erdős-Rényi

(ER), and Watts-Strogatz (SW)) for generating synthetic networks. We have summa-
rized these networks in Table 2. In ER network, the link existence probability p = 0.01
ensures that the generated network is connected as p >

ln |V |
|V | is a sharp threshold for the

connectedness of ER networks with |V | vertices.

Settings

To evaluate the accuracy of the proposed method (CS-HICLOSE) compared to the com-
petingmethods in identifying top-k closeness centrality nodes, wemeasured the precision
and recall of the algorithms. Precision quantifies the number of correctly detected nodes
in the list of k highest closeness centrality nodes divided by the total number of detected

Table 1 Real-world networks

Network |V| |E| 〈deg〉 〈C〉 D δ0.9

Facebook (Opsahl and Panzarasa 2009) 1893 6917 7.31 0.06 8 3.65

Twitter (Leskovec et al. 2007) 3656 94356 51.62 0.3 6 2.89

ca-AstroPh (Leskovec et al. 2007) 17903 197001 22.01 0.32 14 5.01

ca-CondMat (Leskovec et al. 2007) 21363 91314 8.55 0.26 15 6.52

ca-HepPh (Leskovec et al. 2007) 11204 117634 21 0.66 13 5.79

ca-HepTh (Leskovec et al. 2007) 8638 24816 5.75 0.28 18 7.42

email-Enron (Leskovec et al. 2009) 33696 180811 10.73 0.09 13 4.79

DBLP (Yang and Leskovec 2015) 317080 524933 3.31 0.31 23 8.16

wiki-Vote (Leskovec et al. 2010) 7066 51831 14.67 0.13 7 3.78
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Table 2 Synthetic network models

Network model |V| |E| Parameter 〈deg〉
Barabási-Albert (BA) (Barabasi and Albert 1999) 500 2979 5 11.92

Erdős-Rényi (ER) (Erdos and Renyi 1960) 500 4000 0.01 16

Watts-Strogatz (SW) (Watts and Strogatz 1998) 500 4466 [0.2 ; 9] 17.86

nodes. Recall quantifies the number of correctly identified nodes divided by the total
number of nodes in the network. The relevancy of the detected nodes (precision) and the
portion of relevant nodes that are detected (recall) are both of importance. To take both
into account, we utilized the popular F-measure metric, a harmonic mean of precision
and recall, which is defined as:

F-measure = 2 × Precision × Recall
Precision + Recall

(10)

Since CS-HICLOSE, RW, TopCent, and DICeNod have a source of randomness, the
experiments were repeated ten times to reduce the variance. The denoted points in the
figures represent the mean value of these repetitions along with their asymmetric stan-
dard deviations, which quantifies the amount of variations of F-measure at each point in
each figure. Implementation codes in Python can be found at https://github.com/
hamidreza-mahyar/CS-HiClose. We used POGS (POGS 2018), a fast and parallel
optimization solver, for the optimization phase of CS-HICLOSE. POGS tries to minimize
LASSO (Eq. (7)) as an objective function and is extremely quick by leveraging the power
of GPUs. For example, (Parikh and Boyd 2014), it can solve the LASSO objective on a
graph of 100,000 nodes with 10,000 measurements in only 21s on a single Nvidia K40
GPU. For computations of the global closeness centrality in Eq. (1), we used available tools
in Python-iGraph package.

Evaluation Results

Correlation between Our ego-Closeness and the Global Closeness

We experimentally analyzed the correlation between the proposed ego-centric (local)
centrality metric and the global closeness centrality over several synthetic and real-world
networks. To compare these two centrality metrics, we used Pearson product moment
correlation coefficient (ρ), which in fact measures the strength of a linear association
between two variables and is defined as (Benesty et al. 2009):

ρ =
∑|V |

i=1(xi − x)(yi − y)
√

∑|V |
i=1(xi − x)2

∑
i(yi − y)2

(11)

where |V | is the number of network nodes and xi, yi correspond to the local and global
centrality measures of node i, respectively. x and y are mean of these variables. The Pear-
son coefficient ρ can take a value in range [−1,+1]. A value of 0 shows that there is not
any association, a value greater than 0 indicates a positive association, and a value less
than 0 indicates a negative association.
Table 3 illustrates the correlation coefficients between the proposed ego-closeness and

the global closeness centrality. As mentioned in “Proposed Local Metric” section, the
computational and storage cost of the ego-closeness centrality is directly impacted by
choice of h. Thus, we aim to yield good results in distributively assessing top-k network

https://github.com/hamidreza-mahyar/CS-HiClose
https://github.com/hamidreza-mahyar/CS-HiClose
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centralities with a small value of h. We calculated the correlation for various sparsity lev-
els k and small values of h (i.e. 2 and 3) for different networks. It is worth noting that for
h = 1, any local metric would be the same as the degree centrality. Overall, the results
show that our proposed local metric and the global closeness centrality highly correlate
on various types of networks. According to the problem addressed in this paper, we want
to identify top-k central nodes for k � |V |, so the results show that in this case choosing
h = 2 is sufficient yet efficient, in terms of having a good trade-off between computational
complexity and accuracy.
Table 4 shows the Pearson correlation coefficients between the existing local metrics

reviewed in “Local ClosenessMetrics” section (i.e. Dist-Exact, DACCER, andWeight-Vol)
and our proposed ego-centric centrality measure, all with h = 2, and the global closeness
centrality on synthetic and real-world networks. In this experiment, we mainly focus on
high sparsity levels k = {0.1|V |, 0.2|V |, 0.3|V |, 0.4|V |}. After implementing DistEst (Wang
and Tang 2015), we found that the computed values for this metric critically depend on
parameters’ initialization (e.g. each node should have an estimation about its closeness
value which is an unrealistic assumption). Moreover, this metric needs a huge number of
iterations for message passing to converge. To have a fair comparison, we set the same
number of iterations as our metric, but its correlation coefficients were around 0, so the
results for this metric were excluded.
The results show that Dist-Exact for h = 2 has a linear correlation, but a negative

association with the closeness centrality in networks with various levels of sparsity. One
can observe that our proposed metric has almost always the best correlation coefficient
compared to the other metrics. Another interesting observation in Tables 3 and 4 is
that our ego-centric metric has lower correlation coefficient with the global closeness
centrality on the networks (i.e. ca-CondMat, ca-HepTh, and DBLP) with a small average
degree, relative to their network size.

To have more analysis of the correlation between the proposed ego-centric (local) met-
ric and the global closeness centrality, Fig. 2, shows the scatter plots of all nodes’ ranks
provided by one versus the other, on various networks. Each point in the figure corre-
sponds to a node’s rank using these two metrics. Based on the results of the previous test
cases, we calculated our local measure for h = 2 to have low computational complexity,
yet high accuracy. One can easily observe the linear correlation and positive association
(as the rank with respect to the local metric increases, so does the rank with respect to
the global metric), especially for the top-k nodes’ ranks which is the target of this paper.
One can easily see a similar observation, as in Tables 3 and 4, that our metric has rela-
tively lower correlation with the global closeness centrality on ca-CondMat, ca-HepTh,
andDBLP networks. These networks share the property that their average network degree
is lower relative to their network size.
Although the Pearson product-moment correlation coefficient is the most common

and almost exclusively used measure for correlation studies of centrality indices, non-
linear dependencies are not adequately captured by it. Moreover, assuming only a linear
correlation between the two scores is very strong and maybe not realistic. A common
workaround to depict some of the existing non-linear dependencies is to employ the Pear-
son correlation on the logarithm of the original scores, and it is mainly used for illustrative
purposes (Schoch 2015). Table 5 is similar to Table 3; However, it shows the Pearson
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Fig. 2 Correlations between the nodes’ ranks provided by the proposed local metric and the global
closeness centrality on synthetic and real-world networks. These two metrics correlate very well

correlation on the logarithms of the proposed ego-closeness (with h = 2) and the global
closeness scores. The result suggests that our proposed ego-centric metric not only has a
high positive linear association (as inferred by Table 3) but also demonstrates a very high
positive non-linear association with the global closeness centrality.

Running Time Comparison

In Table 6, we empirically compare the running time for computation of the local
metrics reviewed in “Local ClosenessMetrics” section (i.e. Dist-Exact, DACCER,Weight-
Vol, and our proposed ego-centric measure) over the synthetic networks. The running
time of these metrics measured in a simulated distributed environment on a 2.5 GHz
Intel Core i7 Apple MacBook Pro laptop. We set the radius of the local neighborhood
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Table 6 Running time (inmilliseconds) comparison for different local metrics on synthetic networks
in a simulated distributed environment

Network Dist-Exact DACCER Weight-Vol Our metric

Barabási-Albert (BA) 3.77 4.26 13.78 3.74

Erdős-Rényi (ER) 1.20 1.45 8.16 1.18

Watts-Strogatz (SW) 1.10 1.02 6.65 0.80

for each node to h = 2, similar to the other experiments and due to the same
reasons.
Note that in the distributed and decentralized setting that we considered here, each

node in the network begins executing a process to compute its corresponding local metric
based on its visible neighborhood radius. Each node’s process runs independently of the
other nodes’ processes. The distributed running time that we report for a metric on a
network is equal to the longest execution time among all network nodes’ processes for
computation of the desired local metric. Table 6 shows that our proposed metric is the
fastest local measure to be calculated locally in a decentralized manner over all of the
synthetic networks.

Effect of Sparsity Level k on Accuracy:

Figure 3 shows the effect of sparsity level k on the accuracy of CS-HICLOSE in comparison
with the CS-based competing methods in the case where the number of measurements
set to 0.4|V | and the measurements length set to 0.25|V |. The measurements length in
DICeNod is defined according to another parameter d = ε

Ckm, where ε ∈ (0, 16 ) and C >

1. To have a fair comparison, we chose ε and C in a way that the average measurement
length in this method and the other methods are the same. The higher the value of F-
measure is, the more correlation between the top-k nodes identified by a method and the
global closeness centrality will be.

Effect of Number of Measurementsm on Accuracy:

The accuracy of CS-HICLOSE is compared to the existing CS-based methods in terms of
F-measure for varying number of measurements, while the measurements length (l) set
to 0.25|V | and the sparsity (k) set to 0.15|V | in a network with |V | nodes. For DICeNod, l
is determined based onm and k. In Fig. 4, it is clearly depicted that CS-HICLOSE outper-
forms the competing methods in terms of having higher F-measure for almost all number
of measurements. Moreover, our method has better accuracy even in small number of
measurements. This improvement can be very important in the situations where per-
forming measurements has a high computational cost (Mahyar et al. 2015a; Mahyar et al.
2013b).

Effect of Measurement Length l on Accuracy

Figure 5 illustrates that CS-HICLOSE has higher F-measure for the most measurement
lengths in all test cases, in comparison with the CS-based methods RW, TopCent and
DICeNod. Since the concept of measurement length is again irrelevant to the other com-
peting methods, we only compared our accuracy with the CS-based approaches. The
horizontal axis in Fig. 5 shows the measurement length l divided by the total number of
network nodes |V |. This experiment is performed over the network with |V | nodes where
the number of measurements sets tom = 0.4|V | and the sparsity level sets to k = 0.2|V |
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Fig. 3 Effect of sparsity level k on the accuracy of CS-HICLOSE and the competing methods for the number of
correctly detected top-k closeness centrality nodes. For all methods, we set the number of measurements to
0.4|V| and the measurements length to 0.25|V|. The higher the value of F-measure is, the more correlation
between the top-k nodes list identified by a method and the global closeness centrality will be

for all methods. We repeated each test 10 times to reduce the methods’ randomness, and
the points in the figures show the mean value of these repetitions. In Fig. 5, we can easily
observe an increasing trend for F-measure in CS-HICLOSE when we increase the length
of the measurements.

Conclusion
Closeness centrality has been utilized as a primary metric to measure the relative
importance/influence of nodes in a given network. In this paper, we introduced a new
ego-centric metric which has little computational cost and correlates well with the global
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Fig. 4 Effect of the required number of measurementsm on the accuracy of CS-HICLOSE in terms of
F-measure, compared to RW, TopCent, and DICeNod. For each method, we set the measurements length to
0.25|V| and the sparsity to 0.15|V| in a network with |V| nodes

closeness centrality. Then, we proposed a compressive sensing framework for distributed
detection of top-k central nodes based on the ego-closeness metric using only indirect
measurements. Extensive experimental evaluations on both synthetic and real networks
demonstrated that the proposed method outperforms the best existing methods to effi-
ciently detect high closeness centrality nodes, in terms of having high F-measure and
low complexity. The experimental results indicated that our proposed ego-centric met-
ric depicts a lower correlation with the global closeness network centrality on networks
with low average degree relative to their network’s size. Generalization of our ego-centric
metric to address this limitation will be of interest for future work.
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Fig. 5 Effect of measurement length l on the accuracy of CS-HICLOSE in terms of F-measure, compared to
RW, TopCent, and DICeNod. For each method, we set the number of measurements to 0.4|V| and the sparsity
level to 0.2|V| in a network with |V| nodes
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