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through a city under varying conditions. Models of two very different cities, Tulsa, OK,
USA and Providence, RI, USA, are created as geometric graphs using publicly available
map data. The SIR epidemic model is applied with varying parameters, and the resulting
infestation rates are measured. Results indicate that the density of a city, the size of the
largest connected component (from the point of view of a rodent migrating to a new
location), and the distance and probability of migration all play a role in determining
the resulting rate of infestation. Results obtained are consistent with infestation
patterns and rates reported by studies of other similarly dense city environments. For
Providence a targeted attack simulation is run, which shows that carefully targeted
extermination interventions could reduce infestation in the city by approximately 40%.
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Introduction

Spreading algorithms have been studied with many different networks and contexts, such
as diseases spread through human contacts (Newman 2002; Schneeberger et al. 2004;
Bearman et al. 2002), information spread through email chains (Ebel et al. 2002) and
mobile cellular networks (Onnela et al. 2007), and memes spread through marketing and
promotion (Aral and Walker 2011; Weng et al. 2012). Similarly, rodents in a city will
spread through a network of buildings. The spreading is typically not welcome and is
referred to as an infestation. However, the rodents enjoy the surplus of food and habitat-
constructing resources, easy accessibility, and warmth that urban environments provide.
The spreading and location of rodents has been studied statistically (French et al. 1968;
Feng and Himsworth 2014), but few network-based studies exist. Humans have numer-
ous reasons to study the behavior of rodents, including management of rodent wastes,
mitigation of damage that rodents cause, and prevention of diseases that are transmitted
from rodents to humans (Mills and Childs 1998; Wiirbel 2001; Lund 2015).

The migratory patterns of rodents follow relatively short distances between hospitable
environments. In an urban setting this likely means moving along a two-dimensional
path from one building to another. One generative model for these migrations is a
Random Geometric Graph (RGG), in which a radius r represents a rodent’s migra-
tory distance, # nodes representing buildings are distributed over a unit square [0,1]?,
and two nodes n; and np are connected by an edge if their euclidean distance
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d(ny,ng) < r. Similarly, Geometric Graphs, where the nodes are not placed ran-
domly, but according to the locations of real buildings, can be used to model existing
cities. As rodents spread through these networks, their pattern of infestation can be
described by epidemic models such as Susceptible-Infected-Recovered (SIR) (Antulov-
Fantulin et al. 2012). We examine their spreading by simulating infestation of two
cities with very different characteristics, Providence, Rhode Island, USA and Tulsa,
Oklahoma, USA.

It is probable that cities are not well represented by standard random network mod-
els, but in fact have topologies that are determined by natural factors such as bodies
of water, properties of the terrain, and human factors such as urban planning. Resi-
dential and commercial buildings are generally built in blocks, not randomly, and cities
typically have regulations that must be followed as new buildings are built. Since cities
are often defined by their neighborhoods, we expect that the graph of a city will be
dense, or will have communities that are dense. Highly populated cities are likely to
be highly susceptible to infestation. Sparse and open cities may not be as suscepti-
ble, but even sparse cities have potential for large connected components that will be
susceptible.

Many aspects of rodent spreading are not known with certainty. In this work we use
a real city based geometric map model to study infestations with respect to a rodent’s
migration distance as well as the probability of spreading. By comparing simulations
across different migration distance assumptions with known infestation data, we are able
to determine bounds on true spreading rates.

Related Work
Random Geometric Graphs

RGG@Gs in general have been extensively studied (Penrose 2003) and have been used to
model wireless sensor networks (Kenniche and Ravelomananana 2010; Jia 2004), radio
broadcasting (Elsdsser et al. 2008) and vehicular ad hoc networks (Zhang et al. 2014).
Many theoretical properties of RGGs are known. For example, the expected degree of
G(n,r) is nr?, and the critical radius at which connectivity is attained with high prob-

ability is r. = / Mg”ﬂ%. It is shown in (Dall and Christensen 2002) that toroidal
(continuous) boundary conditions give different theoretical results than models with
open boundary conditions. Here, we view the models as having boundaries, as exist with
cities.

Variations on the RGG include a dynamic model where each vertex follows a ran-
dom walk over time. Diaz et al. study the changing connectivity of this type of network
(Diaz et al. 2009). The Gilbert model assumes the nodes locations are picked accord-
ing to a Poisson process with density D points per unit area (Gilbert 1961). We note
that the k-nearest neighbor model, where each node is connected to some number k of
neighbors the closest Euclidean distance, is similar to a RGG (Balister et al. 2008). A pref-
erential attachment model for geometric networks that combines aspects of RGGs and
preferential attachment graphs is given in (Flaxman et al. 2006).

This work studies spreading behavior in RGGs. Preciado and Jadbabaie use spectral
methods to develop a theoretical framework to describe spreading in RGGs in (Preciado
and Jadbabaie 2009). The cover and mixing time of RGGs is studied in (Avin and Ercal
2007).
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Network Spreading and SIR

Spreading is a classic problem in Network Science, to which the SIR model (where the
states of nodes transition between Susceptible, Infected and Recovered) can be applied.
This model has been applied to many problems, such as the spread of Salmonella in the
pork supply chain (van der Gaag et al. 2004), the spread of the ecologically invasive South
American tomato pinworm (Biondi et al. 2018), the social network spread of Charles Dar-
win’s correspondence (Floyd 2019), identifying influential nodes (Chen et al. 2012), and
tracking the spread of rumors through media (Zhao et al. 2013).

Examples of using this model to study the spread of epidemic diseases are numerous
(Newman 2002), with an abundant amount of literature on the spread of sexually trans-
mitted diseases (Rocha et al. 2011; Sloot et al. 2008) and the effects of vaccination (Ruan
et al. 2012). Many studies such as (Dean et al. 2018) and (Molefi 2001) look at the spread
of plague, which is indirectly a study of the spread of rodents. The spreading of disease in
mice contact networks is studied in (Lopes et al. 2016), although not the spreading of the
mice themselves. One review paper calls network models “an underutilized tool in wildlife
epidemiology” (Craft and Caillaud 2011). We could not find any studies describing the
movement of rodents with a network approach. Hence, the novelty of this work.

Rodents

The nesting and migration patterns of rodents are interesting both in the contexts of
conservation and pest control. Of particular interest are studies of rodent behavior in
cities. Cavia et al. (2009) studied rodent communities in Buenos Aires in the diverse habi-
tats of cities, shanty towns, parklands and natural reserves. Rodents caught in the city
environment were mostly of the non-native species R.Rattus and R. norvegicus. Gener-
ally it was found that species diversity decreased in an urban environment. A study of
rodent populations in urban Salzburg, Austria (Traweger et al. 2006) found that rats were
most attracted to garden areas, and areas with nearby running or standing water sources.
The study, which measured rat populations by trapping, showed that roughly 35% of the
71 discrete patches of the city in which traps were located contained rat populations.
This density was well below estimates from government sources and pest control com-
panies. It was also shown that rat populations were “distributed throughout the city area
in patches” and not evenly as previously thought. A similar study in Sao Paulo, Brazil
(Masi et al. 2010) which sampled 23,512 premises found an infestation rate of 23.1%. Con-
ditions leading to rodent infestation in buildings and structures were found to be easy
access, which is enabled by structural deficiencies, and food sources, particularly human
food and garbage. It is concluded that unrepaired buildings and trash-littering are more
common in low income areas, making rodent infestation to an extent representative of
the socioeconomic conditions of a neighborhood.

A study in Madrid, Spain (Ayyad et al. 2018), using the locations of 470 government-
reported rat sightings applied various statistical models to determine the likelihood of
rodent infestations at different locations. It found that “water source points, cat feeding
stations, and green zones are closely related to rat proliferation providing a significantly
direct relationship with the presence of near by rats” (Ayyad et al. 2018). Other related
studies, such as Baker et al. (2003) discuss the factors affecting the distribution of rodents
in an urban area, some of which include the prevalence of cats and the distance to food
sources. In (Childs et al. 1998) the epidemiology of rodent bites in New York City is
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studied to determine the locations of infestation which are then examined against control
locations to predict attractiveness to rodents. It is found that 22% of city blocks are high
risk for rodent bites, implying serious infestation, while fully 50% of blocks are rated low
risk (although some rodent populations were found even in low-risk areas).

The problems associated with rodent habitation in cities are widely known. Rodents
such as rats have single pairs of sharp upper and lower incisors that are not only used to
break up food, but also to gnaw through and remove “non-food particles that may inter-
vene between a rodent and its food” (Drummond 2001). This means that, for humans, the
cost of rodent infestation includes not only damage to and loss of food supplies, but also
gnawing damage to containers in which food is stored (Lund 2015), as well as to personal
items and electrical wiring. In addition, there are hygienic reasons to control rodent pop-
ulations, such as avoiding contact with their waste. Associated with food are also costs
of food industry closures due to infestations (Meehan 1984), increased costs of hygienic
food-storage procedures and economic loss of business and reputation when rodents are
discovered. In addition to the direct losses, it was claimed by US insurance companies in
the 1940s that “about 25% of fires for which there was no apparent cause may have been
caused by rodents” (Battersby 2004).

A final important issue is rodent involvement in human health problems. In addition to
the bites mentioned above, rodents are associated with transmission of human diseases.
Plague is the most well-known rodent-involved illness, with over 2000 cases still reported
annually (Titball and Leary 1998). Other diseases caused by direct or indirect rodent
contact include hantavirus pulmonary syndrome, leptospirosis (Gubler et al. 2001), hem-
orrhagic fever (Tsai 1987), lassa fever (Ter Meulen et al. 1996), and the gastrointestinal
disease cryptosporidiosis (Quy et al. 1999).

Methods

The research method followed in this work includes four steps, as shown in Fig. 1. Data
for cities (in this case Tulsa and Providence) are collected from an open source map-
ping software, and are cleaned, normalized, and converted in format. RGG networks
are generated from this data. Spreading simulations are run assuming different input
parameters. If promising, the city data is further analyzed for important nodes using the
immunization test.

Data Collection Network Generation m
2

® -t
*Open Street Map *Data Conversion & eCustom Code for Spreading *Graph Properties
eOverpass Turbo Normalization Simulations eInfestation Properties
eNetworkX RGG Generator *Multiple Simulations with elmmunization Test

Varying Infestation
Parameters

Fig. 1 Data Driven Research and Analysis Method
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Data Collection

Providence is one of the oldest cities in the United States. It was founded in 1636, is a
capital city, and is densely covered with over 2100 buildings per square mile. Providence
was formerly heavily industrialized, has many factory buildings and warehouses, and is
bordered to the east by the Providence River, which rodents cannot cross. Tulsa is a much
newer city, founded between 1828 and 1836, and is much less densely covered with only
472 buildings per square mile. Tulsa is located on two sides of the Arkansas River and
has a hilly terrain.! We used the OpenStreetMap API (Bennett 2010) to obtain data about
both cities.

The OpenStreetMap API is an open-source mapping software comprised of data
entered by its users. The information consists of over 5 billion nodes contributed by over
1 million contributors. The correctness of the OpenStreetMap data has been widely ana-
lyzed and was found to be accurate within about 6 meters (Haklay 2010). This paper
uses building footprint data from OpenStreetMap. A study of such data in Munich found
that OpenStreetMap footprints exhibit high completeness and semantic accuracy, and
that “there is an offset of about four meters on average in terms of position accuracy”
(Fan et al. 2014).

Overpass Turbo (Raifer 2018) is a web application that facilitates querying Open-
StreetMap data. We query Overpass Turbo for all buildings in a selected city. An example
query for Providence is shown in Listing 1, and a map of the results is shown in Fig. 2a.

[out:json];

{{geocodeArea: Providence}}—>.searchArea;

node[” admin_level” | (area.searchArea);
way [”admin_level”](area.searchArea);
relation ["admin_level”](area.searchArea);

;

way [” building” ] (area.searchArea);
relation [” building” |(area.searchArea);

)
out geom;

>3
out skel qt;

Listing 1 Overpass-Turbo Query

The query returns raw data which consists of longitude and latitude coordinates for
each building, as well as unneeded information. The information returned is carefully
cleaned and parsed such that it contains only the coordinates of each building. Build-
ings will become nodes in our network. The coordinates of each node are then stored
in a Python dictionary with the node as the key and coordinates as the value, and the

dictionary is then saved to a file.

Network Generation
NetworkX (Hagberg et al. 2008) is used for network generation and further analysis. We
read the Python dictionary containing building coordinate data for a chosen city and use

IThe density calculations are derived from our results using OpenStreetMap data.
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Fig. 2 Providence Query and Resulting Geometric Graph. a Query Result for Providence as Displayed in
Overpass Turbo. b Providence Network Generated from Longitude and Latitude Coordinates

it to generate a geometric graph network. The resulting network for Providence is shown
in Fig. 2(b). The raw coordinate data must be converted into a format that can be loaded
into NetworkX, such as GML (Graph Modeling Language) (Himsolt 2000). To generate a
GML file for the chosen city, we use the NetworkX Random Geometric Graph function,
which allows passing the dictionary of positions as a parameter. To facilitate computa-
tion, the coordinate dictionary is normalized using min-max normalization. With the
coordinates normalized, the geometric graph radius (or the migration radius of a travel-
ing rodent) must be converted from feet to degrees of latitude. Each degree of latitude is
approximately 69 miles. Using this information we can convert a radius of 450 feet into
approximately 0.00124 degrees latitude. However, this still must be normalized to match
the coordinates specific to each city.

After the raw data is formatted, we use NetworkX’s Random Geometric Graph function
with the parameters of city size, normalized radius, dimensions, and normalized dictio-
nary of building positions. This gives a NetworkX graph object on which that we can then
perform simulations.

Simulations

In this work simulations are run on geometric graphs created from real data on the cities
of Tulsa and Providence. The simulations examine changes in infestation rates that result
from different parameter assumptions. Important parameters in our simulations include
a rodent’s migration distance r, and the spreading probability 8 of a building becoming
infested if its neighbor is infested.

Two studies exist that help determine the migration distance. Feng and Himsworth
(2014) states that rodents have a home range of about a city block, and French et al. (1968)
studied many species of rats and their migration patterns. These studies help to define a
radius for the networks. For migration distance, we start with one of French’s results for
the dipodomys microps species. Although this is not the typical city rat, it gives a start-
ing point for a rodent’s migration pattern. French tracked the movement of dipodomys
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microps, and determined that they stayed within their original grid but moved 450 feet.
Based on the research of block sizes in (Siksna 1997) and (Stangl 2015), and Feng’s sug-
gestion that rodents travel about a city block, 450 feet is a good estimate of distance for
our migration radius. Because this distance is not definitively known and can vary among
rodent species and geographic conditions, we test 4 different values of r: 400, 450, 500
and 550 feet.

The spreading probability 8 of a building becoming infested is unknown and relies on
factors that vary between buildings, such as accessibility, amount of resources, and num-
ber of deterrents. Thus, we test multiple probabilities in order to get a range of results. For
the spreading parameter 8 we considered 20 values ranging from 0.5 to 40%. At 8 = 40%
an infestation spreads quickly to almost 100% of nodes, so larger values were not evalu-
ated. For each B value 100 simulations were run on the Tulsa network and 10 simulations
were run on the Providence network. For each simulation we keep a master list identi-
fying whether each node was infested. The set statistics give an average infestation rate,
and the most frequently infested nodes across all simulations can be determined from the
master list.

Simulations are run using the NetworkX graph object. The simulation function is based
on the SIR epidemic algorithm from Antulov-Fantulin et al. (2012). The algorithm takes
as parameters a (NetworkX) Graph, a probability of infestation g, a probability for recov-
ery, a queue of initially infested nodes, and a list of susceptible nodes. This algorithm was
modified slightly to fit our needs. In order to make each node equally susceptible, the list
of susceptible nodes was removed. We assume that once an infestation has cycled through
anode’s neighbors, the node will be removed from the queue of infested nodes and is thus
fully recovered. This implies a recovery rate of 100 percent. Besides full recovery of each
infested node, we also assume that once a node is infested it can not be infested again
by its neighbors. Initially, experiments were run with the assumption of non-complete
recovery rates and re-infestation. It was observed that, although the infestation rate
grew more quickly, the difference in results did not warrant the greatly increased exe-
cution time. These modifications are analogous to a situation in which rodents migrate
and do not return to a previous location. This is a realistic assumption, as rodents
migrate due to changing conditions, such as removal of food sources or the presence
of cats.

The Immunization Test

Where appropriate, the robustness of the networks to targeted attacks is examined using
the immunization test. This test, as described in (Holme et al. 2002), involves repeatedly
removing high importance nodes and measuring the damage caused, as indicated by the
size of the largest connected component. A quick drop in the size of the largest com-
ponent with relatively few nodes removed indicates a susceptibility to attack. We used
betweenness centrality, approximated via a GPU algorithm (McLaughlin and Bader 2014;
Matta et al. 2019), as the measure of node importance. In this paper, the removal of a
node (which represents a geographical place like a building) occurs when circumstances
cause the extermination of rodents from that node. Examples would include interventions
such as human residents getting a cat, setting traps, or patching holes in walls that allow
rodents to enter.
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Results

During data collection the locations of 88,260 buildings in Tulsa and 43,662 buildings in
Providence were gathered, and four separate networks were created for each city based
on rodents’ migration radius . Information for all networks created is summarized in
Table 1. These two cities vary in density and size. Tulsa has an area of 186.8 square miles
and Providence’s area is 20.6 square miles. Providence has over 2100 buildings per square
mile, whereas Tulsa has only 472 buildings per square mile.

These density differences affect the corresponding networks. The average degree is
much higher for Providence than for Tulsa. For both networks increasing r by 50 feet adds
approximately 1,000,00 edges. Because of Providence’s dense nature, it has a much larger
largest connected component than Tulsa. The size of its largest connected component
ranges from 23,263 to 26,165 nodes depending on r. Therefore, in all cases more than half
of Providence’s buildings are connected within a geometric network. The geographical
structure of Providence is also reflected in its largest connected component. It has three
distinct regions that are difficult for rodents to travel between. One result of this is that
the size of the largest connected component remains the same when r is increased from
450 to 500 feet. Tulsa’s largest component varies from 7909 to 12,420 nodes. It is apparent
that Tulsa has much more variance in largest component size than Providence. Tulsa’s low
density results in many disconnected components, while Providence has relatively few.

Tulsa

Network Structure

Tulsa is the larger of the two city networks studied. The Tulsa network had many clusters
that could facilitate the spreading of infestation. However, these clusters were isolated
from each other, and thus the infestation could only spread within the starting node’s
cluster. This prevented a full outbreak and contained the infestation to the cluster. Since
our simulations started with a single random node, the random node could only infest
a subgraph of the overall network, implying that the greatest amount of nodes infested
would be the largest component. A visualization of the Tulsa clusters is shown in Fig. 3a.

Simulation Results

Tulsa citywide infestation rates with varying values of » and g are shown in Fig. 3b. Note
that, while higher values of r imply higher infestation rates, because of the relatively small
size of the largest connected component, the citywide infestation rates stay within a nar-
row range of values and do not rise above 4.5%. Over the range of spreading probabilities,

Table 1 Networks analyzed

City r (feet) Nodes Edges Clusters Largest component Average degree
Tulsa 400 88260 5004030 669 7907 1134
Tulsa 450 88260 5991094 587 7936 1358
Tulsa 500 88260 7025832 546 8499 159.2
Tulsa 550 88260 8081604 506 12420 183.1
Providence 400 43662 4182319 102 23263 191.8
Providence 450 43662 5089332 93 25891 233.1
Providence 500 43662 6062430 84 25891 2777

Providence 550 43662 7108720 74 26165 3256
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Fig. 3 Citywide Network and Infestation Percentage for Tulsa. a Tulsa map with LCC shown in orange for
r = 450. b Tulsa citywide infestation percentage with varying migration radius r

the highest infestation was with the » = 500, 8 = 0.025 network, with 4.21% of the net-
work infested. At B values over 5%, the r = 550 networks were consistently more infested
than the others, although the infestation rate generally did not rise above 4%. If one of the
random initially infested nodes was within Tulsa’s largest connected component, then a
substantial amount of the largest component became infested. Because infestation stud-
ies are often conducted within the largest connected component, it is useful to explore its
infestation properties further.

Phase transition diagrams showing infestation rates for the largest component over a
range of » values (400, 450, 500 and 550) as well as a series of 8 values (0.5% to 40%) are
shown in Fig. 4. For all 4 values of r, the infestation moves through three phases, which are
delineated in the charts by high dotted lines. There is an initial phase, in which infestation
rates are small (approximately 10%), followed by a phase of rapid growth, then a saturation
phase. We consider the saturation phase to begin at the g which results in an infestation
over 96%. It is noted that as r increases, the rapid growth phase and the saturation phase
both start at lower values of 8, and that the rapid growth region becomes smaller.

Previous work has estimated infestation rates at between 20% (Masi et al. 2010) and
50% (Childs et al. 1998). These rates are demarcated by horizontal lines in Fig. 4. The true
spreading rate is unknown, but it must occur in the range of plausible infestation rates.
The possible range of true spreading parameter values is shown as a shaded region. For
example, the true § for Tulsa must be between approximately 3.5% and 8%, if r = 400. For
r = 450, the range is reduced to between 2% and 5%. Results are quite similar for r = 500
and r = 550, with a range between approximately 1.5% and 3%.

Providence

Network Structure

Figure 5a shows the Providence network for » = 450. Providence’s structure is different
from Tulsa’s. Since the area is more dense, there are fewer clusters. In the case shown,
the largest component of the city contains 25,891 nodes and makes up almost 60% of the
network. With 60% of the network being connected, there are many more opportunities
for the infestation to spread and a higher chance that a random starting node will be
within the large component.
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Simulation Results

As shown in Fig. 5b, the Providence network’s infestation rate was much higher than that
of Tulsa. As an example, with » = 450 and spreading probability 8 of 0.10, about 25%
of nodes were infested on average. This is substantially higher than Tulsa’s maximum of
4.2%. The infestation rate increased to as high as 54.8% in the r = 550 network. Overall,
the citywide infestation rate tended to increase with r, although generally the infestation
rate stayed between 15 and 50%. These infestation rates are consistent with infestation
rates found in similarly dense cities such as Salzburg, Austria (35%) (Traweger et al. 2006),
Sao Paulo, Brazil (23.1%) (Masi et al. 2010), and New York City, USA (between 22% and
50%) (Childs et al. 1998).

Phase transition diagrams for several different r values showing infestation rates for the
Providence largest component over a series of 8 values are given in Fig. 6. These results
are different in nature from the Tulsa phase diagrams. First, because of the density of
Providence, the initial stage ends very rapidly. In our simulations, except where r = 400,
the initial stage occurred somewhere below 8 = 0.5%. At 8 = 0.5 the rapid growth phase
had already begun, and the infestation rate was generally 20% or above. At r = 400 there
is a relatively wide range of values for g, from 0.5% to 8%. Interestingly, for r = 400 a
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Fig. 6 Providence Phase Change Diagrams for 4 Migration Radii. The three phases are indicated by high
dotted dividing lines. The true spreading rate 8 is unknown. If true infestation rates fall within 20% to 50%,
the range of possible real-life 8 values is shown by the shaded region.a r=400.b r=450.cr=500.d r =550
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saturation phase is never achieved, even with spreading parameter as large as 40%. With
r = 450 the range for true § is decreased to a maximum of to 7%. As r is increased to 500
and 550, the upper bound on the true g is further decreased, to 4% and 2%.

Immunization

We have shown that the largest component is influential in spreading simulations. Small,
isolated clusters produce lower infestation rates, but the Providence networks had at least
60% of nodes in a connected component. Therefore, Providence is more vulnerable to
infestation. One network-based way to contain an infestation is to follow an attack strat-
egy of removing nodes with high betweenness centrality (Holme et al. 2002). This breaks
up the largest connected component and limits the maximum number of nodes that can
become infested in an outbreak.

Performing the immunization algorithm on the real network of Providence (r = 450)
provides interesting results, as shown in Table 2 and Fig. 7. Upon removing the 10 nodes
with highest betweenness centrality, the size of the largest component drops by 7374,
from 25,891 nodes to 18,517 nodes. The separation of the largest component is demon-
strated in Fig. 7b. The next large change occurs when 2 additional nodes are removed.
With removal of just 11 nodes, three components emerge. The size of the largest compo-
nent drops from 18,517 to 15,888 nodes as the third component becomes isolated. This is
depicted in Fig. 7c. The final result is 3 components with 18,516 nodes, 7374 nodes, and
2628 nodes respectively.

The nodes are based on real building coordinates, which means that the addresses of
each building immunized during the split up of the largest component can be geographi-
cally pinpointed. For Step 9, node 2491 is located at (41.81830, -71.41670), which equates
to 47 Franklin St., Providence, RI 02903. The building at 47 Franklin St. is the United
Church of Christ. Therefore, removing the church from the network, perhaps via an
extermination intervention, along with the 9 nodes before it, splits the largest component
and would be a major deterrent to the further spread of rodents. The next major change
occurs at step 11 when node 43590 is removed. Node 43590 is located at (41.83249, -
71.41329), which is an office building at 1 State St., Providence, RI 02908. The building
hosts a Retail Decisions gift shop, American Heart Association, and Strategies for Wealth
Financial Institute. Again, an intervention at this location would cause a major disruption
to spreading in the network.

Table 2 Providence immunization

Step Node removed Node coordinates Clusters Largest component
0 18767 (41.83062,-7141322) 93 25890
1 1682 (41.82955,-71.41733) 93 25889
2 34200 (41.81773,-71.41769) 93 25888
3 18768 (41.83048,-7141327) 93 25887
4 38988 (41.82790,-71.41555) 93 25886
5 38989 (41.82790,-71.41551) 93 25885
6 2495 (41.81841,-71.41692) 93 25884
7 34199 (41.81762,-71.41756) 93 25883
8 1339 (41.82075,-71.41455) 93 25882
9 2491 (41.818302,-71.41670) 94 18517
10 42890 (41.83125,-71.40982) 94 18516
Il 43590 (41.83249,-71.41329) 95 15888
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Discussion

Providence provided a dense network that contained relatively few clusters and a sin-
gle large connected component. Tulsa provided a sparse network with many smaller
clusters and a few large components. Networks were generated based on varying migra-
tion radius values. For both cities, these networks had an average degree ranging from
approximately 100 to 300. In practical terms, even a relatively low average degree
such as 113.4 for the Tulsa r = 400 network implies that an average rodent has
many options for migration to surrounding buildings. Increases in r have a substantial
influence on average degree. For a rodent in Providence, increasing its mobility from
400 to 550 feet increases its migration options from almost 200 building locations to
over 300.

Phase change diagrams (Figs. 4 and 6) show infestations generally following three
phases: an initial phase of limited local infestation, followed by rapid growth and satura-
tion. In our simulations the rapid growth phases begin at relatively low 8 values. This is
consistent with real-life data and network theory.

It is well known that in the Erd6s-Rényi random model a giant component begins to
form at average degree of 1 (Barabasi 2016). Although our city networks are not random,
we see a similar phenomenon here. If a node has a degree of 200, a 0.5% spreading proba-
bility implies a migration from the average node to one other node. This level of migration
is sufficient to begin the phase transition to rapid growth. In all cases, a 8 of 3.5% was suf-
ficient to increase the infestation rate to above 10%. Infestations quickly reached over 90%
of buildings with spreading parameter § values as low as 5% in the Providence r = 550
network.

Our simulations show that even small increases in r and 8 lead to greatly increased
infestation rates within a connected component. Given that true infestation rates are not
100%, it is logical to seek to determine what is stopping rodents.

We do not know the true infestation rates of Tulsa or Providence, although common
wisdom and pest control companies maintain that it is large. By contrast, our citywide
simulations showed unexpectedly low infestation rates. For a sparse city like Tulsa the
rates were approximately 3%. For a dense city like Providence, rates were between 25%
and 54%. Interestingly, studies of dense cities using diverse methods such as trapping,
analyzing government-reported rodent citing data, and monitoring rodent bites produced
results similar to ours.

In our simulations, the spread of rodents was determined by two factors. First, cities
consist of disjoint components. Infestations are contained within these connected com-
ponents. This is the reason the simulation showed low infestation rates for Tulsa. It does
not explain results for the Providence network, where over 60% of the city is in a sin-
gle component. Within our simulations, the spreading parameter 8 determines the large
component infestation rate. The true 8 parameter is unknown, so our simulations tested
a range of values. Within this range, the true 8 for a city must result in a plausible infes-
tation rate. Our simulations estimate the true § at between 0.5% and 8%, depending on
the true r. Realistically, this makes sense. A f as high as 50% implies an unlikely scenario
in which 150 rodents migrate from the average building in Providence (where r = 550).
A true B of 1% implies that two or three rodents migrate from a building, which is still

enough to result in a component infestation rate of over 40%.
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Immunization provides a way to prevent spreading, and the disconnection of the
large component in Providence is an example of that. Breaking up the large component
occurred when immunizing only 11 nodes with high betweenness centralities, like the
United Church of Christ and an office building on State Street. Setting traps and exter-
minating pests can have a large impact on spreading, way beyond the immediate local
effects. In the current example, immunizing 11 nodes would have reduced city-wide
spreading by 39%.

Conclusion

In this paper, we gathered data using Open Street Map and Overpass Turbo to gener-
ate networks using coordinates of buildings in two cities, Providence and Tulsa. With
the gathered coordinates, we converted the raw data into networks and simulated the
spread of rodents throughout the networks. Our results show that even small increases
in spreading parameter § and migration radius r result in large increases in infestation
rates, meaning that dense cities, like Providence, are more prone to rodent infestations.
Sparse cities, such as Tulsa, are less likely to allow the spread of rodents. Scientific stud-
ies estimate the migration radius r of a rodent to be 450 feet. Our simulations confirm
the plausibility of that estimate. The real-life spreading parameter 8 was estimated to be
between 0.5% and 8%. We then performed an immunization algorithm on the Providence
network, which split the largest component and provided exact coordinate locations
that would be useful for rodent traps and exterminations. Based on previous simulation
results, we determined that the break up of the largest component in Providence would
meaningfully reduce the infestation rates for the whole city.
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