Fiscarelli et al. Applied Network Science (2019) 4:95 H H
https://doi.org/s41109-019-0210-8 Ap p l I ed N etWO rk SCI ence

Local memory boosts label propagation ®

Check for

f .t d 't t. updates
Antonio Maria Fiscarelli'?” ®, Matthias R. Brust?, Grégoire Danoy?? and Pascal Bouvry??
*Correspondence:
antonio.fiscarelli@unilu Abstract
'C2DH, University of Luxembourg, The objective of a community detection algorithm is to group similar nodes that are
11 Porte des Sciences, more connected to each other than with the rest of the network. Several methods
Esch-sur-Alzette, Luxembourg ; ) )
20T, University of Luxembourg, 6 have been proposed but many are of high complexity and require global knowledge of
avenue de la Fonte, the network, which makes them less suitable for large-scale networks. The Label
Esch-sur-Alzette, Luxembourg . . . . - . .

. : S Propagation Algorithm initially assigns a distinct label to each node that iteratively
Full list of author information is ; ) - ) ' ) )
available at the end of the article updates its label with the one of the majority of its neighbors, until consensus is reached

among all nodes in the network. Nodes sharing the same label are then grouped into
communities. It runs in near linear time and is decentralized, but it gets easily stuck in
local optima and often returns a single giant community. To overcome these problems
we propose MemLPA, a variation of the classical Label Propagation Algorithm where
each node implements a memory mechanism that allows them to “remember” about
past states of the network and uses a decision rule that takes this information into
account. We demonstrate through extensive experiments, on the Lancichinetti-
Fortunato-Radicchi benchmark and a set of real-world networks, that MemLPA
outperforms other existing label propagation algorithms that implement memory and
some of the well-known community detection algorithms. We also perform a
topological analysis to extend the performance study and compare the topological
properties of the communities found to the ground-truth community structure.

Keywords: Network analysis, Community detection, Label propagation

Introduction

Real-world networks often exhibit a community structure where nodes in a commu-
nity are densely connected while different communities are loosely connected. The
objective of a community detection algorithm is to group similar nodes that are more
connected to each other than with the rest of the network. Community detection can
be seen as a generalization of the partitioning problem, where the network is divided
into a fixed number of equally sized partitions. This problem is known to be NP-hard
(Brandes et al. 2008). Furthermore, many community detection algorithms are based on
modularity optimization. Modularity (Q) is a measure of partition quality (Newman 2004)
and finding the partition that maximizes modularity is NP-Hard. Therefore it is important
that community detection algorithms maintain a low complexity while possessing high
scalability. Due to growing interest, community detection has attracted many researchers
from different areas such as computer science (Albert et al. 1999), natural sciences (Jeong
et al. 2000) and social sciences (Scott 1988), making it a notably active research field.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

@ Springer Open International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
— reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=s41109-019-0210-8&domain=pdf
http://orcid.org/0000-0003-0287-4388
mailto: antonio.fiscarelli@uni.lu
http://creativecommons.org/licenses/by/4.0/

Fiscarelli et al. Applied Network Science (2019) 4:95 Page 2 of 17

Several community detection methods have been proposed in the literature: greedy
algorithms based on modularity optimization (Girvan and Newman 2002; Clauset et
al. 2004; Blondel et al. 2008; Newman and Girvan 2004), spectral methods (Newman
2006) and methods based on random walk processes (Pons and Latapy 2005; Rosvall
and Bergstrom 2008). Many of these methods have high complexity and require global
knowledge of the network, making them unsuitable for large-scale networks. The Label
Propagation Algorithm (LPA) initially assigns a distinct label to each node that iteratively
updates its label following the one of the majority of its neighbors, until consensus is
reached among all nodes in the network. This method runs in near linear time, is scalable
and requires only local information of the network. It is thus especially suitable for large
networks. Unfortunately, it also gets easily stuck in local optima and is thus outperformed
by more recent and sophisticated algorithms.

In this paper we propose MemLPA, a variation of the classical LPA where each node
implements a memory mechanism that allows them to “remember” about past states of
the network and uses a decision rule that takes this information into account. We also
adapt some of the improvements proposed in the literature to our method such as node
preference and termination criterion based on active nodes. We show that the use of
memory improves performance and prevents a single label from overpropagating in the
network, forming a single giant community. We conducted extensive experiments on
the Lancichinetti-Fortunato-Radicchi (LFR) benchmark and a set of real-world networks.
Several LPA variations are compared and MemLPA is tested against other existing label
propagation algorithms that implement memory, obtaining better results. It is also tested
against well-known community detection algorithms, outperforming some of them for
mixing parameter values between 0.5 and 0.8. In this paper we extend our previous work
(Fiscarelli et al. 2018) in two different ways. First we compare MemLPA to other state-of-
the-art memory-based LPA algorithms. Second we extend the performance study with a
topological analysis. We use several metrics to compare the topological properties of the
communities found by the different algorithms to the ground-truth community structure.

The remainder of this article is organized as follows. “Related work” section presents
a state-of-the-art analysis on community detection and label propagation algorithms.
MemLPA is introduced in “MemLPA: a memory-based label propagation algorithm”
section and its performance is analyzed and compared to other community detection
algorithms on artificial and real-world networks in “Performance study” section. Finally,

Conclusions” section provides our conclusions.

Related work
In this section we present an overview of community detection algorithms. In particular,
we discuss LPA and several variations proposed in the literature.

Community detection

Girvan and Newman (2004) were first to propose a divisive hierarchical algorithm based
on edge betweenness: given an edge, it measures the number of shortest paths between
all pairs of nodes in the network that pass through this edge. Removing edges with
high betweenness will enhance the separation of communities. This method ranks edges
according to their betweenness and iteratively removes them. At the end, the configura-
tion that achieves the highest modularity is chosen. Its complexity is O(nm?). A faster



Fiscarelli et al. Applied Network Science (2019) 4:95 Page 3 of 17

version of this method was also proposed (Clauset et al. 2004): it is a heuristic algo-
rithm that, at each iteration, merges nodes into communities to optimize modularity. This
method runs in O(md log n), where d is the depth of the dendrogram. Blondel et al. (2008)
proposed a similar method called Louvain. All nodes are initially assigned to a different
community and, at each iteration, each node is moved to the community that achieves the
highest modularity improvement. Once communities are defined, a new network is built,
where nodes represent the communities found. The process iterates until improvement
no longer occurs. It runs in O(#nlog n).

Walktrap (Pons and Latapy 2005) defines a similarity between nodes according to the
transition probability of random walkers. A random walker is an agent that, starting from
a random node, moves from one node to another with a uniform probability. It runs in
O(n*m) or O(n*logn) on sparse networks. Infomap, similarly, is a global optimization
method that optimizes a quality function defining the code length of a random walk pro-
cess in the network. Its complexity is O(m). Newman (2006) also proposed a spectral
method based on the Eigenspectrum of the modularity matrix. Its leading eigenvector is
computed and the network is split into two subcommunities such that modularity is max-
imized. The process is then repeated on the communities just found. This method runs in
O(n(m + n)) or O(n?) on sparse networks. Finally, Reichardt and Bornholdt (2006) inter-
preted community detection as the minimization of the energy function of a spin model,

where communities are seen as spin configurations. It runs in O@n%2) on sparse networks.

Label propagation algorithm

Many of the algorithms described are not suitable for large-scale networks: they have high
complexity and require global information of the network. To overcome this problem,
Raghavan et al. (2007) proposed the Label Propagation Algorithm. It initially assigns a
distinct label to each node that iteratively updates its label following the majority voting
rule, until consensus is reached among all nodes in the network. This method runs in near
linear time, is scalable and uses the network’s local information only, without the need
of optimizing any objective function. Unfortunately, LPA gets easily stuck in local optima
and is thus outperformed by more recent and sophisticated algorithms. Furthermore, a
certain label may overpropagate and create a single giant community.

Several improvements have been proposed. Barber and Clark (2009) developed a
variation that takes into account modularity while applying the majority rule. This
method was extended by Liu and Murata (2010) with a greedy method that, given
the communities found, merges them in an attempt to improve modularity, allowing
the algorithm to escape from local optima. Leung et al. (2009) introduced a decision
rule based on node preference, in this case node degree, to improve performance:
when a node applies the decision rule, labels of nodes having a higher degree will be
assigned a higher score. They also extend the algorithm with hop attenuation: every
time a label is propagated through the network, a negative score is assigned to it in
order to prevent a certain label from flooding the network. The algorithm is scal-
able and still runs in near linear time. Xie and Szymanski (2011) proposed another
node preference, based on neighborhood overlapping, that is shown to be related to
the clustering coefficient. Subelj and Bajec (2011) elaborated two particular strate-
gies, called defensive preservation and offensive expansion, that adapt node preference
to focus on core nodes and border nodes of communities. They are combined and



Fiscarelli et al. Applied Network Science (2019) 4:95 Page 4 of 17

applied hierarchically. They also found that the network structure affects the effec-
tiveness of node preference and hop attenuation. This algorithm runs in O(m'1%) and
is highly scalable. Xie and Szymanski (2013) also developed LabelRank, a variation of
the classical LPA that takes inspiration from the MCL (Markov Cluster Algorithm)
(Dongen 2000). Instead of a single label, each node maintains a list of label distributions
that is updated at each iteration. An inflation operator is used to enhance the gap between
strong and weak labels, while a cutoff operator is applied to remove labels below a certain
threshold, in order to shorten these lists and make the computation more efficient.

To our knowledge, there are only few methods that explicitly refer to the use of memory
in LPA, where nodes collect labels from previous iterations to keep track of past states of
the network. The Speaker-Lister Label Propagation Algorithm (SLPA) (Xie et al. 2011) is
based on an information dynamic rule: for each node, its neighbors select one label from
their memory according to a speaking rule and the node updates its memory according to
a listener rule. After a fixed number of iterations, a thresholding procedure is applied to
each node’s memory to assign it to one or multiple communities. Another memory-based
LPA algorithm (MLPA) (Hosseini and Azmi 2015) implements a memory element that
stores the label of each node on each iteration, in order to have a snapshot of the state of
the network at each iteration. After a fixed number of iterations, the most frequent label in
each node’s memory is chosen and a last round of the classical LPA is performed to assign
nodes to communities. We also included a more recent LPA variation called fluidC (Fluid
Communities) (Parés et al. 2017), based on the idea of fluids expanding and contracting
as a result of their interaction. The algorithm initializes a certain number of community
seeds in the network and updates the community each vertex belongs to using an update
rule based on fluid density. This algorithm requires the number of communities to be set
at start. Some work on consensus dynamics also refers to memory: a non-deterministic
version of the Naming Game (Reginaldo Filho et al. 2009; Uzun et al. 2011), which is
similar in some aspects to LPA, extends the agents with local memory.

MemLPA: a memory-based label propagation algorithm

In the classical LPA, each node updates its label according to the current state of the net-
work. Each node collects its neighbors’ labels and selects the most chosen one according
to a majority rule. This mechanism does not consider past states of the network, since
each node collects new labels at each iteration and discards the previous ones, making the
algorithm memory-less. In this section we introduce MemLPA, a variation of the classical
LPA where each node implements a memory mechanism that allows them to “remember”
about past states of the network and uses a decision rule that takes this information into
account.

Algorithm description

When using memory, labels are not discarded but updated at each iteration. Each node
maintains a list of labels with its associated score. Initially, each node is assigned a dis-
tinct label (line 2 of the pseudo-code) and its memory is empty (line 3). At each iteration,
each node collects its neighbors’ labels (line 8) and updates its memory according to
edge weight (for weighted networks) and node preference (line 9). If a new label is not
in memory already, a new entry is created, otherwise the score for the corresponding
label is incremented. Each node then selects a label from its memory using a decision



Fiscarelli et al. Applied Network Science (2019) 4:95 Page 5 of 17

rule that takes into account the labels’ score, in this case the label having maximum score
(line 11). This mechanism can be applied to directed or undirected as well as to weighted
or unweighted graphs. Figure 1 shows how MemLPA works.

In order to keep MemLPA scalable, we propose a synchronous update rule: each node
independently updates its label according to the state of the network during the previous
iteration. A synchronous update may cause LPA to oscillate between two different config-
urations, therefore we show in “Performance study” section how the two different update
rules affect the convergence of MemLPA. As node preference, we use a heuristic based on
neighborhood overlapping, computing the fraction of neighbors that a node shares with
another. When updating a node’s memory, a higher score will be assigned to labels com-
ing from nodes that have many neighbors in common. In “Performance study” section we
show the impact of this heuristic on performance. To speed up the algorithm, we define a
cutoff operator to prune each node’s memory (line 10). At each iteration, all labels below a
certain threshold are deleted, keeping only the most relevant ones. Regarding the termina-
tion criterion, several options have been proposed in the literature, based on convergence,
modularity improvement, active nodes and scarcity of updates. Many of these options are
based on global information of the network, therefore we decided to use a termination
criterion based on active node list: a node is considered active if the label chosen during
the current iteration is different from the previous one or if any of its neighbors becomes
active again. The active node list initially contains all nodes (line 5) and at each iteration
a node is removed if it is no longer active or it is added if it becomes active again (line 13).
The decision rule is applied only on active nodes and the algorithm terminates when
the active node list is empty. This keeps the algorithm decentralized and speeds up the
algorithm compared to applying the decision rule on every node. In “Performance study”

2——0.7—@a

‘V / °L 0~7//oI.9 | oa// 0}3 / 07/]9

1.0 10

| /0‘8 | // l ] o’

2 4 08— 6 ‘ (gt 6 ,!—0-3—~ 5
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
2-10 1-1.0 1-0.7 3-03 4-0.7 4-08
3-0.7 3-0.8 2-0.8 5-0.7 6-0.9 5-0.9

4-0.3 6-0.38
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
2-17 1-1.0 1-15 3-03 4-0.7 4-08
3-07 3-08 2-15 5-15 6-1.6 5-09
1-1.0 2-18 4-0.3 6-15 5-0.9 6-1.7
6-0.3 2-0.3

Fig. 1 Iterations of MemLPA on a weighted undirected graph. Color and node number represent labels.
Columns in the table represents nodes memory. In the first iteration, node 1 receives labels 2 and 3 from its
neighbors. Using the classical LPA, in the second iteration, it would discard these labels and collect new ones
(label 1 and 2). With memory, instead, the old labels are not discarded but updated, therefore node 1
contains labels 1,2 and 3




Fiscarelli et al. Applied Network Science (2019) 4:95 Page 6 of 17

section we show how the termination criterion based on active node list affects per-
formance and convergence of the algorithm. The decision rule based on memory that
MemLPA uses, as well as MLPA, may result in singleton communities. For these nodes,
an additional round of label propagation without memory is performed in order to assign

them to a bigger community.

Algorithm 1: MemLPA
Input : Graph G(N, E)
Output: Communities C

1 forn € N do

2 ¢y < I, //Assign unique label to nodes
3 M,, < @ //Initialize memory
4 end

5 AL < N //Initialize active list
6 while AL # ) do

7 for n € AL do

8 Cy, < CollectLabels(Neigh(n)) ;

9 M, < UpdateMemory(C,) ;

10 M, <~ {I} e My,m € N | |mean(M,) — sd(M,)| < I'"'}
11 ¢y < ApplyRule(M,,) ;

12 end

13 AL <« UpdateActiveList(AL)

14 end

Complexity

The complexity of MemLPA on a certain node, where & is the average degree and 7 is the

average memory length, can be assessed this way:

¢ Collecting labels for a node with k neighbors has complexity O(k).
e Updating a node’s memory with k new values has complexity O(k).
e Using the cutoff operator on a node’s memory has complexity O(k).
e Choosing a new label from memory has complexity O(h).

Node preference, if used, can also affect complexity. Neighborhood overlapping, on a
node with k neighbors, has complexity O(k) (Xie and Szymanski 2011), while node pref-
erence based on node degree has complexity O(1) (Leung et al. 2009). Notice that the
information needed for node preference must only be computed during the first itera-
tion and nodes can store and reuse this information. In “Performance study” section we
show how the cutoff operator keeps the average memory length constant and signifi-
cantly lower than the average node degree. Iterating on all nodes, the overall complexity
of MemLPA is O(k * n) or O(m), therefore comparable to O(m) of the classical LPA
(Raghavan et al. 2007). Therefore, the complexity of MemLPA is still near linear w.r.t.

network size.



Fiscarelli et al. Applied Network Science (2019) 4:95 Page 7 of 17

Performance study

We implemented MemLPA and assessed the use of memory and some of the variations
proposed in the literature. We then compared it to other memory-based label propaga-
tion algorithms and well-known community detection algorithms. We also ran MemLPA
to study some of its characteristics that are important for the convergence of the algo-
rithm. For the analysis we ran all algorithms on the LFR benchmark (Lancichinetti et al.
2008), an established benchmark in the literature for community detection, that allows to
generate networks with properties similar to real-world networks. As performance met-
rics, we used classical clustering metrics such as Normalized Mutual Information (NMI)
(Danon et al. 2005; Yang et al. 2016) and Adjusted Rand Index (ARI) (Hubert and Arabie
1985), as well as topological metrics such as community size, internal transitivity, scaled
density, average distance, hub dominance and internal modularity (Orman et al. 2012).
We also applied these algorithms on a set of real-world networks of different nature and
used the modularity measure (Newman and Girvan 2004) to evaluate the quality of the

community assignments found.

Performance metrics

The most common metrics used to evaluate community detection algorithms come from
classical clustering, where communities are seen as partitions of nodes and they are com-
pared to the ground-truth communities. NMI is an information theoretic metric that
measures the amount of information that two partitions share. It ranges from 0 to 1,
assigning 1 to communities that perfectly match the ground truth and 0 to a completely
random assignment. The drawback of NMI is that it depends on the network size and
number of communities. For example, if a certain community detection algorithm fails
and assigns a different community to each node, NMI will assume a value that is not the
same for each network but depends on these network parameters. ARI measures the pro-
portion of pairs of nodes that are correctly assigned to the same community. It ranges
from -1 to 1, assigning 1 for a perfect assignment, O for a random assignment and -1 for a
bad assignment. Unlike NM], it does not depend on any network characteristics.

Modularity measures the fraction of edges connecting vertices inside the same commu-
nity and compares it to the same quantity computed on a random graph of the same size
and average degree. Modularity will be higher if the network exhibits a community struc-
ture. It does not need the ground-truth community assignment to be known and is only
based on the structure of the network. The drawback of modularity is the resolution limit:
this metric is not accurate when computed on networks containing small communities.
In order to solve this issue, many algorithms based on modularity optimization make use
of a resolution limit parameter (Lambiotte et al. 2014).

There are also several metrics that allow to study the topological properties of a com-
munity assignment. The most common one is the community size. For many real world
networks, the community size distribution follows a power-law, meaning that there is a
majority of small communities and few large ones. The community size distribution, in
general, provides very good information about the quality of a community assignment
(Dao et al. 2018). The internal transitivity of a community is defined as the average local
transitivity over all nodes, where the local transitivity of a node measures the fraction of
links between its neighbors. The formula is the following: ?1,197171 > hjeC Wai,jai,haj,h,
where s; is the strength of node i (sum all of the weights of its edges), k; is the node internal



Fiscarelli et al. Applied Network Science (2019) 4:95 Page 8 of 17

degree, w;; is the weight of the edge connecting nodes i and j and 4;; is an element of the
adjacency matrix. The scaled density is defined as the density of a community weighted
by its size. The formula is the following: %, where mc is the number of edges in
the community and n¢ is the number of nodes in the community. The average distance
of a community is the average shortest path between all pairs of nodes inside the com-
munity. The hub dominance is defined as the maximal internal degree of a node divided
by its maximum theoretical value. The formula is the following: max;cc <L1) Finally,

nc—
the internal modularity is simply defined as the modularity of a community. The for-
mula is the following: %mc Zi,jeC [(ai,j - ;’—yZ) a,',j]. These metrics have been shown to

be a valid complementary tool to evaluate and compare community detection algorithms
(Orman et al. 2012; Jebabli et al. 2018). In fact, communities found by different algorithms
can score same NMI or ARI and still be topologically different. For example, they may
have different community size distributions.

Cluster analysis

In this section we use classical clustering metrics such as NMI and ARI to assess the use
of memory and some of the variations proposed in literature. We then compare MemLPA
to other memory-based label propagation algorithms. Finally, we compare MemLPA
to other well-known community detection algorithms. We also run MemLPA to study
its convergence. We run all algorithms on the LFR benchmark and a set of real-world

networks.

Artificial networks

The first set of experiments was conducted on the LFR benchmark to investigate the
advantages of the LPA variations chosen and the use of memory. A mixing parameter j
controls the portion of intra-community edges. Node degree and community size distri-
bution, like in many real-world networks, follow a power-law distribution. Benchmark
graphs were generated with a number of nodes N = 1000, minimum community size
C.min = 10, maximum community size C.max = 50, average degree K.avg = 20, max-
imum degree K.max = 50, degree exponent K.exp = 2 and community size exponent
C.exp = 1, while u was dynamically changed.

We compared the classical LPA to different variations of MemLPA that use synchronous
(S) and asynchronous update rule, with and without node preference (N), with and with-
out cutoff operator (C). Figure 2 shows that using a synchronous or asynchronous update
does not make a significant change in performance (N_C_S vs N_C). Using the cutoff
operator does not degrade performance either (C_S vs S and N_C_S vs N_S). This shows
that MemLPA can be decentralized and scalable without any loss in performance. For
low values of p all variations obtained optimal results. The classical version of LPA, the
only one not using memory, was the first algorithm to drop in performance for u > 0.5.
In fact, a label flooded the network and created a single giant community. This confirms
that the use of memory improves performance and prevents a label from overpropagat-
ing in the network. For u €[0.5,0.7] the variations that use node preference (N_S, N_C
and N_C_S) obtained the best results, but it is not the case for higher values. In fact, the
variations that did not use node preference (S and C_S) obtained higher values of NMI for
u €[0.7,1]. We must consider that the NMI depends on network size and number of com-
munities. Therefore we decided to look at the ARI to have a more accurate comparison.



Fiscarelli et al. Applied Network Science (2019) 4:95
1.00] #—#—s—4 +Aﬁ_4\\\ 1.00
X
0.75 0.75
%
s X E
2 0.50 4\1& =z 0.50
N \‘\
g %
0.25 0.25
\e
0.00 0.00 S
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Mixing parameter Mixing parameter
Algorithm EPAS i NZS_S ’éLS Algorithm (L:PE i N:S_S gLS
(a) (b)
Fig. 2 Experiments on the LFR benchmark. All variations, except the classical LPA, implement memory. N:
node preference, C: cutoff operator, S: synchronous update. Experiments are run 20 times and results
averaged

We can see that, in this case, variations using node preference actually achieve better
results.

The same experiment was conducted to compare MemLPA to other memory-based
label propagation algorithms. Figure 3 shows that, for low values of u, LPA, MemLPA and
SLPA achieve perfect results, while fluidC and MLPA do not. For i > 0.5, all algorithms’
performance start dropping. LPA’s performance is first to drop to zero, showing that the
use of memory in any of the algorithms is beneficial. LPA and SLPA both find a single
giant community, and MemLPA achieves the best performance overall.

Finally, we compared MemLPA to other well-known community detection algorithms.
We chose some of the algorithms described in “Related work” section (all available in the
igraph R package (Csardi and Nepusz 2006)). Figure 4 shows that, for low values of 1, most
algorithms obtained optimal results, while Greedy gradually decreased in performance.
For u €[ 0.5,0.7] most of the algorithms started degrading in performance, especially LPA

1.007 #——dtdt st 1.00
0.75 0.75
\

s
=0.50

0.25

0.00 bieosaies 0.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Mixing parameter Mixing parameter
Algorithm © fluidC 2 LPA + MemLPA > MLPA & SLPA Algorithm © fluidC 4 LPA + MemLPA > MLPA < SLPA
(a) (b)

Fig. 3 Experiments on the LFR benchmark. Experiments are run 20 times and results averaged

Page9of 17



Fiscarelli et al. Applied Network Science

(2019) 4:95

(a)

(b)

Fig. 4 Experiments on the LFR benchmark. Experiments are run 20 times and results averaged

MemLPA

S

1.00 A S SRR S S A 1.00: ®oo—ooy—igp st
\ | TN ‘
] y\‘, \ |
\\}x \Q?\ “
0.75 T\ 0.75 \ 1R \‘
\ \ \\ \
N SR\Y
| TV
2050 L € 0.50 | 5
=" M| < Ry
| 4 |\
0.25 I\ 0.25 | SR
I L\ \
\ ‘\ \\ I \\ \
| A \ b
0.00 bobooooss 000 & S
0.00 025 050 075 1.00 0.00 0.25 0.50 0.75 1.00
Mixing parameter Mixing parameter
Agortm - Bebieen - omap LA L, T wigoritm - Belueen e - A o < e

and Between. MemLPA, in this range, was only outperformed by Infomap and Trap. For
1 > 0.7 MemLPA was the best algorithm after Between but, looking at the ARI, MemLPA

performed slightly better until all algorithms’ performance dropped.

We also conducted two experiments to analyze some of the characteristics of MemLPA

at runtime. We used 4 = 0.1 to generate networks where communities are very well

defined and & = 0.6 for loose communities. As performance measures we recorded NMI,

modularity and the ratio between the number of communities found by MemLPA and

real communities. The information that we recorded is the percentage of runs that termi-

nated, the number of active nodes and the average ratio between memory length and node

degree. Figure 5 shows that, for ©x = 0.1, MemLPA increased in performance quickly,

1.00

0.75

0.50

0.25

0.00

12

4
Iteration
%active + list_length © Q
Legend . cycr « NMI

(a)

Yoterm

1.00

0.75

0.50

0.25

0.00

e S S S S S———

8 12
Iteration
%active + list_length © Q
Legend . ciiGr ™ - NMI-C

Fig. 5 Experiments on the LFR benchmark. 4 = 0.1 (@) and u = 0.6 (b) has been used for the two

experiments. On the x-axis you can find number of iterations. On the y-axis NMI, modularity, ratio between
number of communities found by MemLPA and real communities, percentage of runs that terminated,

number of active nodes and average ratio between memory length and node degree. Both experiments
have been run 50 times and results averaged

Yoterm

(b)

Page 10 of 17



Fiscarelli et al. Applied Network Science (2019) 4:95 Page 11 0of 17

being able to find the correct number of communities. The percentage of active nodes
dropped significantly right after the best performance was reached, causing most of the
runs to terminate. Average memory length dropped significantly during the first itera-
tions and then stabilized, holding a constant value that is significantly lower than average
node degree. For i = 0.6, as expected, there was a similar behavior but the algorithm
converged slower. Surprisingly, the average memory length is lower for « = 0.6. A possi-
ble explanation is that nodes in well defined communities hold very strong labels in their
memory, while for loose communities labels are weaker and more likely to be removed by
the cutoff operator.

Real-world networks
We conducted similar experiments on a set of real-world networks of different nature. An
overview of these networks characteristics is provided in Table 1.

In the first experiment, similarly to “Artificial networks” section for artificial networks,
we investigated the advantages of memory and the LPA variations chosen. Figure 6 shows
that using a synchronous or asynchronous update did not make a significant change
(N_C_S vs N_C) and the cutoff operator did not degrade performance (C_S vs S and
N_C_S vs N_S). This allows MemLPA to be scalable, fast and performing. Node prefer-
ence did not affect performance on unweighted networks significantly, while performance
mostly degraded for the weighted ones (N_S vs S and N_C_S vs C_S). A possible expla-
nation is that weight is a more significant factor than neighborhood overlapping when
it comes to measuring the similarity between nodes. Additionally, other types of heuris-
tics might be more effective, such as node degree. Implementing memory was beneficial
on most networks when compared to the memory-less LPA. In particular, it prevented
labels from overpropagating on the Mail network where the classical LPA finds a giant
community that contains about 95% of the nodes and few very small ones. The only
case where the classical LPA obtained better results is for unweighted and undirected
networks (FB and PGP). In the second experiment we compared MemLPA to other
memory-based label propagation algorithms. fluidC was not considered since it requires
the number of communities as input. MemLPA achieved the best performance on Jazz,
Karate, UKfaculty and USAiports networks, while still obtaining good results on Dolphins
and GPG networks. Finally, we compared MemLPA to other well-known community
detection algorithms. MemLPA was among the most performing algorithms on all net-
works, obtaining the best results on Karate and UKFaculty network. Again, MemLPA did
not obtain optimal results for unweighted and undirected networks. It must be underlined
that modularity may not be an optimal metric, because of the resolution limit and the fact

Table 1 Real-world networks characteristics

#nodes #tedges directed weighted
karate 34 78 no yes
UKfaculty 81 817 yes yes
mail 184 2116 yes no
dolphins 62 159 yes no
jazz 198 2742 yes no
USAirports 755 23473 yes yes
FB 4039 88234 no no

PGP 10680 24340 no no




Fiscarelli et al. Applied Network Science (2019) 4:95 Page 12 0of 17

0.8 0.8
0.75
0.6 0.6
Alggrig\m A\g(grithrg
% ILPA 3 g % 0-50 !lnggﬁwa_‘{)
Bires & R 8 oL
Is] BNgs o StPA O EMemLPA
as HTrap
0.2 0.2 0.25
0.0 hﬂ 0.0 l] 0.00
& & &
Ny o a4 2 & Co 0 4 2 & Ny o ®
R Q@ > K R d > K R N Q
& @ F ¢S @“’0&;@\‘ ¥ CF S @14_\7':%\»‘ U &
Networks Networks Networks
(a) (b) (c)
Fig. 6 Experiments on real-world networks. Each barplot represents the results obtained for all algorithms on
a specific network. Experiments have been run 100 times and results averaged

that networks may present different community scales. Also, using different resolution
limit parameters can affect the results.

Topological analysis

The topological analysis was conducted on the LFR benchmark as supplementary eval-
uation. We decided to focus on specific values of u for which the classical LPA starts
to fail to identify communities. Benchmark graphs were generated with a number of
nodes N = 1000, minimum community size C.min = 10, maximum community size
C.max = 50, average degree K.avg = 20, maximum degree K.max = 50, degree exponent
K.exp = 2, community size exponent C.exp = 1 and mixing parameter u €[0.55,0.6].
Each algorithm was run on each instance of the benchmark. For each community found,
all topological metrics presented in 14 were computed and the results averaged on com-
munities having the same size. In order to quantify the agreement between the ground
truth and the communities found, we performed a Kolmogorov-Smirnov (KS) test, used
to test if two samples are drawn from the same distribution. The KS distance between the
two distributions is then computed for each algorithm.

We compared the classical LPA to variations of MemLPA with and without node pref-
erence (N), using the ground-truth community assignment as reference. Figure 7, and the
KS distance computed between the ground truth and the communities found, show that
using memory is beneficial for community size, internal modularity, internal transitivity
and scaled density. The classical LPA performs better only for average distance and hub
dominance.

The same experiment was performed to compare MemLPA using node preference to
other memory-based label propagation algorithms. MLPA was not considered since it
generates many disconnected communities and singleton communities for which most
of the metrics cannot be computed. Results are shown in Fig. 8. MemLPA achieves best
results for community size and hub dominance, and second best results for internal
transitivity and average distance.

Finally, we compared MemLPA using node preference to some of the well-known com-
munity detection algorithms presented in “Related work” section. We chose Walktrap and
Louvain since, in the cluster analysis in “Artificial networks” section, they achieved sim-
ilar results. Figure 9, and the KS distance, show that MemLPA achieves the second best
results only for the average distance.



Fiscarelli et al. Applied Network Science (2019) 4:95

Algorithm 1: Ground truth &4 2: LPA + 3: MemLPA x 4: MemLPA N
2.8
Fhe A 2
1500+ ﬁﬁm@*& +
- o ] A 0.75 -
% 8 2.4 j}g § e
Q I %* ] 5
© 4000- k%) 3 Q
(2] B .
= S & £ £
g | S 20 § £ o504 %
o
: S s 4
- ) o)
g 500 o S = 5
© L2 PN < 025
0 RERMEAHANINAAA- * +
0 100 200 300 0 100 200 300 0 100 200 300
Community size Community size Community size
06- 069 a 12.5 Aﬁ
A ++ ki
2 P 3 AR8
= = JZ;, > 100 A& at+Tp
= Bt B gt +
-8 0.4+ 8 04 & c %J:L g
o b £ J) cr i auligy
£ = i P
— = X o 757 #
] © B X A o
£ £ nl S
L o2, o o2y @ AnA @
= ™ £ %A M 5.0 +
A
s T %
0 100 200 300 0 100 200 300 0 100 200 300
Community size Community size Community size
Fig. 7 Experiments on the LFR benchmark. N: node preference. Experiments are run 500 times and results
averaged on communities having same size. The KS distance between the ground truth and communities
found is shown in the table below.
LPA MemLPA MemLPAN
community size 0.54 0.42 0.34
average distance 0.21 0.60 0.48
hub dominance 0.14 0.50 0.55
internal modularity  0.81 0.60 0.93
internal transitivity = 0.47 0.32 0.69
scaled density 0.93 0.63 0.78

MemLPA finds a greater number of smaller communities, which affects the quality of
the communities found. When choosing a label from memory, a label that was very fre-
quent in the first iterations but not as much in the last ones will be still selected. A node
may select a label from one of the first iterations and a neighboring node a label from the
last iterations. As a consequence two smaller communities will form instead of a single
bigger one. Finally, for the topological properties, the use of node preference based on
node overlapping is not always beneficial, compared to the classical decision rule.

Conclusions

In this paper we proposed MemLPA, a variation of LPA where nodes implement a mem-
ory mechanism that allows them to “remember” past states of the network and use a
decision rule that takes this information into account. It runs in near linear time, is scal-
able and only uses local information of the network. We gave an overview on community

Page 13 of 17



Fiscarelli et al. Applied Network Science (2019) 4:95 Page 14 of 17

Algorithm 1: Ground truth & 2: MemLPA + 3: SLPA x 4: FluidC

N A
1500 1
5 x
— 0.75 1
c 3 o £
= e e
o o o] 4
O 1000{" 2 o A
= © £ o050{%
c IS ;
> % [e)
1S X © ©
£ 50044 o o
8 X & 2 o025
A
0-%%4%%%%%%%
0 250 500 750 1000 0 250 500 750 1000 0 25 500 750 1000
Community size Community size Community size
0.6 204

o
f

0.4 4

o
L

0.2

scaled density

internal modularity
internal transitivity

D&ryﬁﬁ-"l}# o > X
iﬁfw

ZéO S(I)O 7%0 10‘00 (I) 250 560 7éO 10‘00 0 2%0 5(‘)0 7&0 10‘00
Community size Community size Community size

Fig. 8 Experiments on the LFR benchmark. N: node preference. Experiments are run 500 times and results
averaged on communities having same size. The KS distance between the ground truth and communities
found is shown in the table below.

MemLPAN SLPA  FluidC

community size 0.34 0.51 0.46
average distance 0.48 0.79 0.44
hub dominance 0.55 0.69 0.77
internal modularity 0.93 0.76 0.89
internal transitivity 0.69 0.38 0.77
scaled density 0.78 0.75 0.59

detection algorithms, LPA and the variations proposed in the literature. We investigated
the advantages of memory and we found that its usage increases performance and pre-
vents labels from overpropagating over the entire network, resulting in a single huge
community. We conducted extensive experiments on the LFR benchmark and used NMI
and ARI as performance metrics. We tested MemLPA against other existing label propa-
gation algorithms that implement memory to show that it provides better results. We also
compared MemLPA to well-known community detection algorithms to show that it out-
performs some of them for values of the mixing parameter between 0.5 and 0.8. Then, we
conducted experiments on a set of real-world networks of different nature, using modu-
larity to evaluate the quality of the community assignments found, that further confirmed
our findings. Finally, we performed a topological analysis on the LER benchmark, compar-
ing the topological properties of the communities found to the ground-truth community
structure. As future work, automatic methods can be used to tune the algorithm to find



Fiscarelli et al. Applied Network Science

(2019) 4:95

Algorithm 1: Ground truth &4 2: MemLPAN + 3:Trap < 4: Louvain
A Ht+ A
] ;PL 4 D
1500 N E #ﬁ sy R
c Q254 i o %71 x
> 8 + & Q JFZ&
8 5] + 3 S
O o00{” k7] 4R 3 ﬁ,
z 5 vl £ 2
c iio g o0s0{ %A
S © 201 5 2|
S & &f} e} 2
€ s00{ A ) o3 o + ¢
3 A = 2 kW
o © e < i
0251 A
% 1.5+
*1"!%‘5‘4-!43. PSR
R i S A TEH
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Community size Community size Community size
0.6 104
A 3
<H>
- o 8y s
2 04 S P 2 %\AX« #Hibjﬁr
= . = 2 1 g ’ X
= VAEN S Iy > 8 Al
3 A + g % % S I\ it
o A () uk
034 & o o
g v = 4 XA 1 a
= = B4 3 6
& A g 1%& ; <
o) QO 02 19 A
£ 021 4 -ié' "; N ] ol
£ I N W A
w A
0.1 > ia
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Community size Community size Community size
Fig. 9 Experiments on the LFR benchmark. N: node preference. Experiments are run 500 times and results
averaged on communities having same size. The KS distance between the ground truth and communities
found is shown in the table below.
MemLPAN Trap Louvain
community size 0.34 0.23 0.23
average distance 0.48 0.53 0.22
hub dominance 0.55 0.19 0.12
internal modularity 0.93 0.67 0.58
internal transitivity 0.69 0.22 0.43
scaled density 0.78 0.48 0.52

the best performing variations for LPA, such as initialization method, node preference
and termination criterion, as well as the best set of parameters. Different variations may
also achieve different results depending on the type of network (Subelj and Bajec 2011).
Also, extending the algorithm to work with overlapping community is a natural conse-
quence when implementing memory.

Abbreviations

ARI: Adjusted rand index; LFR: Lancichinetti-Fortunato-Radicchi; LPA: Label propagation algorithm; MCL: Markov cluster
algorithm; NMI: Normalized mutual information; Q: Modularity

Acknowledgements
The authors thank Saharnaz E. Dilmaghani for helpful comments.

Authors’ contributions
AMF and MRB conceived the study. AMF implemented the code and conducted the computational research. AMF and
MRB analyzed the data and interpreted the results. AMF wrote the manuscript. All authors reviewed and approved the

paper.

Page 15 0f 17



Fiscarelli et al. Applied Network Science (2019) 4:95 Page 16 of 17

Funding
This work is supported by the Luxembourg National Research Fund (FNR) (10929115). This work is partially funded by the
joint research programme UL/SnT-ILNAS on Digital Trust for Smart-ICT.

Availability of data and materials

The code for the LFR benchmark to generate artificial networks is available at https:/sites.google.com/site/
santofortunato/inthepress2. The datasets for the real-world networks analyzed during the current study are available at
http://konect.cc/networks/.

Competing interests
The authors declare that they have no competing interests.

Author details

1C2DH, University of Luxembourg, 11 Porte des Sciences, Esch-sur-Alzette, Luxembourg. 2SnT, University of Luxembourg,
6 avenue de la Fonte, Esch-sur-Alzette, Luxembourg. 3FSTC-CSC, University of Luxembourg, 6 avenue de la Fonte,
Esch-sur-Alzette, Luxembourg.

Received: 3 April 2019 Accepted: 10 September 2019
Published online: 29 October 2019

References

Albert R, Jeong H, Barabasi A-L (1999) Internet: Diameter of the world-wide web. Nature 401(6749):130-131

Barber MJ, Clark JW (2009) Detecting network communities by propagating labels under constraints. Phys Rev E
80(2):026129

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech
Theory Exp 2008(10):P10008

Brandes U, Delling D, Gaertler M, Gorke R, Hoefer M, Nikoloski Z, Wagner D (2008) On modularity clustering. I[EEE Trans
Knowl Data Eng 20(2):172-188

Clauset A, Newman ME, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066111

Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex Systems
1695(5):1-9

Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure identification. J Stat Mech Theory Exp
2005(09):P09008

Dao V-L, Bothorel C, Lenca P (2018) Estimating the similarity of community detection methods based on cluster size
distribution. In: International Conference on Complex Networks and Their Applications. Springer. pp 183-194

Dongen S (2000) A cluster algorithm for graphs

Fiscarelli AM, Brust MR, Danoy G, Bouvry P (2018) A Memory-Based Label Propagation Algorithm for Community
Detection. In: International Conference on Complex Networks and their Applications. Springer. pp 171-182

Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821-7826

Hosseini R, Azmi R (2015) Memory-based label propagation algorithm for community detection in social networks. In:
2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP). IEEE. pp 256-260

Hubert L, Arabie P (1985) Comparing partitions. J classif 2(1):193-218

Jebabli M, Cherifi H, Cherifi C, Hamouda A (2018) Community detection algorithm evaluation with ground-truth data.
Phys A Stat Mech Appl 492:651-706

Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi A-L (2000) The large-scale organization of metabolic networks. Nature
407(6804):651-654

Lambiotte R, Delvenne J-C, Barahona M (2014) Random walks, markov processes and the multiscale modular
organization of complex networks. IEEE Trans Netw Sci Eng 1(2):76-90

Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E
78(4):046110

Leung IX, Hui P, Lio P, Crowcroft J (2009) Towards real-time community detection in large networks. Phys Rev E
79(6):066107

Liu X, Murata T (2010) Advanced modularity-specialized label propagation algorithm for detecting communities in
networks. Phys A Stat Mech 389(7):1493-1500

Newman ME (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6)

Newman ME (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74(3):036104

Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113

Orman GK, Labatut V, Cherifi H (2012) Comparative evaluation of community detection algorithms: a topological
approach. J Stat Mech Theory Exp 2012(08):P08001

Parés F, Gasulla DG, Vilalta A, Moreno J, Ayguadé E, Labarta J, Cortés U, Suzumura T (2017) Fluid communities: a
competitive, scalable and diverse community detection algorithm. In: International Conference on Complex
Networks and their Applications. Springer. pp 229-240

Pons P, Latapy M (2005) Computing communities in large networks using random walks. In: ISCIS, vol. 3733. pp 284-293

Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale
networks. Phys Rev E 76(3):036106

Reginaldo Filho J, Brust MR, Ribeiro CH (2009) Consensus dynamics in a non-deterministic naming game with shared
memory. arXiv preprint arXiv:0912.4553

Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E 74(1):016110

Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad
Sci 105(4):1118-1123


https://sites.google.com/site/santofortunato/inthepress2
https://sites.google.com/site/santofortunato/inthepress2
http://konect.cc/networks/

Fiscarelli et al. Applied Network Science (2019) 4:95 Page 17 of 17

Scott J (1988) Social network analysis. Sociology 22(1):109-127

Subelj L, Bajec M (2011) Unfolding communities in large complex networks: Combining defensive and offensive label
propagation for core extraction. Phys Rev E 83(3):036103

Xie J, Szymanski BK (2011) Community detection using a neighborhood strength driven label propagation algorithm. In:
2011 IEEE Network Science Workshop. IEEE. pp 188-195

Xie J, Szymanski BK (2013) Labelrank: A stabilized label propagation algorithm for community detection in networks. IEEE,
New York

Xie J, Szymanski BK, Liu X (2011) Slpa: Uncovering overlapping communities in social networks via a speaker-listener
interaction dynamic process. In: 2011 ieee 11th international conference on data mining workshops. IEEE. pp 344-349

Uzun TG, Da Silva-Filho RJ, Brust MR, Ribeiro CH (2011) Influence of Sha red Memory and Network Topology in the
Consensus Dynamics of a Naming Game. In: XXXVIII Seminario Integrado de Software e Hardware (SEMISH). Anais do
XXXI Congresso da Sociedade Brasileira de Computagao

Yang Z, Algesheimer R, Tessone CJ (2016) A comparative analysis of community detection algorithms on artificial
networks. Sci Rep 6:30750

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Keywords

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

