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Abstract
Directed contact networks(DCNs) are temporal networks that are useful for analyzing
and modeling phenomena in transportation, communications, epidemiology and
social networking. Specific sequences of contacts can underlie higher-level behaviors
such asflowsthat aggregate contacts based on some notion of semantic and temporal
proximity. We describe a simple inhomogeneous Markov model to infer flows and taint
bounds associated with such higher-level behaviors, and also discuss how to
aggregate contacts within DCNs and/or dynamically cluster their vertices. We provide
examples of these constructions in the contexts of information transfers within
computer and air transportation networks, thereby indicating how they can be used for
data reduction and anomaly detection.

Introduction
Directed contact networks (DCNs) are temporal networks in which edges are directed
(Holme 2015; Masuda and Lambiotte2016). Loosely speaking, temporal networks have
time attributes associated with edges while directed contact networks have both time and
direction attributes associated with edges. DCNs are a natural temporal generalization
of digraphs, and we can think about them informally as collections of time-stamped and
directed contacts between and among the entities represented by the nodes. A simple
example of a directed contact network is a collection of call data records in which each
record includes information about who placed the call, who received the call and the time
of the call (Bianchi et al.2016).

In this paper, we address the problem of how directed contacts can be aggregated and
coarsened for purposes such as anomaly detection. To accomplish this, we construct a
natural inhomogeneous (that is, time varying) Markov model (Huntsman2018a) for prob-
abilistic modeling of potentialflowsthat aggregate contacts based on a simple notion of
spatiotemporal proximity. This model involves a single parameter, which in practice we
set automatically with an intuitive heuristic. Through analytical and practical examples,
we illustrate the behavior of this Markov model. We emphasize that this Markov model
is not statistical in the sense that it involves no learning, fitting, optimization or other
estimation procedure. Instead, it starts from a small number of symmetry and invari-
ance requirements thatanymodel with its goals ought to obey. This follows a tradition in
physics by exhibiting a general mathematical structure that is consistent with the required
symmetries. Because of this generality, the model applies to a wide range of problems that
can be modeled with directed contacts, including call data record analysis, network traffic
analysis and disease surveillance.
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We also introduce the concept of a •taint boundŽ that quantifies the impact of weighted
contacts: for example, how much of a given information transfer can possibly propagate
through the network. Using publicly available data on flight timetables, we demonstrate
by analogy how such taint bounds can constrain data exfiltration within a computer
system and network. Finally, we also discuss two ways of aggregating and coarsening
networks of directed contacts through renormalization and clustering.

It is useful to note that a contact of any type, information or not, involves asource s, a
target t, and atime τ associated with the contact. For simplicity, we assume contacts occur
at a given instant in time with the resulting notion of a directed contact as an ordered
triple (s, t,τ) . This still enables considerable generality: for instance, a transfer fromsto
t over the time interval [τ0,τ1] can be represented by two contacts involving a surrogate
third node as(s,∗,τ0) and(∗, t ,τ1) where∗ is the surrogate placeholder for(s, t, [ τ0,τ1] ).1

The paper is structured as follows: •Directed contact networks and temporal
digraphsŽ section introduces directed contact networks and temporal digraphs; •Markov
chain models for DCNsŽ section discusses our Markov model, and •Data reduction and
anomaly detectionŽ section discusses its performance in data reduction and anomaly
detection. We then turn to taint bounds in •Taint boundsŽ section before discussing
renormalization and clustering in directed contact networks in •RenormalizationŽ section
and •ClusteringŽ section, respectively. •RemarksŽ section concludes the paper.

Directed contact networks and temporal digraphs
A particularly useful family oftemporal networksaredirected contact networks (DCNs)

(Holme 2015; Masuda and Lambiotte2016). DCNs are a natural temporal generalization
of digraphs, and we can think about them informally as collections of contacts as intro-
duced in •IntroductionŽ section. However, to avoid certain degenerate cases, we provide
a slightly more formal and restrictive notion here.

A DCN with verticesV =[ n] := {1,. . . ,n} is a finite nonempty setC, where eachcontact
c ∈ C corresponds to a unique triple(s(c), t(c),τ(c)) ∈[ n] ×[ n] ×R with s(c) �= t(c).
As a matter of convenience, we identify contacts with their corresponding triples in this
manner.

Next, define thetemporal fiber at v, C@v, to be the set of times at which vertexv is
involved in a contact as either source or destination, together with the times plus and
minus infinity. More formally,

C@v := {±∞} ∪ {τ(c) : c ∈ C ∧ (s(c) = v ∨ t(c) = v)} =: {τ@v
j }|C@v|−1

j=0 . (1)

The temporal digraphof C (for an example, see Fig.1) is defined as the digraphT (C)

with respective vertex and arc sets

V (T (C)) := {(v,±∞) : v ∈ V }
∪{(v,τ(c)) :[ (v,c) ∈ V × C] ∧[ s(c) = v ∨ t(c) = v] } (2)

A(T (C)) := {((s(c),τ(c)), (t(c),τ(c))) : c ∈ C}
∪{((v,τ@v

j−1), (v,τ@v
j )) : v ∈ V, j ∈[ |C@v| − 1] }. (3)

1 By analogy, consider a flight departing from s at τ0 and arriving at t at τ1. Here the contact (s,∗,τ0) corresponds to
embarking, while the contact (∗, t ,τ1) corresponds to debarking. We can think of ∗ as the physical plane on which the
passengers flew. Alternative representations involving additional contacts of the form (s,∗,τ∗) with τ0 ≤ τ∗ < τ1 might
also be appropriate depending on circumstances and model intent.
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Fig. 1 Temporal digraph of the DCNC := {(1, 4,τ1),(5, 4,τ2),(2, 5,τ3),(4, 3,τ4)} with τ1 < τ2 < τ3 < τ4. We
indicate a temporally coherent path fromC-vertices 1 to 3 with bold versus gray arrows: note that there is no
temporally coherent path from 2 to 3. In the figure, spatial (respectively, temporal) arcs are vertical
(horizontal). The vertices along a horizontal path constitute the temporal fiberC@v for v

The first and second sets in the union on the right hand side of (3) are respectively the
sets oftemporal arcsandspatial arcs. Because|V (T (C))| = ∑

v |C@v| ≤ 2|V | + 2|C| and
|A(T (C))| = |V (T (C))| − |V | + |C| ≤ |V | + 3|C|, it is easy to see thatT (C) can be formed
with only linear runtime and memory, though an efficient algorithm requires somewhat
more care in practice than is readily apparent.

We also note that DCNs support the natural notion of atemporally coherent pathbased
on a set of contacts of the form{(si , ti ,τi)|si+1 = ti , τi ≤ τi+1}. Fig. 1 illustrates a
temporally coherent path.

In words, the temporal digraph of a given DCN can be drawn with the horizontal axis
representing time and the vertical axis representing nodes in the original DCN in some
ordering. Nodes in the temporal digraph are comprised of the start and end point nodes
of individual contacts in the DCN at the associated times. As depicted, each vertical
arc/edge in the temporal digraph represents a directed contact between two underlying
DCN nodes at the specified time while horizontal edges connect a DCN node between
the times it is involved in a contact. Note that there are no arcs that go backwards in time
in this representation so that all paths are basically from left to right with possible vertical
arcs.

Markov chain models for DCNs
In this section, we show that a useful probabilistic model of temporally coherent paths

can easily be constructed fromT (C) alone. The basic idea comes from traffic analysis,
where tools such as pen registers or trap and trace devices generate data that enable a
user to make substantive inferences about communication sources and paths in networks
(Bianchi et al.2016).

Specifically, consider two contacts of the form(A,B, 0) and (B,C,τ). A natural proba-
bility model for a "flow" from A to C should decrease from 1 to 0 asτ ↑ ∞. That is, if A
callsB and thenB callsC, immediately after, there should be a high expectation that some
information from A triggered the call toC but if much time transpires between the calls,
there is a lower expectation thatA•s call and communicated information triggeredB•s call
to C.

In practice, we expect that enough flows of interest will involve unusual sources/targets
and/or temporally localized contacts to be detected against a background of •bulk traf-
ficŽ that the model will also effectively characterize. For example, in •Data reduction
and anomaly detectionŽ section we show that even sophisticated malicious cyber-activity
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leading to so-called •low and slowŽ data exfiltration involves at least some system call-
scale directed contacts that can be readily detected through temporally coherent path
identification and analysis.

A reasonable model assigning probabilities to arcs ofT (C) should be highly constrained
by several fundamental symmetries and invariances that it should obey. We identify four
such natural symmetries and invariances:

i) probabilities on spatial arcs from the same source and time should be identical;
ii) the model should yield probabilities for flows that coherently compose over arbitrary

consecutive time windows that span the same interval;
iii) probabilities on temporal arcs should only depend on their duration and the number

of spatial arcs occurring with the same source and initial time;
iv) simultaneous or near simultaneous events’ corresponding probabilities should differ

only infinitesimally if at all.

We describe such a physically inspired Markov model of temporally coherent random
paths that essentially satisfies these properties. We expect that these properties will be
reasonably evident to the mathematically inclined reader.

Define therestriction of a DCN C to X ⊂ R to be the subset of contacts with times in
X, so thatC|X := τ−1(τ (C) ∩ X). Next, for a1 /∈ τ(C) anda0 < a1, we define therestricted
temporal digraph T(C)|[a0,a1) from T (C|[a0,a1)) by replacing the time component of the
vertices(v,−∞) with a0 and the time component of the vertices(v,∞) with a1, while
retaining all the arcs.

Our probabilistic model also involves an •inverse temperatureŽβ ∈ R to balance
between temporal and spatial arcs.2 In detail, for a0 < · · · < aM with a := {am}M

m=0,
a ∩ τ(C) = ∅, and m ∈[ M], we define a Markov chain on the vertices/nodes/states in
V (T (C)|[am−1,am)) to have the transition matrixP(β)

(C,a,m) given by

Z
(v,τ@v

j )
· P(β)

(C,a,m)((v,τ@v
j ), (w,τ@w

k )) := (4)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if[ v �= w] ∧[ τ
@v
j = τ

@w
k ]

exp(−β[ τ
@v
j+1 − τ

@v
j ] ) if[ v = w] ∧[ j + 1 = k] ∧[ d+

(v,τ@v
j+1)

> 0]

exp(−β[ τ
@v+
(a,m) − τ

@v
j ] )) if[ v = w] ∧[ j + 1 = k] ∧[ d+

(v,τ@v
j+1)

= 0]

1 if[ v = w] ∧[ j = k] ∧[ d+
(v,τ@v

j )
= 0]

0 otherwise.

where τ
@v+
(a,m) := min(inf[ (am,∞) ∩ C@v] , aM ), the normalizing constantsZ

(v,τ@v
j )

are

such that the rows ofP(β)

(C,a,m) sum to 1, andd+ denotes the outdegree inT (C)|[am−1,am).
The reader should note that terms of the form exp(−β�τ) can easily underflow numer-
ically if the exponential argument is large and negative so that care must be taken when
implementing these formulae in finite precision arithmetic.

Figure2 shows a simple example of this definition overlaid on the example of Fig.1.

2 Allowing a negative absolute temperature (Ramsey 1956), β = −∞ and β = ∞ respectively correspond to “absolute
hot” (no spatial arc traversals) and absolute zero (no temporal arc traversals). In practice, we use a physical
analogy/heuristic to set β−1 to the average time between contacts. Further discussion of the role of β can be
found below.
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Fig. 2 Entries ofP(β)

(C,a′,1) not in {0, 1} forC := {(1, 4, 1),(5, 4, 2),(2, 5, 3),(4, 3, 4)} anda′ = {0, 5} are indicated
along with solid arcs (gray for spatial arcs; black for temporal arcs); unit entries correspond to dashed arcs

The specific formulae of (4) arise from the four identified constraints above rather than
from arbitrary choices.

In particular, the requirementa ∩ τ(C) = ∅ ensures that the Markov chain defined
by (4) has exactlyn absorbing states. Each of these has the form(v,am) and a corre-
sponding •emittingŽ state(v,am−1), and a natural quantity to consider is the probability
Q(β)

(C,a,m)(v,w) of arriving at the absorbing state(w,am) after starting in the emitting state
(v,am−1). We can straightforwardly compute this quantity using the so-calledfundamen-
tal matrix (Brémaud1999). Finally, the termτ

@v+
(a,m) mitigates artificial •boundary effectŽ

behavior form = M.
Taken as a whole, (4) thus leads to a natural temporal coherence property and a straight-

forward physical interpretation. Regarding the symmetries and invariants listed above,
the terms equal to 1 and 0 in (4) merely codify i), while ii) is embodied in the following
identity which can easily be verified from the construction of the probability transition
matrices,Q(β)

(C,a,m).

Lemma 1 If a0,a|a|−1 ∈ a′ ⊆ a, then

Q(β)

(C,a′,1) · · · · · Q(β)

(C,a′,|a′|−1)
= Q(β)

(C,a,1) · · · · · Q(β)

(C,a,|a|−1). (5)

ProofThe lemma follows by applying the Kolmogorov-Chapman property to each of
the inhomogeneous Markov chainsQ(β)

(C,a′,·) andQ(β)

(C,a,·).

That is, for any DCNC and parameterβ, we have an associated temporally coherent
family of time-inhomogeneous Markov chains. This lemma does not rely on the specific
form of (4): the exp(−β · �τ) terms could be significantly changed without breaking
property ii) above.3

Moreover, this form is necessary to jointly satisfy properties iii) and iv): i.e., memo-
rylessness and self-consistency in the limit�τ ↓ 0. (In particular, the self-consistency
requirement prohibits multiplying the exponentials by some nontrivial constant.) That is,
the form of (4) is dictated by the structure of a temporal digraph along with manifestly
desirable symmetries.4

3 That said, a dependence on �τ is necessary. In the context of intra-computer information flows, this time difference
plausibly approximates (at least for small values) a linear function of the conditional Kolmogorov complexity of the
intervening computation.
4 We can generalize this construction to the related notion of a weighted DCN by normalizing the sum of outbound
weights and modifying the first case in (4) accordingly.
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In the limit β → ∞, the trajectories of the Markov model are so-calledgreedy walks
(Saramäki and Holme2015), and more generally forβ > 0, •spatialŽ transitions are pre-
ferred over •temporalŽ transitions. Regardless of the value ofβ, we shall see that the
temporal coherence of trajectories is captured more faithfully and conservatively in the
Markov model than in series of •projected snapshotsŽ that characterize earlier efforts
such as Perra et al. (2012); Starnini et al. (2012); Rocha and Masuda (2014); Grindrod and
Higham (2013); Valdano et al. (2015) to analyze DCNs through graph time series and/or
provide a substrate for random walks. A recent notable work that develops techniques for
special epidemiological models can be found in Valdano et al. (2018).

The preceding lemma facilitates a computational complexity analysis as a function ofa.
Writing N := |C| andM := |a|, we suppose thata is approximately uniform in the sense
that

∣
∣C|[am,am+1)

∣
∣ ≈ N/M, which also implies that|V (T (C|[am,am+1)))| ≈ 2(n + N/M).

The complexity of computingQ(β)

(C,a,m) is governed by a matrix division of the form(I −
Q)\R, where hereQ is the block of P(β)

(C,a,m) whose rows and columns both correspond
to transient states, andR is the block whose rows and columns respectively correspond
to transient and absorbing states. Since the numbers of transient and absorbing states
are respectively approximatelyn + 2N/M and exactlyn, the complexity of computing
(I − Q)\Ris O(n(n + 2N/M)ω−1), where we take matrix multiplication and inversion to
have complexity exponentω > 2 (for dense unstructured matrices, in practiceω = 3).
Because there areM − 1 matrix multiplications, the computational complexity for the
right hand side of (5) is O(Mn(n + 2N/M)ω−1). Now arg minM Mn(n + 2N/M)ω−1 =
2(ω − 2)N/n, and this value forM yields computational complexity which is nominally
linear in N. Meanwhile, it only makes sense to takeM � N/n if the complexity of the
linear algebra involved is dominated by the rest of the computation. In other words, it is
less expensive to invert and multiply many small matrices than to invert and multiply a
few large matrices. Since takingM larger yields a more detailed picture of the dynamics
of C, it is sensible to requireM to be (at least) on the order ofN/n.

We exhibit the basic mechanics of the model in the following

Example 1 Consider once more the DCN shown in Fig.1. Letτj = j for 1 ≤ j ≤ 4, ε � 1,
a = {0, 2.5, 5} and a′ = {0, 5}. The entries of P(β)

(C,a′,1) are then as in Fig.2 and (using· in
matrices to denote 0 for clarity)

Q(β)

(C,a′,1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

eβ+1
(e4β+1)(eβ+1)

· e5β

(e4β+1)(eβ+1)
e4β

(e4β+1)(eβ+1)
·

· 1
e2β+1 · · e2β

e2β+1
· · 1 · ·
· · eβ

eβ+1
1

eβ+1 ·
· · e2β

(eβ+1)2
eβ

(eβ+1)2
eβ+1

(eβ+1)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
e4β+1 · · e4β

e4β+1 ·
· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · eβ

eβ+1
1

eβ+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 · · · ·
· 1

e2β+1 · · e2β

e2β+1
· · 1 · ·
· · eβ

eβ+1
1

eβ+1 ·
· · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= Q(β)

(C,a,1) · Q(β)

(C,a,2), (6)
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so that with increasingβ (or equivalently, decreasing temperature) the likeliest transitions
correspond to temporally coherent paths that greedily traverse spatial arcs. Now consider
the digraph D with arcs(s(c), t(c)) for c ∈ C and loops(v,v) for v ∈[ n]. The adjacency
matrix of D has nonzero entries in the same locations asQ(β)

(C,a′,1), and also in the(2, 3) and
(2, 4) locations. The(2, 3) and (2, 4) entries correspond to spurious temporally coherent
paths inC. In particular, Q gives a more faithful description ofC than D.

Although the context is quite different, the closest work to the construction of this
section is Ser-Giacomi et al. (2015), which shows that the most probable paths in a Marko-
vian model of a very complicated temporal network (viz., ocean water transport in the
Mediterranean) suffice to describe the network•s key features. Other works have looked
at higher-order models in discrete time as a way to finesse the challenges of continu-
ous time modeling as discussed here (Lambiotte et al.2019; Rosvall et al.2014). Despite
the many differences of detail, our own model likewise shows that the most probable
paths/flows suffice for capturing the essential dynamics of directed contact networks. In
particular, this includes flows that the model assesses as highly probable, but whose asso-
ciated contact motifs occur infrequently (or perhaps just once in a given data set): in our
experiments, such flows reliably capture anomalous and even malicious behavior (see, for
example •Data reduction and anomaly detectionŽ section).

Embeddability
It is natural to wonder under what if any circumstances the Markov chainQ(β)

(C,a,m) corre-
sponds to a continuous-time Markov process. As it happens, this instance of theMarkov
embeddabilityproblem Lencastre et al.2016) can be answered quite effectively (if not
always affirmatively) for most situations of practical interest.

In the event that no two contacts are simultaneous, this problem reduces to the case of
a single contact forn = 2, which in turn follows from the following identity for p ∈ (0, 1),
which can be verified by using the power series expansion for log:

log

(
1 − p p
0 1

)

= log(1 − p) ·
(

1 −1
0 0

)

. (7)

On the other hand, simultaneous contacts are a possible obstruction to embeddability.
For n = 2, a stochastic matrix is embeddable iff it has positive determinant. But a quick
calculation forC := {(1, 2, 0), (2, 1, 0), (1, 2,τ), (2, 1,τ)} and a = {−1,τ/2, 2τ } shows that
detQ(β)

(C,a,1) < 0 for β > 0.
Proposition IV.3 of Lencastre et al. (2016) immediately yields a generalization of the

preceding observations:

Proposition 1 If T (C) is acyclic, thenQ(β)

(C,a,m) is embeddable.

Finally, when a Markov generator exists, the algorithm of §V.B of Lencastre et al. (2016)
can be used to estimate it.

Data reduction and anomaly detection
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In this section, we sketch how the model of •Markov chain models for DCNsŽ section
performs data reduction well enough to be used as a practical anomaly detector. For some
additional background details of this analysis, see (Huntsman2018b).

We considered a DCNC formed from N ≈ 3.4 · 106 kernel-level events spanning a
period of four days and derived in turn from data produced by the CADETS tool (Jenkin-
son et al.2017). Also, after curation, we obtained a setG ⊂ C of 216 ground truth contacts
that were distributed over 54 malicious exfiltration events.

At a high level, we mapped an event represented as

(timestamp, (process name,process identifier),event type, filename)

(where the •everything is a fileŽ philosophy applies to the last entry, such as, for a fork
event, the filename is the forked process identifier) onto

(process name, filename, timestamp),

or

(filename,process name, timestamp),

or both, depending on the semantics ofevent type. While many event typesemantics
included a natural and unambiguous (bi)directionality determining the mapping above,
some did not, and in that case both contacts were conservatively included.

We obtained flows using the model of •Markov chain models for DCNsŽ section by
settingβ to the mean inter-contact time (i.e., the proposed heuristic) and usedM = 28423
windows of 10 s.

We let Î(m) denote the set of indices corresponding to sources or targets of flows span-
ning the mth time window that simultaneously fell above a flow probability threshold
λ ∈[ 0, 1] and below a per-window frequency thresholdμ ∈[ 0, 1]. The setÎ(m) is an esti-
mate of the setI(m) of indices corresponding to sources or targets of ground truth events
during the mth time window.5

Using the estimated and ground truth index setŝI(m) andI(m), we defined two ver-
sions of detection metrics. Suppressing the argumentm for clarity, the •BooleanŽ version
usesTrue = � := 1 andFalse= ⊥ := 0 so that

δ�+
bool :=

[
Î �= ∅

]
∧

[
Î ∩ I �= ∅

]
;

δ⊥+
bool :=

[
Î �= ∅

]
∧

[
Î ∩ I = ∅

]
;

δ⊥−
bool :=

[
Î = ∅

]
∧ [I �= ∅] ;

δ�−
bool :=

[
Î = ∅

]
∧ [I = ∅] . (8)

The natural number analogues of (8) are

δ�+
nat :=

∣
∣
∣Î ∩ I

∣
∣
∣ ; δ⊥+

nat :=
∣
∣
∣Î ∩ Ic

∣
∣
∣ ; δ⊥−

nat :=
∣
∣
∣Îc ∩ I

∣
∣
∣ ; δ�−

nat :=
∣
∣
∣Îc ∩ Ic

∣
∣
∣ . (9)

From these we get in turn the usual detection metrics shown in Figs.3 and 4, i.e. true
positive rate (or recall) and false positive rate

5 This construction was necessary because in many cases the source or target of a ground truth event did not exist. For
example, the userspace commands hostname and put /tmp/netrecon correspond to the
(process name, filename) pairs (hostname,∅); and (∅,/tmp/netrecon). By way of comparison, the command rm
-f /tmp/netrecon.log corresponds to the pair (rm,/tmp/netrecon.log).
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TPR :=
∑

m δ�+(m)
∑

m δ�+(m) + ∑
m δ⊥−(m)

; FPR :=
∑

m δ⊥+(m)
∑

m δ⊥+(m) + ∑
m δ�−(m)

, (10)

and positive predictive value (or precision) and negative predictive value

PPV :=
∑

m δ�+(m)
∑

m δ�+(m) + ∑
m δ⊥+(m)

; NPV :=
∑

m δ�−(m)
∑

m δ⊥−(m) + ∑
m δ�−(m)

. (11)

From Figs.3 and4, we can see that the results were insensitive to the probability thresh-
old λ.6 Similarly, a cursory analysis indicated broad insensitivity to the value ofβ over
several orders of magnitude, a fact attributable to information flow probabilities that
tended to be either very near or bounded away from 1. This also underlies the insensitivity
with respect to the probability thresholdλ. For the valueμ = 10−3, a majority of mali-
cious events were detected with a false positive rate below 2 percent (by either version of
the metrics).

The results indicate that the Markov model is a sufficiently effective data reduction
technique (in particular, the negative predictive value is essentially perfect) to be a useful
anomaly detector. In fact, of the 57 (out of 418) files which are targets of high-probability
potential information flows in the model, 27 fell below theμ = 10−3 level and had back-
tracks (King and Chen2005) with fewer than 20 (or for that matter, 90) vertices. From
these 27, 6 (in 3 pairs) corresponded to the 3 executables which the malicious attacker
wrote to /tmp from its initial foothold.

Taint bounds
The notions of dynamic taint analysis(Schwartz et al.2010) and provenance(Cheney
et al. 2013) inform the context where a DCN models information flow in a computa-
tional environment. The analytic problems corresponding to these notions are generically
undecidable. With this in mind, we introduce the idea oftaint bounds, wherein correct
nontrivial bounds on the information flow are maintained.7 We formalize this idea here
before showing its utility as a practical guide to producing effective data-reducing path
abstractions.

Let ρ be a nontrivial binary relation on a finite setX such that the transitive closure
ρ+ is irreflexive (such relations have been calledsuperirreflexive(Fla�ska et al.2007)), and
hence also a strict partial order. Letγ : X →[ 0,∞) and define thelower taint boundα

andupper taint boundβ for x ∈ X as follows:

α(x) :=
(

∧

x1ρx

α(x1)

)

∧ γ (x); (12)

β(x) :=
(

∑

x1ρx

β(x1)

)

∧ γ (x) (13)

where a ∧ b = min(a,b) in this section. Here we note that the standard inter-
pretation here is that not only minima but also summation over the empty set
yield ∞.

6 In more delicate situations, the approach of Huntsman (2018a) offers a principled solution to the problem of
thresholding.
7 Notwithstanding their fundamentally dynamic character, these bounds may be regarded as having a loose analogue in
the practice of abstract interpretation in static analysis of computer programs (Nielson et al. 2010).
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Fig. 3 True (left) and false (right) positive rates as defined in (10) for APT detections using the model of
•Markov chain models for DCNsŽ section and as functions of a per-window frequency thresholdμ and for
varying flow probability thresholdsλ

Lemma 2 α and β are well-defined; moreover,α ≤ β ≤ γ and

α(x) =
⎛

⎝
∧

x′ρ+x

γ (x′)

⎞

⎠ ∧ γ (x). (14)

ProofBy lemma 3.5 of Fla�ska et al. (2007), a binary relationρ is superirreflexive iff the
digraph corresponding toρ is acyclic. Since by assumptionρ is nontrivial andX is finite,
there exists somej < ∞ such thatρ◦(j+1) = ∅ andρ◦j �= ∅, where the composition ofρ
with itself is indicated. Furthermore, superirreflexivity implies irreflexivity.

Therefore, the recursion implicit in (12) terminates and we have

α(x) =
⎡

⎣
∧

x1ρx

⎛

⎝

⎡

⎣
∧

x2ρx1

. . .

⎛

⎝

⎡

⎣
∧

xj+1ρxj

α(xj+1)

⎤

⎦ ∧ γ (xj)

⎞

⎠ . . .

⎤

⎦ ∧ γ (x1)

⎞

⎠

⎤

⎦∧γ (x). (15)

Fig. 4 Positive (left) and negative (right) predictive values as defined in (11) for APT detections using the
model of •Markov chain models for DCNsŽ section and as functions of a per-window frequency thresholdμ

and for varying flow probability thresholdsλ
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But
∧

xj+1ρxj
α(xj+1) = ∞ andxkρ

◦kx for all k ∈[ j], so

α(x) =
⎛

⎝
∧

x1ρ◦j x

γ (xj)

⎞

⎠ ∧ · · · ∧
⎛

⎝
∧

x1ρ◦1x

γ (x1)

⎞

⎠ ∧ γ (x) =
⎛

⎝
∧

x′ρ+x

γ (x′)

⎞

⎠ ∧ γ (x). (16)

Similarly, the recursion implicit in (13) also terminates, though in this case without any
additional simplification. The boundsα ≤ β ≤ γ follow.

For a DCND such that τ is injective, a natural choice forρ is c1ρc ⇐⇒ (t(c1) =
s(c)) ∧ (τ (c1) < τ(c)). Note that this relation is superirreflexive.

Example 2 Consider once more the DCN depicted in Fig.1 andρ as defined immediately
above. The only nontrivial taint bounds are for the last contact: we have thatα(4, 3,τ4) =
(γ (1, 4,τ1)∧γ (5, 4,τ2))∧γ (4, 3,τ4) andβ(4, 3,τ4) = (γ (1, 4,τ1)+γ (5, 4,τ2))∧γ (4, 3,τ4).
If for 3 ≤ j ≤ J we add to this DCN the contacts(3, 4,τ2j−1) and (4, 3,τ2j) with τk

strictly increasing, then the result is a DCN with2J contacts andα(·, ·,τk) and β(·, ·,τk)

nonincreasing for k> 4.

However, in practiceτ need not be injective, and in fact this is often the case for kernel-
level information flows (timestamps of system-level activity in computers or network
interfaces are generally precise only to milliseconds or at best microseconds, and getting
higher precision generally entails a heavy burden or can even be practically infeasible,
depending on the detailed context). Indeed, for a distributed system, even the synchro-
nization of clocks can become an issue, and so it is desirable to have a relationρ that
accounts for more structural details. The problem is highlighted by considering directed
acyclic graphs (DAGs) rather than DCNs: for a DAGD, the natural choice forρ is
uρv iff u precedes v. However, this does not generalize to arbitrary digraphs, which are the
structures that essentially embody multiple contacts occurring at the same time.

This suggests two strategies: live with a fairly generic relationρ and only seek to com-
pute taint bounds when the digraph corresponding toρ actually turns out to be acyclic, or
build in mechanisms that enforce acyclicity (if these are artificial, we can provide warnings
when they have any effect). Only the second of these strategies requires further comment
here. One simple approach is to leverage some auxiliary strict order onX; another simple
approach is to require a nonzero delay between contacts. In general, context will constrain
and inform the construction ofρ.

Example 3 Consider the set of N= 1155scheduled commercial nonstop domestic flights
in the United Kingdom (UK) and Crown dependencies on Monday, 18 October 2010 (Gal-
lotti and Barthelemy2015a; Gallotti and Barthelemy2015b). We form a DCN from these
by associating each flight with two contacts: one from the flight•s origin to the flight itself,
and one from the flight to the flight•s destination. We take an aggressive approach to deter-
mining connecting flights, viz. c1ρc only if either c1 and c are respectively the first and
second contact corresponding to a single flight, or(t(c1) = s(c)) ∧ (τ (c1) ≤ τ(c) − 1/2),
where time is measured in hours (note that the required half-hour layover ensures thatρ is
superirreflexive). We takeγ to be the number of seats available on a flight. Only the 7 flights
in Table 1 (where origin and destination are indicated using International Air Transport
Association airport codes) correspond to contacts withβ < γ .
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Table 1 Taint bounds withβ < γ for UK flight data in Example3

Origin Destination Seats Departure Arrival β γ

CWL EDI 74 0850 1010 29 74

CWL GLA 74 0850 1010 29 74

BRS BHD 189 0745 0855 82 189

BLK BFS 142 1405 1455 40 142

GLO IOM 18 1025 1130 8 18

INV LTN 149 1115 1245 142 149

GLA EMA 136 0835 0945 74 136

Let us consider each of these in turn. On the day in question, one flight arrives at CWL by
0820, and it has 29 seats. Two flights arrive at BRS by 0715, each with 41 seats. Two flights
arrive at BLK by 1335, each with 20 seats. One flight arrives at GLO by 0955, and it has
8 seats. Three flights arrive at INV by 1045, with 34, 34, and 74 seats, respectively. Finally,
one flight arrives at GLA by 0805, and it has 74 seats. The general pattern amongst these is
evident by inspection: there are a few preceding flights inbound to the origin with less total
capacity than the current flight.

The preceding example illustrates by way of analogy how differences betweenβ and
γ can serve as a preliminary indicator of anomalously asymmetric flows (which might
correspond to, for example, the original dissemination of material and/or unauthorized
data exfiltration), particularly at vertices corresponding to sensitive objects or locations.

Renormalization
For τ1 < · · · < τN ∈ R, consider the DCNC := {(1, 2,τj)}N−1

j=1 . It is of interest to try
to associateC with a single coarse-grained or •renormalizedŽ contact using the Markov
model of •Markov chain models for DCNsŽ section. WritingQ = Q(β)

(C,{−∞,τN },1), we have
that

Q11 =
∏

j

e−δj

1 + e−δj
, (17)

whereδj := β(τj+1 − τj). If we pick� so that

Q11 =:
e−�

1 + e−�
(18)

then

� = log

⎛

⎝
∏

j

[ eδ
j + 1] −1

⎞

⎠ . (19)

We want 0 ≤ � ≤ ∑
j δj , so that the notional renormalized contact(1, 2,τN − �) can

replaceC in a self-consistent way. While the first inequality holds, the second is equivalent
to

∏
j [ eδj + 1] ≤ ∏

j eδj + 1, which is impossible forβ > 0. That is, our goal of associating
C with a single renormalized contact is generally impossible.

In light of the preceding considerations, it seems necessary to resort to more algorithmi-
cal and computational versus analytical approaches to coarse-graining or renormalizing
DCNs. At the same time, it is helpful to introduce some additional context. Stripped bare
of its associations with physics, therenormalization group(RG; see, for example, (Baren-
blatt 2003; Goldenfeld1992)) is a simple approach to understanding theories in terms of



G. Cybenko and S. HuntsmanApplied Network Science          (2019) 4:106 Page 13 of 21

their fixed points. We also note that renormalization ideas have been applied to undi-
rected networks with specific structures (Barrat and Cattuto2013; Karschau et al.2018;
Newman and Watts1999).

For a theory determined by a functionf (x;θ) of data x and parametersθ , and given
a suitable coarsening operatorC, if there exists a functiong such that f (x;θ) =
f (C(x);g(θ)), then the theory is calledrenormalizable. 8 In our setting, a probability cut-
off takes the role off ; the underlying DCN takes the role ofx; the parameterβ = θ is
computed from the datax according to a fixed heuristic; and the coarsening operatorC
is realized by the Markov model of •Markov chain models for DCNsŽ section along with
a fixed heuristic for its remaining parameters - for instance, we can fix the number of
contact times per window (with an exception provided for the last window). The use of
fixed heuristics yields a RG transformation on DCNs that renormalizes probable flows
into contacts in a given time window.

Iterating the RG transformation along these lines leads to an "ultraviolet cutoff" at
which the process stops, essentially sublimating temporal data into a single weighted
digraph. While there is a great deal of freedom in its precise specification, such an RG
transformation and fixed point is surely of interest for summarizing complex DCNs.

In Table 2, we show the sizes of DCNs obtained through such RG transformations up
to a fixed point in an experiment on data similar to that described in •Data reduction and
anomaly detectionŽ section. Of the final 184 renormalized contacts, at least 8% appeared
to be associated with malicious activity.

Clustering
The problem of clustering in digraphs is much more delicate than its analogue for the
undirected case (Malliaros and Vazirgiannis2013). It should therefore come as no sur-
prise that the problem of clustering in DCNs is more challenging than either clustering
in digraphs or in undirected temporal networks. Indeed, most of the approaches purport-
ing to address clustering in temporal networks in the literature (cf. §4.11 of (Holme2015),
§4.12 of Masuda and Lambiotte (2016) or Speidel et al. (2015)) actually cluster in time
series of graphs, not the more granular notion of a DCN.

A sensible step forward is to consider the temporal digraphT (D) of a DCN D. As an
•almost acyclicŽ digraph, it might seem natural to try to apply techniques such as those
detailed in Malliaros and Vazirgiannis (2013) directly to T (D). While this would offer
the prospect of retaining qualitative temporal structure, it still ignores the quantitative
temporal details; furthermore, it is far from evident how to remove any cycles that might
(and in practice frequently do) occur. We seek instead a controlled way to coarse-grain
this temporal information independent of the approach in •RenormalizationŽ section.

We note that clustering for temporal networks is a topic of much current interest (Bas-
sett et al.2013; Bazzi et al.2016; Gauvin et al.2014; Sarzynska et al.2015) seeing as the
dynamics of communities within social networks and other applications are relevant to
current social media and related topics. However, our focus here is an on the specific
structure of directed contact networks which has not been specifically studied to our
knowledge before.

8 Renormalizable theories in physics (and their fixed/critical points) are of great interest: indeed, renormalizability is
actually a requirement for statistical and quantum field theories to be well-defined rather than “effective.”
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Table 2 Reduction of data similar to that described in •Data reduction and anomaly
detectionŽ section under RG transformations

RG iteration Number of contacts

0 569480

1 10726

2 4687

3 (∞) 184

Clustering techniques leveraging (5)
The time-inhomogeneous Markov chain (5) provides a platform for any number of
capabilities, not least clustering. Before plunging ahead, the taxonomy of Malliaros and
Vazirgiannis (2013) for digraph clustering suggests some guiding principles:

1. Any clustering technique ought to directly exploit the probabilistic framework that
(5) offers and seek to avoid any additional model features unless they are necessary.
This principle discourages–but of course does not completely rule out–techniques
that require for example random walks generated by an ergodic transition matrix,
which would in turn require incorporating a “teleportation” device à la PageRank.
Techniques that require a unique and/or nondegenerate stationary distribution are
therefore also discouraged by this principle. Such discouraged techniques include
(following the precise enumeration in table 2 of Malliaros and Vazirgiannis (2013))
symmetrization and random walk simulations, LinkRank, directed Laplacians,
two-step random walks, message passing, and Infomap. Meanwhile, many other
techniques do not exploit (5) at all and should be completely ruled out: for example,
network embedding, bipartite modularity, a modified adaptive genetic algorithm,
semi-supervised learning, directed modularity, directed Gaussian random network,
overlapping modularity, local modularity, cuts, attraction/repulsion, local
partitioning, directed clique percolation, local density, mixture models, and
community kernels.

2. The techniques in Malliaros and Vazirgiannis (2013) not discouraged or completely
ruled out by the immediately preceding considerations essentially amount to
coclustering (or the closely related notion of “blockmodels”). Among coclustering
approaches, we single out (Ge et al. 2003; Chakrabarti 2004; Rohe et al. 2016) as
holding particular interest. (Ge et al. 2003) focuses on reducing the number of states
of a Markov chain estimated directly from a sample trajectory (and is thus not
manifestly suitable in our context, where the data is a sequence of contacts rather
than a sequence of vertices), while (Chakrabarti 2004; Rohe et al. 2016) explicitly
address unweighted digraphs. (Ge et al. 2003; Rohe et al. 2016) cluster singular
vectors of a suitable matrix, whereas (Chakrabarti 2004) optimizes a minimum
description length criterion for coclustering. Bearing all this in mind, a reasonable
strategy would be to look for opportunities to evaluate the singular value
decomposition or an information-theoretical compression of a suitable matrix. At
the same time, the notion of stochastic equivalence (Holland et al. 1983) leveraged by
(Rohe et al. 2016) appears particularly relevant: vertices v and w are stochastically
equivalent for (5) iffQv· = Qw· andQ·v,Q·w, where we use a shorthand. We shall
exploit a very similar notion immediately below.
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Intuitively, a time-dependent clustering for vertices of a DCN that models the flow of
some quantity ought to be determined by a metric involving the probabilities of transi-
tions to and from states. Letd denote an arbitrary metric on probability distributions and
write Q for a matrix such as in (5). If we are only concerned with the probabilities of
transitions from states, then it suffices to consider

d(v,w) := d(Qv·,Qw·). (20)

If instead we are only concerned with the probabilities of transitions to states, the situ-
ation is more delicate. The reason is that in general (5) will not yield a very well-behaved
Markov chain, even apart from any time-inhomogeneity. For example, reducibility is com-
mon in practice. This means that the classical notion of time reversal for the chain is
not well-defined, which complicates any attempt to consider the probabilities of transi-
tions to states. Nevertheless, it is easy to construct an essentially unique time reversalD←

of the underlying DCND by merely swapping sources and targets and replacingτ with
τ∗ − τ for any fixedτ∗ ∈ R. Writing Q← for a matrix obtained by applying (5) to D←, the
time-reversed analogue of (20) is

d←(v,w) := d(Q←
v· ,Q←

w· ). (21)

Meanwhile, if we are concerned with the probabilities of transitions both to and from
states, it is both natural and easy to consider for 0< q < ∞ (with an extension toq = ∞)
an induced metric (and the metric property itself is easy to show) of the form

d↔
q (v,w) :=[ (d(v,w))q + (d←(v,w))q]1/q . (22)

Any of the preceding metrics (20), (21), or (22) lend themselves straightforwardly to
various clustering techniques.

Example 4 If d is the total variation or Hellinger distance, then the metric (20) takes
values in the unit interval. It is then reasonable to automatically select a cutoff for a
hierarchical clustering technique along the same lines as described in •Data reduction
and anomaly detectionŽ section, possibly after some rescaling. Here, we will consider total
variation distance and use single linkage clustering.

Recall the DCN of nonstop UK domestic flights described in •Taint boundsŽ section, but
now over the entire week of 18 October 2010. Because this DCN has a rather idiosyncratic
bipartite structure, it is not particularly instructive to look at its local temporal behavior à
la (5): many of the transitions will be between airports and flights or conversely, rather than
between two airports. Therefore, we consider the DCN a day at a time to avoid •getting
stranded on a planeŽ. The results are shown in Figs5, 6, 7, 8, 9, 10and 11.

For Monday, some of the likeliest transitions are as follows:

• The transitions from CEG and FZO to FZO arise from a sequence
CEG → FZO → CEG → FZO of three chartered flights between these airports,
which host Airbus facilities and have no other scheduled passenger flights.

• The transitions from GLO, OXF, and TRE to SOU arise as follows. The first flight
departing OXF departs to GLO at 0815, arriving at 0830. The first flight departing
GLO not earlier than 0830 departs to IOM at 1025, arriving at 1130. The first flight
departing IOM not earlier than 1130 departs to GLA at 1210, arriving at 1300.
Meanwhile, the only flight departing TRE arrives at GLA at 1300. Starting from GLA
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Fig. 5 Clusters from UK flight data for Monday, 18 October 2010 obtained using total variation distance in
(20) and single linkage, with a dendrogram cutoff automatically selected along the lines mentioned in
•Data reduction and anomaly detectionŽ section. (L) Clusters displayed as cliques. (R) Transition matrix for
β = 1/〈�τ 〉 andε = 10−2, with entries indicated by grayscale and indices/airports permuted to reflect
clusters, which are themselves delineated by horizontal lines

at 1300 and taking the shortest possible (even instantaneous) layovers, we have the
sequence of nominally connecting flights

GLA
1315

→ 1425
LTN
1500

→ 1610
GLA
1610

→ 1730
LCY
1735

→ 1910
EDI
1920

→ 2020
MAN

2020
→ 2120

SOU

that terminates at SOU when there are no more departing flights for the day.

Fig. 6 Clusters from UK flight data for Tuesday, 19 October 2010; otherwise as in Fig.5. Cluster colors only
distinguish clusters from each other and do not suggest affinity across days
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