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Abstract

We propose a unified framework to represent a wide range of continuous-time
discrete-state Markov processes on networks, and show howmany network dynamics
models in the literature can be represented in this unified framework. We show how a
particular sub-set of these models, referred to here as single-vertex-transition (SVT)
processes, lead to the analysis of quasi-birth-and-death (QBD) processes in the theory
of continuous-time Markov chains. We illustrate how to analyse a number of summary
statistics for these processes, such as absorption probabilities and first-passage times.
We extend the graph-automorphism lumping approach [Kiss, Miller, Simon,
Mathematics of Epidemics on Networks, 2017; Simon, Taylor, Kiss, J. Math. Bio. 62(4),
2011], by providing a matrix-oriented representation of this technique, and show how
it can be applied to a very wide range of dynamical processes on networks. This
approach can be used not only to solve the master equation of the system, but also to
analyse the summary statistics of interest. We also show the interplay between the
graph-automorphism lumping approach and the QBD structures when dealing with
SVT processes. Finally, we illustrate our theoretical results with examples from the areas
of opinion dynamics and mathematical epidemiology.

Keywords: Continuous-time Markov chain, Stochastic process, Network,
Graph-automorphism, Lumping, Summary statistics, Absorption

Introduction
Dynamical processes on networks are one of the main topics in network science
(Barrat et al. 2008; Castellano et al. 2009; Newman 2003; 2010; Porter and Gleeson
2016). Numerous applications have been modelled as dynamical processes on networks,
including epidemics (Kiss et al. 2017; Pastor-Satorras et al. 2015), magnetism (Glauber
1963), opinion dynamics (Galam 2002; Sood and Redner 2005; Sznajd-Weron and Sznajd
2000), diffusion of innovations (Bass 1969; Mellor et al. 2015; Melnik et al. 2013; Watts
2002), rumour spread (Daley and Kendall 1964; Goldenberg et al. 2001; Kempe et al.
2003), meme popularity (Gleeson et al. 2014), cultural polarisation (Axelrod 1997;
Castellano et al. 2000), racial segregation (Schelling 1969; 1971), stock market trading
(Kirman 1993), cascading failures (Gleeson et al. 2012; Haldane andMay 2011;Motter and
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Lai 2002) and language evolution (Baronchelli et al. 2006; Bonabeau et al. 1995; Castelló
et al. 2006). The mathematical analysis of such models has highlighted the rich yet subtle
dependence of dynamical phenomena on network topology (Newman 2010; Porter and
Gleeson 2016; Durrett 2007). However, the standard mathematical approach is via mean-
field theories (Kiss et al. 2017), where dynamical correlations, clustering and modularity
are ignored (Gleeson et al. 2012). While it is possible to derive high-accuracy mean-field
approximations (Gleeson 2011) and some approximation approaches are amenable to
rigorous analysis (Li et al. 2012; Van Mieghem 2011), there is still no theory that quanti-
fies the accuracy of mean-field approximations or characterises the types of networks or
dynamical processes where approximations work well.
In contrast to the use of approximate mean-field theories or simulation studies

(Stoll et al. 2012), recent approaches in mathematical epidemiology have focused on the
exact analysis of infection spread dynamics occurring on small networks, for example
to quantify the importance of nodes, in terms of outbreak size, vaccination and early
infection in SIR epidemics (Holme 2017), and to compute SIS extinction times using com-
putational algebra for all sufficiently small graphs (Holme and Tupikina 2018). By focusing
on small networks, it is possible to include heterogeneous rates of infection and recovery
in the context of particular applications, such as the spread of hospital-acquired infections
in intensive care units (López-García 2016), and to analyse these systems in terms of a
number of performancemeasures. Thus, the aim is usually to compute summary statistics
related to the dynamical process (Economou et al. 2015), instead of focusing on analysing
the complete transient dynamics of the process, which are usually more complex to study
(Keeling and Ross 2009).
Loosely speaking, a dynamical process on a network describes how the state of each

node or vertex in the network changes in time. In this paper, we focus on dynami-
cal processes that are described in terms of continuous-time Markov chains (CTMCs),
although other types of dynamical processes are possible (for example where the state-
space is continuous (Deffuant et al. 2000; Fortunato 2004; Hegselmann and Krause 2002),
and/or the dynamics deterministic (Nakao and Mikhailov 2010; Rodrigues et al. 2016;
Ward and Grindrod 2014) or non-Markovian (Kiss et al. 2015; Castro et al. 2018)). Thus
for brevity, we will refer here to dynamical processes on networks described by CTMCs
as simply network dynamics. It is well-known that the state-space of network dynam-
ics grows exponentially with the number of nodes, so can be extremely large for even
fairly small networks. Furthermore, network dynamics are determined by the infinitesi-
mal generator matrix, which contains the rates at which the process moves between pairs
of states. Given the large size of this matrix, even constructing it can prove challenging
(Van Mieghem et al. 2009). In the area of mathematical epidemiology it has been recently
shown how many network dynamical processes can be represented as quasi-birth-and-
death processes (QBDs) (Simon et al. 2011; López-García 2016; Economou et al. 2015)
by appropriately ordering the states within the state-space of the corresponding CTMC,
so that its infinitesimal generator matrix is significantly sparse and tridiagonal-by-blocks.
QBDs exploit the tri-diagonal structure of transitions occurring across groups or levels
of states, and summary statistics in these systems can be analysed by means of compu-
tationally efficient algorithms (Latouche and Ramaswami 1999). While this approach is
standard in areas such as queuing theory (Bean et al. 1997; Gómez-Corral and López-
García 2014) and population dynamics (Gómez-Corral and López-García 2015), there is
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potential for it to be adopted more widely in applications of dynamics on networks in
other areas of network science.
One way to reduce the size of the state-space is via lumping (Kemeny and Snell 1960),

where several states in the state-space are combined together into one lumped state.
Under certain conditions, quantities of interest about the unlumped system, such as its
stationary distribution or transient probabilities, can be determined from the lumped sys-
tem (Buchholz, P 1994). Efficient algorithms have been developed that can construct the
optimal lumping quotient in O(m log(n)) time, where n is the number of states and m
is the number of transitions (Valmari and Franceschinis 2010; Derisavi et al. 2003).
However, for network dynamics the number of states is exponential in the number
of vertices N, and the number of transitions is typically of order N times the num-
ber of states. It has also been recently shown that network symmetries can be used
to lump network dynamics (Kiss et al. 2017; Simon et al. 2011). For studies of small
networks, such as those described above, lumping state-space on the basis of even
relatively few symmetries can dramatically increase the size of the network that can
be studied.
The main contribution of this paper is to illustrate how lumping based on network

symmetries can be expressed in a matrix-oriented fashion for a broad class of network
dynamics. This includes a large sub-class that give rise to QBD structures for which there
are efficient algorithmic and matrix-oriented methods for the exact analysis of summary
statistics. In the “CTMC dynamics on networks” section we present a unified CTMC
framework that captures a wide range of network dynamics, the typical summary statistics
of interest and how network symmetries can be used to lump the state-space using a
matrix-oriented approach. In the “Single-vertex transition processes” section we focus on
a particular sub-class of models that we call single-vertex transition processes that result
in QBDs, and illustrate how the summary statistics described in the “CTMC dynamics on
networks” section can be computed efficiently both for the full and lumped state-spaces.
In the “Applications to classes of model” section, we show how our theoretical approach
applies to various types of models using specific examples from opinion dynamics and
mathematical epidemiology.

CTMC dynamics on networks
We start by introducing the general set-up of the type of CTMC network dynamics
that we consider. This sets out our notation and crucially the structure of state-space.
Model specific transition rates are discussed in detail in “Applications to classes of
model” section.
Let us consider a network G = (V , E) where V = {1, . . . ,N} is the set of vertices and

E ⊆ V × V is the set of edges of the network. In this paper we focus on simple networks,
i.e. unweighted, undirected networks with no self- or multi-edges. We consider that, over
time, vertices can take a number of different vertex-states from the set W = {1, . . . ,M},
and that vertices change their vertex-state according to a continuous-time Markov chain
(CTMC) X = {X(t) : t ≥ 0}. The state of X at time t ≥ 0, X(t), is a random vector
X(t) = (X1(t), . . . ,XN (t)) where Xi(t) ∈ W represents the vertex-state of vertex i at time
t ≥ 0, for 1 ≤ i ≤ N . Since each vertex takes vertex-states inW , it is clear that the space
of states of the CTMC is given by S = WV = {(w1, . . . ,wN ) : wj ∈ W , 1 ≤ j ≤ N},
with cardinality #S = MN , so that it can be written as S = {S1, S2, . . . , SMN }, with any
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arbitrary order of states. That is, each state S ∈ S of the process X is just a permutation
with repetition of N vertex-states.
For a given state S ∈ S , we denote by S(v) ∈ W the vertex-state of vertex v in state S,

for any 1 ≤ v ≤ N . Also, given two states Si, Sj ∈ S , the sub-set U(Si, Sj) ⊂ V of so-called
transition vertices contains those vertices u ∈ U(Si, Sj) such that Si(u) �= Sj(u) and Si(v) =
Sj(v) for every v ∈ V \ U(Si, Sj) (that is, those vertices that differ in their vertex-state
between states Si and Sj). For the (one-jump) transition between states Si → Sj, we denote
the transition rate by qSi→Sj ≥ 0. We will discuss how the transition rates qSi→Sj can be
determined for specific types of model in “Applications to classes of model” section. For
any given state Si ∈ S , we denote by A(Si) ⊂ S the set of states directly accessible (that is,
in one jump of the process) from Si; thus A(Si) = {Sj ∈ S : qSi→Sj > 0}.
The dynamics of the CTMC X can be then analysed in terms of its transition proba-

bilities pSj ,Si(t) = P(X(t) = Si | X(0) = Sj), ∀Si, Sj ∈ S and t ≥ 0. These probabilities,
which can be stored in a matrix P(t) = (pSj ,Si(t))i∈{1,...,MN }, j∈{1,...,MN }, can be computed
by solving the master equation

dP(t)
dt

= P(t)Q, (1)

where Q is the infinitesimal generator of X . In particular, the matrix Q contains the
transition rates between states in an ordered fashion, as follows

Q = (qSi→Sj)i∈{1,...,MN },j∈{1,...,MN }, (2)

where elements in the diagonal ofQ are just the negative sum of elements in each row.
For an arbitrary m ∈ W , say here M ∈ W without any loss of generality, one can

organise the space of states S into groups or levels,

S =
N⋃

i=0
S(i), S(i) = {S ∈ S : #{u ∈ V : S(u) = M} = i}.

That is, each level S(i) is formed by all the states in S that contain exactly i vertices
with vertex-state M. Each level can be further divided into sub-levels based on different
vertex-states (Economou et al. 2015), although this will not be necessary in this paper.
It is clear that the number of states in level S(i) is the combinatorial number #S(i) =(N
i
)
(M − 1)N−i = N !

i!(N−i)! (M − 1)N−i, which is consistent since

#S =
N∑

i=0
#S(i) =

N∑

i=0

(
N
i

)
(M − 1)N−i = MN .

One can denote then by S(i) =
{
S(i)
1 , . . . , S(i)

#S(i)

}
, for 0 ≤ i ≤ N , the states con-

tained inside each level. Here, S(i)
j denotes the jth state inside level S(i), according to

some arbitrary order, for 1 ≤ j ≤ #S(i). Then, by ordering states in S in terms of levels,
S(0) ≺ S(1) ≺ · · · ≺ S(N), the matrixQ can be written as

Q =

⎛

⎜⎜⎜⎜⎝

Q00 Q01 . . . Q0N
Q10 Q11 . . . Q1N
...

...
. . .

...
QN0 QN1 . . . QNN

⎞

⎟⎟⎟⎟⎠
, (3)

where each sub-matrix Qij contains the infinitesimal transition rates from states in level
S(i) to states in level S(j). We note here that S(N) = {(M, . . . ,M)} has a single state, so



Ward and López-García Applied Network Science           (2019) 4:108 Page 5 of 28

that the matrices QNj are in fact row vectors, matrices QjN are column vectors, and QNN
is a single-element matrix.
Instead of analysing the master Eq., (1), directly, one can analyse the dynamics of the

processX by focusing on a number of summary statistics or stochastic descriptors. In the
area of mathematical epidemiology, and when analysing the spread of a disease through
a population by means of network dynamics, these summary statistics could represent
the size of the outbreak (Economou et al. 2015), the time until the epidemic dies out
(Economou et al. 2015), the area under the curve of infectives (Ball and Clancy 1995),
or the probability of infection for a particular node of interest (López-García 2016). We
refer the reader to (Keeling and Ross 2007) for a discussion on how exact and matrix-
oriented approaches can be implemented to compute summary statistics of interest in
continuous-time Markov chains.

Summary statistics

We focus in this section on quantities of interest related to absorption. That is, the arrival
of the dynamical process to a particular absorbing state, so that the process remains indef-
initely in this state after arrival. However, we point out that our arguments would be easily
generalisable to other situations, such as the computation of steady-state probabilities for
positive recurrent CTMCs (Buchholz, P 1994; Kulkarni 2016), or other summary statis-
tics or quantities of interest (López-García 2016; Economou et al. 2015), depending on
the particular network dynamics under study.

Probabilities of absorption

Let us consider that the process X has two absorbing states, so that

S = C ∪ {Sa} ∪ {Sb},
where Sa and Sb are two arbitrary absorbing states and C = {S1, S2, . . . , SMN−2} is the
class of transient states. An example of this situation is provided in the “Biased voter
model” section. We note that although we consider here two absorbing states in our sys-
tem, our arguments generalise to processes with more than two absorbing states. We are
interested in computing the probabilities of absorption into Sa from an initial state Si,

p(a)
Si = lim

t→+∞P(X(t) = Sa | X(0) = Si) = 1 − lim
t→+∞P(X(t) = Sb | X(0) = Si)

= 1 − p(b)
Si , ∀Si ∈ C.

Probabilities {p(a)
Si : Si ∈ C} can be computed by following a first-step argument, which

yields the system of linear equations

p(a)
Si = 1

�Si

∑

Sj∈A(Si)
qSi→Sjp

(a)
Sj , ∀Si ∈ C, (4)

where �Si = ∑
Sk∈A(Si)

qSi→Sk , and with boundary conditions p(a)
Sa = 1 and p(a)

Sb = 0. Since

each equation in (4) corresponds to an initial transient state Si ∈ C, the system (4) can be
written in matrix form as

p(a) = Ap(a) + b(a). (5)

For Si, Sj ∈ C, the ijth component of the matrix A is the one-step jump transition prob-
ability qSi→Sj/�Si , the ith component of the column vector p(a) is the probability p(a)

Si and



Ward and López-García Applied Network Science           (2019) 4:108 Page 6 of 28

the ith component of the column vector b(a) is the one-step jump transition probability
qSi→Sa/�Si , which might be zero if Sa /∈ A(Si).

Time until absorption

Let us now consider the alternative situation where the processX has only one (arbitrary)
absorbing state, Sa, so that

S = C ∪ {Sa},
where C = {S1, S2, . . . , SMN−1} is the class of transient states. We note that if one has
several absorbing states in the process, and is interested in the time until absorption (into
any absorbing state), one way to proceed is to combine all these absorbing states into an
absorbing macro-state, and study the time until absorption into this macro-state.
Here, lim

t→+∞P(X(t) = Sa) = 1 regardless of the initial state X(0). Our interest is instead
in analysing the time until absorption, T = inf{t ≥ 0 : X(t) = Sa}. To this end, we can
define its Laplace-Stieltjes transform as φSi(z) = E[ e−zT | X(0) = Si], for 
(z) ≥ 0 and
Si ∈ S , and by a first-step argument one can obtain the system of linear equations

φSi(z) = 1
z + �Si

∑

Sj∈A(Si)
qSi→SjφSj(z), ∀Si ∈ C, 
(z) ≥ 0, (6)

with boundary conditions φSa(z) = 1 for all
(z) ≥ 0. This system of equations allows one
to compute any order moment of T by direct differentiation, since given any initial state

Si ∈ S , m(k)
Si = E[Tk | X(0) = Si]= (−1)k dkφSi (z)

dzk

∣∣∣∣
z=0

. For example, for k = 1 the first

order momentsm(1)
Si = E[T | X(0) = Si] can be computed from the system of equations

m(1)
Si = 1

�Si

⎛

⎝1 +
∑

Sj∈A(Si)
qSi→Sjm

(1)
Sj

⎞

⎠ , ∀Si ∈ C, (7)

with boundary conditionsm(1)
Sa = 0. The system of equations given by (7) can be expressed

in matrix form as

m(1) = Bm(1) + c, (8)

where m(1) is a column vector containing the mean times m(1)
Si for the different initial

states Si ∈ C. For Si, Sj ∈ C, the ijth component of the matrix B is the one-step jump
transition probability qSi→Sj/�Si and the ith component of the column vector c is 1/�Si .
In fact, the time to absorption T is known to follow a phase-type distribution (He

2014, Chapter 1) PH(τ ,T), where instead of considering a single initial state S ∈ S , one
can consider a row vector τ of initial probabilities for states S ∈ C, andT is the sub-matrix
of the infinitesimal generator corresponding to transient states in C. The distribution
function of T, for any t ≥ 0, is given by (He 2014, Definition 1.2.1)

FT (t) = P(T ≤ t) = 1 − τeTt1, t ≥ 0,

where 1 is a column vector of ones, and any kth order moment of T can be obtained as
(He 2014, Proposition 1.2.2)

E[Tk]→ E[Tk | X(0) ∼ τ ]= (−1)kk! τT−k1, k ≥ 1

We note that for k = 1, this is equivalent to solving system (8).
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Graph-automorphism lumping
Themain problemwhen dealing with (1) is its cardinality, where the number of ODEs is in
correspondence with the number of states,MN . This same problem affects to the compu-
tation of the summary statistics of interest, and in particular systems (4) and (7). Building
on recent work (Kiss et al. 2017; Simon et al. 2011;Ward and Evans 2019), we now describe
how network symmetries can be used to reduce the size of the CTMC state-space and
how this affects the summary statistics described in “Summary statistics” section.
A partition of state-space L = {L1, L2, . . . , Lr} is called a lumping if, roughly speaking,

one can represent the original dynamics across states in S , with dynamics across states in
L, while preserving theMarkov property (Kemeny and Snell 1960).We define the collector
matrix V ∈ {0, 1}MN×r (Buchholz, P 1994) whose ijth component is

Vij =
{
1 if Si ∈ Lj
0 otherwise

. (9)

More precisely, a necessary and sufficient condition for L to be a lumping
(Kemeny and Snell 1960) is that for each Li and Lj, there exists a q̂Li→Lj that satisfies

q̂Li→Lj = (QV)kj ,

=
∑

Sl∈Lj
qSk→Sl , for all Sk in Li.

Also, following (Buchholz, P 1994), if L is a lumping then we say that it is a strict lumping
if for each Li and Lj, there also exists a q̃Li→Lj that satisfies

q̃Li→Lj = (QTV)li ,

=
∑

Sk∈Li
qSk→Sl , for all Sl in Lj.

We now show how one can derive a lumping of the state-space from symmetries of
the network, by extending the arguments in (Kiss et al. 2017; Simon et al. 2011; Ward
and Evans 2019), while providing a matrix-oriented representation of the lumping. An
automorphism of a network G is a bijection g : V → V such that (u, v) ∈ E if and only if
(g(u), g(v)) ∈ E . We use the shorthand gv = g(v). The set of automorphisms of a network
G form a permutation group H = Aut(G) called the automorphism group of G (Godsil
and Royle 2013). Automorphisms of the network permute vertices, so we need to define
how they act on the state-space. Let H be the automorphism group of G, then we define
the action of g ∈ H on a state Si ∈ S to be

(gSi)(v) = Si(g−1v) for all v ∈ V , (10)

i.e. the vertex-state of v in gSi is the same as the vertex-state of g−1v in Si. It is easy to prove
that this is indeed an action of H on S in the group theoretic sense. It follows from our
definition (10) of the action of H on state-space that S is an H-set (Fraleigh 2003). This
means that we can partition the state-space into equivalence classes where a pair of states
Si, Sj ∈ S are equivalent if and only if there is a g ∈ H such that Si = gSj. This partition is
known as the orbit partition of the state-space.
Theorem 1. Let G = (V , E) be a finite network with automorphism group H andW be a
non-empty and finite set of vertex-states. Let S = WV be the state-space of a CTMC with
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infinitesimal generator Q, as defined in (2), with the action of H on S defined in (10). If
there is a subgroup G ≤ H such that

qSk→Sl = qgSk→gSl for all g ∈ G and Sk , Sl ∈ S , (11)

then the orbit partition of S under the action of G is a strict lumping of S .

Proof Let L = {L1, L2, . . . , Lr} be the orbit partition of the state-space S under the
action of G. Suppose that Sk ∈ Li and Sl ∈ Lj. For any Sm ∈ Li, we can find a g ∈ G such
that Sm = gSk ; thus let Sn = gSl ∈ Lj. By assumption, qSk→Sl = qSm→Sn . Since S is aG-set,
it follows that g is a bijection on Lj. Thus for all Sk , Sm ∈ Li we have

∑

Sl∈Lj
qSk→Sl =

∑

Sn∈Lj
qSm→Sn .

A similar argument can be used to show that for all Sl, Sn ∈ Lj we have
∑

Sk∈Li
qSk→Sl =

∑

Sm∈Li
qSm→Sn .

Consequently L is a strict lumping of S .

Thus we can make use of network automorphism lumping whenever (11) is satisfied. It
has been shown recently that a broad class of ‘homogeneous’ network dynamics models
satisfy this criterion for the whole automorphism group H (Kiss et al. 2017; Simon et al.
2011; Ward and Evans 2019). In this paper, we go further and show that certain ‘heteroge-
neous’ models that respect (at least some) symmetries of the network also satisfy (11). It
is straightforward to prove that a sub-set ofH that satisfies (11) forms a group, and so this
can be used to lump the state-space in accordance with Theorem 1. In what follows, we
will assume that the models under consideration satisfy (11) (that is, that there are some
symmetries in the network that can be exploited for lumping purposes).
We will now show how the lumping of the state-space reduces the dimensionality of

the master equation (Kiss et al. 2017; Simon et al. 2011), and how this can be done in
a matrix-oriented fashion. We define the distributor matrix W ∈ R

r×MN (Buchholz, P
1994), whose ijth component is

Wij =
{

1
#Li if Sj ∈ Li
0 otherwise

. (12)

It is easy to show thatWV = Ir , where Ir is the r × r identity matrix, and

(VW)ij =
{

1
#Lk if Si, Sj ∈ Lk
0 otherwise

.

Furthermore,VW commutes withQ, which follows from the fact thatL is a strict lumping
of S . To see this, note that for any Li, Lj ∈ L we have

∑

Sk∈Li

∑

Sl∈Lj
qSk→Sl = #Li

∑

Sl∈Lj
qSk→Sl for any Sk ∈ Li,

= #Lj
∑

Sk∈Li
qSk→Sl for any Sl ∈ Lj.
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But for any Sk ∈ Li and Sl ∈ Lj we have

(QVW)kl =
∑

n
Qkn(VW)nl = 1

#Lj

∑

Sn∈Lj
qSk→Sn and

(VWQ)kl =
∑

m
(VW)kmQml = 1

#Li

∑

Sm∈Li
qSm→Sl ,

thus it follows thatQVW = VWQ.
Denote the lumped transition probability by p̂Lj ,Li(t) = P(X(t) ∈ Li | X(0) ∈ Lj),

∀Li, Lj ∈ L and t ≥ 0, and let P̂(t) = (p̂Lj ,Li(t))i∈{1,...,r}, j∈{1,...,r} . Thus P̂ = WPV and with
the properties described above it is easy to derive the lumped master equation

dP̂(t)
dt

= P̂(t)Q̂, (13)

where Q̂ = WQV is the lumped infinitesimal generator. Note that one must use the same
ordering of states in S when constructing the matrices W, Q and V; see the example in
the “Applications to classes of model” section.
To differentiate between the CTMCs on the full state-space and the lumped state-space,

we will refer to the states of the lumped state-space as orbits in the remainder of this paper.
This highlights the fact that the lumped state-space results from the orbit partition of
the unlumped state-space under the action of a sub-group of the network automorphism
group, as per Theorem 1.

Lumping and summary statistics

Lumping and probabilities of absorption

We now return to the situation described in the “Probabilities of absorption” section
where we assume the state-space has two absorbing states Sa and Sb, and the set of tran-
sient states is C. We assume that the subgroup G of the network G satisfying (11) is
non-trivial, and that L = {L1, L2, . . . , Lr} is the orbit partition of C under the action of G.
We also assume that Sa and Sb are fixed by all elements inG so that they cannot be lumped
together. It follows from the definition of lumping that for every Li ∈ L and Sk , Sl ∈ Li,
�Sk = �Sl , thus for any Sk ∈ Li we define �Li = �Sk .
Let p̂(a)

Li be the probability of absorption into Sa from the lumping cell (i.e., orbit) Li ∈
L. These probabilities can be obtained from the lumped transition rates q̂Li→Lj in the
manner described in the “Probabilities of absorption” section, resulting in the system of
equations

p̂(a) = Âp̂(a) + b̂(a).

For Li, Lj ∈ L, the ijth component of the matrix Â is the one-step jump transition proba-
bility q̂Li→Lj/�Li , the ith component of the column vector p̂(a) is the probability p̂(a)

Li and
the ith component of the column vector b̂(a) is the one-step jump transition probability
q̂Li→Sa/�Li , which might be zero if Sa cannot be accessed in one jump from Li.
We now show that the probabilities of absorption are the same for all states within

the same lumping cell. An automorphism of the network g ∈ G is a permutation of the
vertices in V , thus with the action (10) we can define �g to be the representation of g as a
permutation matrix on the transient states C. When (11) is satisfied, we have�gA = A�g
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and �gb(a) = b(a). Consequently

�g(I#C − A)p(a) = (I#C − A)�gp(a) = b(a),

and hence p(a) = �gp(a). Since the solution to (I#C − A)p(a) = b(a) is unique, it follows
that for any Li ∈ L and Sk , Sl ∈ Li, p̂(a)

Li = p(a)
Sk = p(a)

Sl .

Lumping and time to absorption

We now consider the time to absorption for the situation described in the “Time until
absorption” section, where there is one absorbing state Sa and the set of transient states
is C. If one orders states as

S1 ≺ S2 ≺ · · · ≺ SMN−1 ≺ Sa,

the infinitesimal generator is given by

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−�S1 qS1→S2 . . . qS1→SMN−1
qS1→Sa

qS2→S1 −�S2 . . . qS2→SMN−1
qS2→Sa

...
...

. . .
...

...
qSMN−1→S1 qSMN−1→S2 . . . −�SMN−1

qSMN−1→Sa
0 0 . . . 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=
(
T t
0 0

)
.

Again we assume that the subgroup G of the network G is non-trivial, and that L =
{L1, L2, . . . , Lr} is the orbit partition of C under the action of G. Necessarily, Sa is fixed by
all elements inG, and we can consider Lr = Sa is the orbit with this single absorbing state.
Let V and W be the collector and distributor matrices of C respectively, which have the
form

V =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

v11 v12 . . . v1,r−1 0
v21 v22 . . . v2,r−1 0
...

...
...

...
...

vMN−1,1 vMN−1,2 . . . vMN−1,r−1 0
0 0 . . . 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=
(
Ṽ 0
0 1

)
,

W =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

w11 w12 . . . w1,MN−1 0
w21 w22 . . . w2,MN−1 0
...

...
...

...
...

wr−1,1 wr−1,2 . . . wr−1,MN−1 0
0 0 . . . 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=
(
W̃ 0
0 1

)
.

Recall that the distribution of the time to absorptionT is given by a phase-type distribu-
tion PH(τ ,T), where τ is a row vector of the initial probabilities of being in states in C and
T is the matrix of transition rates between states in C, as described above. It is well known
that a phase-type distribution is not uniquely defined by the pair (τ ,T), and we will show
that the distribution function of the time to absorption T is the same for the full and
lumped Markov chains. Let μ = τ Ṽ and U = W̃TṼ, so U is the matrix of lumped one-
jump transition rates between (transient) states in {L1, L2, . . . , Lr−1}. Let 1k be the column
vector with k elements all equal to 1, then 1r = W̃1#C and ṼW̃1#C = 1#C . An additional
consequence of the fact that VW commutes with Q, and hence T, is that (W̃TṼ)n =
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W̃TnṼ, which is easily proved by induction. It follows that exp(Ut) = W̃ exp(Tt)Ṽ, ṼW̃
commutes with exp(Tt) and consequently

FT (t) = 1 − τ exp(Tt)1#C ,

= 1 − τ exp(Tt)ṼW̃1#C ,

= 1 − τ ṼW̃ exp(Tt)ṼW̃1#C ,

= 1 − μ exp(Ut)1r .

Thus the distribution of time to absorption into Sa is the same for both (τ ,T) and (μ,U).
It follows that all moments ofT will be the same for both the full and lumped state-spaces.
Moreover the mean time to absorption for any pair of states in the same lumping cell
are the same, which can be shown in a manner analogous to that used to show that the
probabilities of absorption are the same.

Single-vertex transition processes
We focus in this section on what we call single-vertex-transition (SVT) processes, which
satisfy the condition that for every pair of states Si ∈ S and Sj ∈ A(Si), U(Si, Sj) has
cardinality #U(Si, Sj) = 1. This means that transitions between states, according to the
CTMCX , can only occur between states Si and Sj that differ in one vertex-state (that is, in
each single jump, only one vertex-state is updated). If the states in S are ordered by levels,
as described in the “CTMC dynamics on networks” section, then it is clear that non-zero
infinitesimal transition rates can only occur between any given state S ∈ S(i) and states in
either the same level S(i) (provided that #W > 2), or states in adjacent levels S(i−1) and
S(i+1). This means that (3) becomes

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q00 Q01 0 . . . 0 0
Q10 Q11 Q12 . . . 0 0
0 Q21 Q22 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . QN−1N−1 QN−1N

0 0 0 . . . QNN−1 QNN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

so that Q is tridiagonal-by-blocks, leading to a quasi-birth-and-death (QBD) process
(Latouche and Ramaswami 1999).

Probabilities of absorption

Let us now consider the same situation as the one analysed in the “Probabilities of absorp-
tion” section, where the process X has two absorbing states. For convenience, let us
assume that the two absorbing states are Sa = S(0)

1 (i.e., the first state in level S(0)) and
Sb = (M, . . . ,M) (i.e., the only state in level S(N)), so that

S = C ∪ {S(0)
1 } ∪ {(M, . . . ,M)}

where C is the class of transient states. The motivation for assuming these particular
choices of Sa and Sb is purely to place them at the beginning and end respectively of the
order of states in state-space. Given the structure by levels above, it is clear that

C = Ŝ(0) ∪
(N−1⋃

i=1
S(i)

)
,
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where Ŝ(0) = {S(0)
2 , . . . , S(0)

#S(0)} is just the level S(0) without the absorbing state S(0)
1 .

Since the state S(0)
1 is absorbing, A(S(0)

1 ) = ∅, thus we note that

Q00 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0
qS(0)

2 →S(0)
1

−�S(0)
2

. . . qS(0)
2 →S(0)

#S(0)−1
qS(0)

2 →S(0)
#S(0)

...
...

. . .
...

...
qS(0)

#S(0)−1
→S(0)

1
qS(0)

#S(0)−1
→S(0)

2
. . . −�S(0)

#S(0)−1
qS(0)

#S(0)−1
→S(0)

#S(0)

qS(0)
#S(0)→S(0)

1
qS(0)

#S(0)→S(0)
2

. . . qS(0)
#S(0)→S(0)

#S(0)−1
−�S(0)

#S(0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

0 0
q(a)
0 Q̂00

)
,

Q01 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0
qS(0)

2 →S(1)
1

qS(0)
2 →S(1)

2
. . . qS(0)

2 →S(1)
#S(1)−1

qS(0)
2 →S(1)

#S(1)
...

...
. . .

...
...

qS(0)
#S(0)→S(1)

1
qS(0)

#S(0)→S(1)
2

. . . qS(0)
#S(0)→S(1)

#S(1)−1
qS(0)

#S(0)→S(1)
#S(1)

⎞

⎟⎟⎟⎟⎟⎟⎠

=
(

0
Q̂01

)
,

Q10 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qS(1)
1 →S(0)

1
qS(1)

1 →S(0)
2

. . . qS(1)
1 →S(0)

#S(0)−1
qS(1)

1 →S(0)
#S(0)

qS(1)
2 →S(0)

1
qS(1)

2 →S(0)
2

. . . qS(1)
2 →S(0)

#S(0)−1
qS(1)

2 →S(0)
#S(0)

...
...

. . .
...

...
qS(1)

#S(1)−1
→S(0)

1
qS(1)

#S(1)−1
→S(0)

2
. . . qS(1)

#S(1)−1
→S(0)

#S(0)−1
qS(1)

#S(1)−1
→S(0)

#S(0)

qS(1)
#S(1)→S(0)

1
qS(1)

#S(1)→S(0)
2

. . . qS(1)
#S(1)→S(0)

#S(0)−1
qS(1)

#S(1)→S(0)
#S(0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
q(a)
1 Q̂10

)
,

andQNN−1 = 0 andQNN = 0, since state (M, . . . ,M) is also absorbing. The infinitesimal
generator of the process X in this scenario is then

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . . 0 0
q(a)
0 Q̂00 Q̂01 0 . . . 0 0

q(a)
1 Q̂10 Q11 Q12 . . . 0 0
0 0 Q21 Q22 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . QN−1N−1 QN−1N
0 0 0 0 . . . 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛

⎜⎝
0 0 0

q(a) Q̂ q(b)

0 0 0

⎞

⎟⎠ .

It is clear that the matrix Q̂ contains the transition rates between states in the transient
class C, while the column vectors q(a) and q(b) contain the transition rates from states in
the transient class C to the absorbing states Sa = S(0)

1 and Sb = (M, . . . ,M), respectively.
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We note here that the system of linear equations given by (4) has a direct correspon-
dence with the structure of the infinitesimal generator Q above. By ordering states in
levels as above, one can express (5) as

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

p(a)
0

p(a)
1

p(a)
2
...

p(a)
N−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

A00 A01 0 . . . 0
A10 A11 A12 . . . 0
0 A21 A22 . . . 0
...

...
...

. . .
...

0 0 0 . . . AN−1N−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

p(a)
0

p(a)
1

p(a)
2
...

p(a)
N−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

b(a)
0

b(a)
1
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that elements in the diagonal of each block Aii, for 0 ≤ i ≤ N − 1, are equal to zero.
Moreover, the sub-vectors b(a)

0 and b(a)
1 are related to the boundary conditions in (4). In

particular, each element in b(a)
0 (equivalently, b(a)

1 ) is obtained by dividing the element
corresponding to the same row in q(a)

0 (equivalently, q(a)
1 ), which corresponds to a given

state S in level Ŝ(0) ⊂ C (equivalently, S(1) ⊂ C), by �S.
We note that expressing (5) in the QBD structure above is relevant for solving it

efficiently. In particular, instead of solving this system in terms of p(a) = (I − A)−1b(a),
one can propose a forward-elimination-backward-substitution approach, which leads to
Algorithm 1.

Algorithm 1

H0 = I − A00;
J0 = b(a)

0 ;
H1 = I − A11 − A10H−1

0 A01;
J1 = A10H−1

0 J0 + b(a)
1 ;

For i = 2, . . . ,N − 1:
Hi = I − Aii − Aii−1H−1

i−1Ai−1i;
Ji = Aii−1H−1

i−1Ji−1;
p(a)
N−1 = H−1

N−1JN−1;
For i = N − 2, . . . , 0:

p(a)
i = H−1

i (Aii+1p(a)
i+1 + Ji);

Time until absorption

In this section, we apply similar arguments to the ones above in order to efficiently solve
(7), which allows one to compute the first order moments of the time to absorption for an
SVT process with one absorbing state; see the “Summary statistics” section. For conve-
nience we assume here that the absorbing state is Sa = (M, . . . ,M), the only state in level
S(N). Thus, the infinitesimal generator is given by

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q00 Q01 0 . . . 0 0
Q10 Q11 Q12 . . . 0 0
0 Q21 Q22 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . QN−1N−1 QN−1N
0 0 0 . . . 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
T t
0 0

)
.
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Given (7) and the QBD structure of the matrixQ above, and following similar arguments
to those in the previous sections, one can rewrite (7) in matrix form as

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

m(1)
0

m(1)
1

m(1)
2
...

m(1)
N−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Â00 Â01 0 . . . 0
Â10 Â11 Â12 . . . 0
0 Â21 Â22 . . . 0
...

...
...

. . .
...

0 0 0 . . . ÂN−1N−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

m(1)
0

m(1)
1

m(1)
2
...

m(1)
N−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

c0
c1
c2
...

cN−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

In the equation above, each vector m(1)
j contains first order moments m(1)

S for states
S ∈ S(j), for 0 ≤ j ≤ N − 1. According to (7), each row of each matrix Âjj′ (for
j′ ∈ {j − 1, j, j + 1}), which corresponds to a state S ∈ S(j), is obtained by dividing the
same row in Qjj′ by �S, but with elements in the diagonal equal to zero. Finally, each
element of each sub-vector cj, for 0 ≤ j ≤ N − 1, which corresponds to a state S ∈ S(j), is
equal to 1

�S
. It is clear that Algorithm 1 can be adapted for solving this system, leading

to Algorithm 2.

Algorithm 2

Ĥ0 = I − Â00;
Ĵ0 = c0;
For i = 1, . . . ,N − 1:

Ĥi = I − Âii − Âii−1Ĥ−1
i−1Âi−1i;

Ĵi = Âii−1Ĥ−1
i−1Ĵi−1 + ci;

m(1)
N−1 = Ĥ−1

N−1ĴN−1;
For i = N − 2, . . . , 0:

m(1)
i = Ĥ−1

i (Âii+1m(1)
i+1 + Ĵi);

Graph-automorphism lumping

It is easy to prove that states in the same orbit belong to the same level for an SVT pro-
cess, since graph-automorphisms only permute vertex-states. That is, for any 1 ≤ j ≤ r,
if Sk , Sl ∈ Lj then there exists a 1 ≤ p ≤ N such that Sk , Sl ∈ S(p). This has a direct impli-
cation on the structure of the matrices V and W, and thus the structure of the lumped
infinitesimal generator Q̂ in (13).
Recall that the lumped infinitesimal generator Q̂ describes the transition rates between

orbits, so the particular order in which the orbits are considered has an impact on
the structure of Q̂. Let us organise orbits into groups according to the level of the
states within the orbits. That is, given the partition L = {L1, L2, . . . , Lr}, we consider
{L(0),L(1), . . . ,L(N)} where L(j) contains all the orbits with states in S(j). For example, if
there is a lumping corresponding to a partition with r = 10 orbits, forN = 5, where states
in L1 and L2 belong to S(0), states in L3 belong to S(1), states in L4 and L5 belong to S(2),
states in L6, L7 and L8 belong to S(3), states in L9 belong to S(4) and states in L10 belong
to S(5), then

L = {L1, L2︸ ︷︷ ︸
L(0)

, L3︸︷︷︸
L(1)

, L4, L5︸ ︷︷ ︸
L(2)

, L6, L7, L8︸ ︷︷ ︸
L(3)

, L9︸︷︷︸
L(4)

, L10︸︷︷︸
S(5)

}

= L(0) ∪ L(1) ∪ L(2) ∪ L(3) ∪ L(4) ∪ L(5).
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Once orbits and states are ordered as above (by levels), it is easy to check that matrices V
andW are diagonal-by-blocks,

V =

⎛

⎜⎜⎜⎜⎝

V0 0 . . . 0
0 V1 . . . 0
...

...
. . .

...
0 0 . . . VN

⎞

⎟⎟⎟⎟⎠
, W =

⎛

⎜⎜⎜⎜⎝

W0 0 . . . 0
0 W1 . . . 0
...

...
. . .

...
0 0 . . . WN

⎞

⎟⎟⎟⎟⎠
.

This means that the graph-automorphism lumping approach, when applied to an SVT,
which is a QBD, leads to another QBD, i.e.

Q̂ = WQV =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q̂00 Q̂01 0 . . . 0 0
Q̂10 Q̂11 Q̂12 . . . 0 0
0 Q̂21 Q̂22 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Q̂N−1N−1 Q̂N−1N
0 0 0 . . . Q̂NN−1 Q̂NN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W0Q00V0 W0Q01V1 0 . . . 0 0
W1Q10V0 W1Q11V1 W1Q12V2 . . . 0 0

0 W2Q21V1 W2Q22V2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . WN−1QN−1N−1VN−1 WN−1QN−1NVN
0 0 0 . . . WNQNN−1VN−1 WNQNNVN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This also means that Algorithms 1 and 2 can be used when solving the lumped sys-
tems of equations in Section 5.1. For Algorithm 2, matrices Âij, for j ∈ {i− 1, i, i+ 1}, are
replaced byWiÂijVj, and vectors cj are substituted byWjcj for all 0 ≤ j ≤ N − 1. In prac-
tice, it is better if the matricesWiÂijVj can be determined without having to compute the
matrix multiplication. Algorithm 1 can also be adapted, and this is particularly straight
forward when the absorbing state is fixed by the automorphism group.

Applications to classes of model
So far, we have presented two exact methods to analyse network dynamics. In the first
case, if the model satisfies (11) then network automorphisms can be used to reduce
the state-space dimension via lumping. In the second case, we have shown that the
infinitesimal generator of an SVT process has the structure of a QBD, and hence efficient
algorithms exist to compute summary statistics of interest. While the second case is rela-
tively easy to check for a given model, in the first case it is generally not practical to check
that all elements of the automorphism group and pairs of states satisfy (11). Thus in this
section we describe some broad classes of models that satisfy (11), so that one only needs
to check whether the model of interest belongs to one of these classes. This builds on
recent work (Ward and Evans 2019).

Homogeneous SVT processes

Recall that in an SVT process only one vertex, the transition vertex, changes vertex-states
during a single transition, thus it is only necessary to specify the transition rates between
pairs of vertex-states to define an SVT process. While this rate may depend on various
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quantities (such as the number of neighbours of the transition vertex in each vertex-state),
when the dependence of the transition rate function on these quantities is independent
of the particular vertex involved, we call the model a homogeneous single-vertex transition
(HomSVT) model. Consequently, the dynamics of the model can be represented graph-
ically by a directed network on the vertex-states, where edges represent possible tran-
sitions. We call this a network dynamics diagram and an example for the SIS model of
epidemic spreading is illustrated in Fig. 1. Table 1 is a list of HomSVT processes and Fig. 2
illustrates the corresponding network dynamics diagrams.
Note that high accuracy mean-field approximations for HomSVT models have

been derived (Gleeson 2011; 2013; Fennell and Gleeson 2019) and it has also
been shown that the transition rates of HomSVT models can depend on any met-
ric that is invariant under automorphisms (Ward and Evans 2019), which is natu-
ral for typical network dynamics models (otherwise the network structure would be
ignored). Thus the full network automorphism group can be used to lump state-space,
i.e. G = H .
We will now illustrate our analysis on a very simple numerical example of a HomSVT

model where it is possible to obtain analytical results.

Biased votermodel

Inspired by the voter model of opinion dynamics, we introduce a continuous-time
HomSVT which we dub the “biased voter” model, and consider its dynamics on the two-
edge path network illustrated in Fig. 3, which for brevity we will refer to as simply the path
network.
Vertex states represent opinions of which there are only two, denoted by 0 or 1, and so

W = {0, 1}. If vertex v has degree k and opinion 0, it switches to opinion 1 at a rate αm1/k,
where α ≥ 0 is a rate parameter andm1 is the number of v’s neighbours that have opinion
1. Similarly, if v has opinion 1 then it switches to opinion 0 at a rate βm0/k, where β ≥ 0
is a rate parameter andm0 is the number of v’s neighbours that have opinion 0. If α = β ,
then this model corresponds to the standard voter model in continuous time, however if
α > β then there is a bias towards opinion 1. We can set α = 1 and consider α ≥ β

without loss of generality, since we can always relabel the opinions, relabel and re-scale
the rates, and re-scale time.
The opinion dynamics are then described in terms of a continuous-time Markov

chain X = {X(t) : t ≥ 0}, where X(t) represents the opinions of the
population at time t and can take values among states in the state-space S =
{000, 001, 010, 100, 011, 101, 110, 111}, where the vertex-states of vertices 1 to 3 are indi-
cated from left to right. The consensus states 000 and 111 are absorbing and with the

Fig. 1 SIS model. A graphical representation of the SIS model of epidemic spreading, indicating that a
susceptible (S) vertex becomes infected (I) at a rate βmI , wheremI is the number of infected neighbours, and
an infected vertex becomes susceptible at a rate γ



Ward and López-García Applied Network Science           (2019) 4:108 Page 17 of 28

Table 1 HomSVT processes

Name Subject W Parameters References Diagram

SI Epidemics {S, I} β (Kiss et al. 2017;
Pastor-Satorras and
Vespignani 2001)

(a)

SIS " " β , γ (Kiss et al. 2017;
Pastor-Satorras et al.
2015)

(b)

SIR " {S, I, R} " " (c)

SIRS " " β , γ , δ " (d)

SICR " {S, I, C, R} β , γ , 
, ε , η, μ (Cao et al. 2014) (e)

MSEIR " {M, S, E, I, R} β , γ , δ, ε , b (Pastor-Satorras et al.
2015; Hethcote 2000)

(f)

Voter Opinion dynamics {−1,+1} none (Sood and Redner
2005; Castellano et al.
2003)

(g)

Nonlinear q-voter " " q (Castellano et al. 2009) (h)

Biased voter " {0, 1} α, β Sec. 1 (i)

Constrained voter " {L, C, R} none (Vazquez et al. 2003) (j)

Bass Innovation diffusion {S, I} β , μ (Bass 1969) (k)

SISa " " β , γ , μ (Hill et al. 2010) (l)

LISA " {L, I, S, A} γ , 
 (Mellor et al. 2015) (m)

DK " {S, I, R} β , γ (Daley and Kendall
1964)

(n)

Threshold " {S, I} Mk (Watts 2002) (o)

Complex contagion " {S0, S1, S2} β , R1, R2 (Melnik et al. 2013) (p)

ordering of states

000︸︷︷︸
S(0)

≺ 001 ≺ 100 ≺ 010︸ ︷︷ ︸
S(1)

≺ 011 ≺ 110 ≺ 101︸ ︷︷ ︸
S(2)

≺ 111︸︷︷︸
S(3)

,

the biased voter model dynamics on the path network are described in terms of the
infinitesimal generator

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
β −(β + α

2 ) 0 0 α
2 0 0 0

β 0 −(β + α
2 ) 0 0 α

2 0 0
β 0 0 −(β + 2α) α α 0 0
0 β

2 0 0 −(
β
2 + α) 0 0 α

0 0 β
2 0 0 −(

β
2 + α) 0 α

0 β β 0 0 0 −(2β + α) α

0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

However, from Fig. 3 we observe that swapping vertices 1 and 3 leaves the graph
unchanged. This is the only non-trivial symmetry in the graph and thus the automor-
phism group is the cyclic group of order 2. Swapping vertices 1 and 3 in the state 001
results in 100, thus these states can be lumped together. Similarly, states 011 and 110 can
be lumped together and all other states are fixed by this swap. Consequently, the lump-
ing partition can be written as L = {L1, L2, . . . , L6}, where L1 = {000}, L2 = {001, 100},
L3 = {010}, L4 = {011, 110}, L5 = {101} and L6 = {111}. For this example, the collector
and distributor matrices from the “Graph-automorphism lumping” section are
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Fig. 2 HomSVT network diagrams. Network diagrams for HomSVT processes listed in Table 1. Vertex-states
are indicated by labels within nodes of the networks, possible transitions by directed edges and the transition
rates are written alongside the corresponding edges, rate parameters are listed in Table 1. The degree of the
transition vertex is denoted by k andmI is the number of neighbours of the transition vertex with vertex-state
I, and similarly for other vertex-states, e.g.mC ,m± etc. In (h), f (x, q) = xq + ε[ 1 − xq − (1 − x)q] (see
(Castellano et al. 2009) for details). The transition in (o) and (p) have rate 1 if the inequalities are satisfied

Fig. 3 Path network. The two-edge path network on which we consider the Biased Voter model
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V =

⎛

⎜⎜⎜⎝

V0 0 0 0
0 V1 0 0
0 0 V2 0
0 0 0 V3

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

W =

⎛

⎜⎜⎜⎝

W0 0 0 0
0 W1 0 0
0 0 W2 0
0 0 0 W3

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1

2
1
2 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 1

2
1
2 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

respectively, thus the lumped infinitesimal generator is

Q̂ = WQV

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
β −(β + α

2 ) 0 α
2 0 0

β 0 −(β + 2α) 2α 0 0
0 β

2 0 −(
β
2 + α) 0 α

0 2β 0 0 −(2β + α) α

0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We now illustrate for the original and lumped CTMCs how to compute probabilities of
absorption into the states 000 and 111, given by

p(000)
S = lim

t→+∞P(X(t) = 000 | X(0) = S), S ∈ S , and

p(111)
S = lim

t→+∞P(X(t) = 111 | X(0) = S) = 1 − p(000)
S , S ∈ S .

In order to compute these probabilities, (4) leads to

p(000)
001

(
β + α

2

)
= βp(000)

000 + α

2
p(000)
011 ,

p(000)
100

(
β + α

2

)
= βp(000)

000 + α

2
p(000)
110 ,

p(000)
010 (β + 2α) = βp(000)

000 + αp(000)
011 + αp(000)

110 ,

p(000)
011

(
β

2
+ α

)
= β

2
p(000)
001 + αp(000)

111 ,

p(000)
110

(
β

2
+ α

)
= β

2
p(000)
100 + αp(000)

111 ,

p(000)
101 (2β + α) = βp(000)

001 + βp(000)
100 + αp(000)

111 .
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Taking into account the boundary conditions p(000)
000 = 1 and p(000)

111 = 0, we get the system
in matrix form

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

p(000)
001

p(000)
100

p(000)
010

p(000)
011

p(000)
110

p(000)
101

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 α
α+2β 0 0

0 0 0 0 α
α+2β 0

0 0 0 α
2α+β

α
2α+β

0
β

2α+β
0 0 0 0 0

0 β
2α+β

0 0 0 0
β

α+2β
β

α+2β 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

p(000)
001

p(000)
100

p(000)
010

p(000)
011

p(000)
110

p(000)
101

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2β
α+2β
2β

α+2β
β

2α+β

0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

0 A12
A21 0

) (
p1
p2

)
+

(
b1
0

)
,

which inherits the structure ofQ for the transient (i.e. non-absorbing) states.We note that
in this case, because 000 is a single state within its level, b1 = A10. The lumped system is

⎛

⎜⎜⎜⎝

p(000)
2

p(000)
3

p(000)
4

p(000)
5

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎝

0 0 α
α+2β 0

0 0 2α
2α+β

0
β

2α+β
0 0 0

2β
α+2β 0 0 0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

p(000)
2

p(000)
3

p(000)
4

p(000)
5

⎞

⎟⎟⎟⎠ +

⎛

⎜⎜⎜⎜⎝

2β
α+2β

β
2α+β

0
0

⎞

⎟⎟⎟⎟⎠

=
(

0 W1A12V2
W2A21V1 0

) (
p̃1
p̃2

)
+

(
W1A10V0

0

)
,

where p̃i is just the lumped version of pi, and p(000)
i = limt→∞ P(X(t) = 000 | X(0) ∈ Li).

To apply Algorithm 1, we note that since 000 is the only state in the zeroth level, H0 = 1
and J0 = 0. Then if Ã12 = W1A12V2 and Ã21 = W2A21V1, we also have

H1 = I2, J1 = W1A10V0, H2 = I2 − Ã21Ã12, and J2 = Ã21J1.

Since H2 is a two-by-two matrix, we can easily find p̃2 = H−1
2 J2 and p̃1 = Ã12p̃2 + J1,

resulting in

p(000)
001 = p(000)

100 = p(000)
2 = (2α + β)β

(α + β)2
= 1 − p(111)

2 ,

p(000)
010 = p(000)

3 = (α2 + 4αβ + β2)β

(2α + β)(α + β)2
= 1 − p(111)

3 ,

p(000)
011 = p(000)

110 = p(000)
4 = β2

(α + β)2
= 1 − p(111)

4 ,

p(000)
101 = p(000)

5 = 2(2α + β)β2

(α + 2β)(α + β)2
= 1 − p(111)

5 .

In Fig. 4, we illustrate the lumped transition rates and the probabilities of absorption for
this example for the case where α = 1 and β = 0.5. We use a single state in each orbit to
represent that orbit (e.g. the state 100 represents the lumping cell L2), and the number of
states within each orbit is indicated by the size of the grey circles. The lumped transition
rates are illustrated by arrows and the size of the arrow head is scaled according to the cor-
responding transition rate. The coloured circles indicate the probabilities of absorption;
those above each state correspond to absorption into the state 111 and those below cor-
respond to absorption into the state 000. The colour and size of the circles corresponds
to the absorption probability according to the colour bar. From Fig. 4 it is clear that states
010 and 101 are not accessible from any other states. Moreover, the bias means that it is
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Fig. 4 Path network transitions. Lumped transition rates and probabilities of absorption for the Biased Voter
model on the two-edge path network with α = 1 and β = 0.5. Orbits are indicated by a single
representative state, e.g. 000. The size of the grey circles indicates the size of the corresponding orbit, arrows
illustrate non-zero transition rates and coloured circles correspond to absorption probabilities into 000
(below the orbit representative) and 111 (above the orbit representative)

more likely that the absorbing state 111 is reached from 010 than the absorbing state 000
is reached from 101.

Heterogeneous SVT processes

It is also possible to use network automorphisms to lump the state-space of heteroge-
neous SVT (HetSVT) models, if the heterogeneity respects (at least some of) the network
symmetries. As an example, we consider an SIS epidemic spreading model inspired by a
peripatetic health-care worker network (Temime et al. 2009; López-García and Kypraios
2018), illustrated in Fig. 5. This network represents the spread of a hospital-acquired
infection in an intensive care unit where four patients (nodes 4, 5, 6 and 7) are treated by
different health-care workers (nodes 1, 2 and 3). The different types of health care lead
to different infection rates β1, β2 and β3. We consider an SIS epidemic model where all
nodes recover at rate γ , and where the rate at which each node becomes infected (S → I)
is the sum of all rates βi over edges with infected neighbours. In particular, for the case
illustrated in Fig. 5, if one considers the notation β14 = β41 = β1, β24 = β42 = β2,
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β25 = β52 = β3, etc, and βij = 0 if vertices i and j are not connected, then each suscep-
tible vertex i becomes infected at a rate

∑
j βjiS(j), where S(j) = 0 if j is susceptible, and

S(j) = 1 if j is infective.
The size of the state-space for this example is 27 = 128, so we will not write

out the full state-space or the infinitesimal generator. As in the Biased Voter model
example, we will denote states by 0000000, 0000001 etc., where the vertex-states of ver-
tices 1 to 7 are indicated from left to right. The state 0000000 is the only absorbing
state.
We can represent this type of HetSVTmodel using a weighted network, where the pos-

itive weights correspond to the heterogeneous infections rates. The automorphism group
of this weighted network preserves weights as well as edges and consequently satisfies
(11), so we can use these symmetries to lump state-space. For the example illustrated
in Fig. 5, the automorphism group is generated by a single permutation, which in cycle
notation is (2 3)(4 6)(5 7), and is isomorphic to the cyclic group of order 2. Note that the
automorphism group of the weighted graph is a sub-group of the automorphism group of
the unweighted graph. However, we will assume the particular case where β2 = β3. In this
case, the generators of the automorphism group of the weighted network are (4 5) and
(2 3)(4 6)(5 7), and this group is isomorphic to the dihedral group D8, which is also the
automorphism group of the unweighted graph. The corresponding lumped state-space
consists of 42 orbits.
In Fig. 6 we illustrate the structure of the infinitesimal generator for the case γ = 1.0,

β1 = 0.12, β2 = β3 = 0.35.
We choose a single state to represent each orbit in the lumping partition and these are

illustrated in correspondence with Fig. 5, so that the top vertex is vertex 1, with 2 below on
the left, 3 below on the right and so on. The size of each orbit is indicated by the grey circle
behind the orbit representative, and the sizes of these are either 1, 2, 4 or 8. The possible
transitions between orbits are indicated by arrows between the orbit representatives. As
in Fig. 4, the sizes of the arrow heads are scaled according to the corresponding transition
rate. Note that for each level between 1 and 4, there is at least one state that cannot be
reached by an infection, e.g. the state 0011100 in level 3.
In Fig. 7 we illustrate the mean times to absorption from each orbit in the lumping

partition for the cases β1 = 0.12, 1.0 and 2.0, each with γ = 1.0 and β2 = β3 = 0.35.

Fig. 5 Peripatetic health-care worker network with heterogeneous infection rates
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Fig. 6 Lumped transition rates for the SIS model on the peripatetic health-care worker network. Orbits are
indicated by a single representative state that is formatted in correspondence with Figure 5. The size of the
grey circles indicates the size of the corresponding orbit, arrows illustrate non-zero transition rates and the
size of the arrow head scales with the corresponding transition rate

The initial orbits are indicated on the horizontal axis by the corresponding orbit repre-
sentatives and the time to absorption is plotted on the vertical axis. The orbits are grouped
together by levels and these are indicated by the shading. Note that intuitively the largest
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absorption times are from the state 1111111, but the absorption time increases dramati-
cally from β = 1 to β = 2. While the absorption times generally increase with the level,
there are several cases where the absorption time is higher in a lower level state than some
of the higher level states, indicating the importance of network effects.

Discussion
In this paper we have proposed a unified framework to represent network dynam-
ics in terms of continuous-time Markov chains. We have shown how a sub-set of
these models (SVT processes) lead to the analysis of QBD processes in the theory
of CTMCs, for which there are a number of algorithmic techniques already available
in the literature. Instead of focusing on studying the master equation, our interest
has been the computation of a number of summary statistics related to absorption
(namely, probabilities of absorption when two absorbing states are present in the sys-
tem, and time until absorption when there is just one single absorbing state). We have
extended the results in (Kiss et al. 2017; Simon et al. 2011) to a broader class of mod-
els in which network symmetries can be used to reduce the size of state-space via
lumping, we have also illustrated how the lumping approach can be represented in a
matrix-oriented fashion, and the interplay between this and the QBD structure of SVT
processes.
We believe that our results should generalise to broader classes of network, for exam-

ple heterogeneous SVT processes could be re-framed as dynamics on weighted networks.
Another possible future direction for this work is to consider how the lumping criterion
that we have presented, (11), could be applied to more general types of model symmetry,
including cases where there isn’t an underlying network. For example, there is potential to
exploit lumping based on model symmetry in other disciplines including queuing theory,

Fig. 7 Lumped mean absorption times for the SIS model of epidemics on the peripatetic health-care worker
network illustrated in Fig. 5, with recovery rate γ = 1 and infection rates β1 = 0.12, 1 and 2, and
β2 = β3 = 0.35. Initial orbits S are indicated by orbit representatives on the horizontal axis and the mean
times to absorptionmS is plotted on the vertical axis
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cellular and stochastic automata (Buchholz and Kemper 2004), Markovian agent-based
models (Banisch et al. 2013; Banisch and Lima 2015; KhudaBukhsh et al. 2019), hierarchi-
cal Markov models (Buchholz 1995), continuous-time Bayesian networks (Nodelman et
al. 2002) and more general CTMCmodels.
The interpretation of the summary statistics related to absorption depend on the

process under consideration, cf. consensus in the voter model with the end of an infec-
tion in the SIS epidemic model. However, it is clear that our approach generalises
to other summary statistics amenable to analysis by means of first-step arguments.
This includes quasi-stationary distributions (Darroch and Seneta 1967; Gómez-Corral,
A and López-García 2012), the probability distribution of the number of events (e.g.,
infections) during a particular time interval (e.g., until end or detection of the out-
break) (Economou et al. 2015; Gómez-Corral and López-García 2017; López-García et
al. 2019), the probability of a particular node (i.e., individual) suffering a particular state
(e.g., an infection) during a particular time interval (e.g., during an outbreak) (López-
García 2016), the area under the curve of infectives for epidemic processes (Ball and
Clancy 1995), or stationary (i.e., steady-state) distributions for non-absorbing processes
(Economou et al. 2015).
Exact analyses of Markov chain dynamics on networks are rare since authors typ-

ically resort to mean-field or related approximations. These can do surprisingly well,
but it is unclear what model and network features ensure this (Gleeson et al. 2012).
One of the simplest mean-field approximations corresponds to the ‘well-mixed’ case,
whose master equation can be viewed as the network automorphism lumping of the
fully connected network (Kiss et al. 2017; Simon et al. 2011). It would be interesting
to identify other graphs where symmetry gives rise to significant lumping and better
dynamical approximations. For example, it has been shown that the number of lumped
states is linear in the number of vertices for the complete and star graphs, and is
cubic in the number of vertices for the household graph (Simon et al. 2011). Other
graphs that have high symmetry, and hence a (relatively) small number of lumped states
include bi- and multi-partite graphs, regular trees, graphs with multiple isomorphic dis-
connected components and graphs with many leaves. However, our experience is that
identifying such graphs can be extremely difficult as they necessarily have to have a
large amount of symmetry and this makes computing the lumped state-space difficult.
An alternative approach might be to consider how lumping could be used to quan-
tify the accuracy of mean-field approximations, for example by considering how close
certain partitions of states are to exact lumping partitions, or approximate lumping
based on structurally similar sets of vertices, rather than vertices that can be permuted
via automorphisms, e.g. using local symmetries (KhudaBukhsh et al. 2019). There is
also scope to develop more accurate mean-field approximations, similar to those in
(Gleeson 2011; 2013; Fennell and Gleeson 2019), for the type of unified framework
proposed here.
In summary, we have presented a general framework of dynamics on networks. One

of the main purposes of this general model is to show how a wide range of dynam-
ical processes on networks can be formulated as Markov chains. Our hope is that
this will help to formalise the analytical treatment of more complex and more real-
istic models, ultimately improving our understanding of the phenomena that they
represent.
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