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from the original unseen graph. More importantly, we are interested in conceiving a
measure that approximates the rank correlation among them without any knowledge
of the original graph. To this extent we formulate the HAK measure that is based on
computing the impact redistribution of PAGERANK according to the local graph
structure. We further propose an algorithm that identifies connected subgraphs over
the input graph for which the relative ordering is preserved. Finally, we perform
extensive experiments on both real-world Web and social network graphs with more
than 100M vertices and 10B edges as well as synthetic graphs to showcase the utility of
HAK and our High-fidelity Component Selection approach.
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Introduction

Most real-world graphs collected from the Web like Web graphs and social network
graphs are partially discovered (crawled) or in other words their graph topology is not
known in entirety (Li et al. 2015), especially if not crawled for a particular purpose
or subset, but extracted from existing crawls, such as Web archives. The goal of Web
archive crawlers is to capture as much as possible starting from some seed set within
some national domain or even broader, given the available but limited resources (Costa
et al. 2017). Complicating matters further, Web archives are often not constructed in one
piece but by merging partial crawls (Holzmann et al. 2016). Additional reasons for miss-
ing information (links) in Web archives include the restrictive politeness policies (i.e.,
robots.txt) or random timeouts of Web servers. Several studies on this topic have shown
that the problem of partial discovery is indeed a common issue (Huurdeman et al. 2014),
inevitably affecting the graphs extracted from such crawls as well.

As a result, important graph properties and measures used for link analysis and struc-
tural characterization like authority of vertices might be inherently flawed or exhibit
deviations from their original values. This is commonly observed where users are typi-
cally agnostic to the incompleteness of the obtained graph, hoping that the input graph
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is a reasonable representative sample of the underlying (unseen) original graph. Some of
the well-known measures for computing authority of vertices or relative ordering of ver-
tex authorities based on random walks are PAGERANK (Page et al. 1999) and its variants
(Kleinberg 1999; Haveliwala 2002).

As an example, consider PAGERANK computed over the .gov Web graph that we will
analyze in detail later in this work. Here, the women .nasa . gov(Women@NASA) page
has a high PAGERANK value and is subsequently found within the top 300 pages. How-
ever, on a closer examination we observe that most of its PAGERANK is contributed by an
in-link from the highly popular NASA homepage (nasa.gov). If for some reason this
particular in-link is not crawled, e.g., due to a temporary downtime or the decision by
NASA to exclude their homepage from being crawled, this would cause a large decrease
in its PAGERANK and hence a severe rank deviation in the obtained crawl.

One might argue that this is an unlikely case since important pages enjoy a high pri-
ority and are therefore commonly crawled, but this might not always be the case in
reality. To support our claim we performed the following experiment. We ranked pages
in a graph constructed from a .de Web archive in 2012! based on (1) inlinks and (2)
PAGERANKS. The above mentioned graph considered only links that emerged in 2012
(Holzmann et al. 2017). We then checked if the top ranked pages in this crawled graph
were indeed archived in that year. Our experiments show that from among the top 1000
pages, ranked according to inlinks, roughly 30% are contained in the archive. According
to PAGERANK rankings, less than 20% of the top 1000 pages are contained in the archive.
With this small experiment we show that high priority vertices can indeed be missed in
real world crawls, which can further cause a rank deviation in the obtained crawled graph.

In this paper we focus on studying such deviations in ordering/ranking imposed by
PAGERANK over crawled graphs. Vertices in our input crawls are either completely
crawled (all neighbors are known) or are uncrawled (none of their outgoing neighbors are
known but their incoming links from the crawled vertices are known), which we also refer
to as ghost vertices. In this paper, we focus on the following 3 research questions.

® RQI: Do crawls or partially discovered real-world graphs show a deviation in their
PAGERANK orderings when compared to full network topology?

e RQII: How can we reliably measure the extent of such ranking deviations for
crawled graphs?

e RQIII: Can we identify suitable sized components in a graph for which PAGERANK
computations are reliable?

We first establish empirically that real-world networks indeed show a deviation in their
PAGERANK orderings when not crawled completely compared to the full graph (RQ I).
We present ranking correlations (measured by Kendall's Tau) dropping down to 0.55 on
Web graphs when only 50% of it is crawled. That corresponds to an average positional
displacement of 66,216 ranks among the top 30% pages in the above mentioned .gov
graph. We note that for most of the applications, only ranking deviations of the top pages
are interesting. In addition the results from (Ng et al. 2001a) imply that vertices with small
actual PAGERANKS (in the original, unperturbed graph) will have smaller deviations with
respect to their original scores in the modified or crawled graph.

Lthe archive has been generously provided to us by the Internet Archive
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Users and applications that use rankings induced by PAGERANK as a feature for down-
stream ranking and learning tasks would naturally be interested in estimating such a
deviation from the (crawled) input graph at hand as a measure of confidence. As an
answer to RQ II, we propose a measure called HAK (an acronym of the authors’ last-
names) that estimates the ranking deviation of an crawled input graph when compared to
the original graph. Note that at all times we are agnostic about the original (unseen) target
graph and hence, the estimates are purely based on the observed input graph. Also, our
target graphs are large Web or social network graphs and hence, the computation of such
a measure should be scalable. The HAK measure relies on local estimates of vertex-level
attributes and can be easily computed in a distributed manner.

Our third contribution, towards RQ III, is to propose an algorithm for the selection
of maximum connected subgraphs in the given crawls, for which the relative ordering of
the vertices is preserved. In other words, the aim is to identify connected components
from a crawl where the ordering among the vertices would have bounded deviations with
respect to the unknown parent graph. This is essential for users to give them a more
representative set of vertices over which measures can be more accurately computed, if
their input graph suggests strong ranking deviations.

Finally, we perform extensive experiments on both real-world Web and social network
graphs with more than 100 million vertices and 10 billion edges as well as synthetic graphs
to discuss the utility of HAK and propose a new algorithm, which we refer to as High-
fidelity Component Selection, in order to find components from a given crawl that have
relatively lower ranking deviations.

Our results, apart from measuring the deviations in PAGERANKS, also shed light on
the structure of the Web and the nature of Web graphs in general. We observe that Web
graphs behave more (although not completely) like random graphs under certain crawling
strategies.

We remark that the main results corresponding to RQ I and RQ II appeared in the
preliminary version of the paper(Holzmann et al. 2018). The present work in addition
investigates RQ II towards which new algorithm is proposed and evaluated. In addition,
we provide a more detailed analysis and discussion on the results of the other two research

questions.

Related work

Ng et al. (2001a) analyzed the conditions under which eigenvector methods like PAGER-
ANK and HITS can provide reliable rankings under perturbations to the linkage patterns
for a given collection. In particular for PAGERANK they showed that if the perturbed or
modified web pages (a web page is perturbed/modified for example when the links from
the page are removed or are not followed) did not have a high overall PAGERANK scores
in the original graph, then the new PAGERANK scores will not be far from the original.
Though they bound the variational distance between the PAGERANK distributions of the
original and the modified graph in terms of the original PAGERANK scores of the modified
pages and the teleportation probability, they provide no insight of how to estimate such a
measure when only the modified graph or the crawl is given. We, on the other hand, pro-
vide a measure to estimate ranking deviations of vertices in the given graph with respect
to their orderings in the original unmodified graph. Ng et al. (2001b) uses the insights
from (Ng et al. 2001a) to propose two new algorithms: Randomized HITS, which merges
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the hubs-and-authorities notion from HITS with a stabilizing “reset” (teleportation to a
random vertex) mechanism from PageRank; and Subspace HITS, which provides a prin-
cipled way of combining multiple eigenvectors from HITS to yield aggregate authority
scores.

Bianchini et al. (2005) analysed the stability among other properties of PageRank. In
essence, they show that overall change of PageRank the whole Web is proportional to
the sum of PageRank of the perturbed pages, i.e, PageRank is robust with respect to
changes taking place in small communities of the Web. Their theoretical analysis provide
a stronger bound as compared to (Ng et al. 2001a) on change in PageRank in presence of
perturbations. Similar to (Ng et al. 2001a) their result gives no insight on how to measure
the discrepancy if only the modified graph is known.

Ghoshal and Barabdsi (2011) predicts analytically the presence of a small number of
super-stable nodes in scale-free networks whose ranking given by PageRank is excep-
tionally stable under degree-preserving perturbations. The number of these super stable
nodes is typically very small, for example with the numbers reported (Ghoshal and
Barabdsi 2011) range from 1 to 4. We, on the other hand, compute ranking deviations
exhibited by a larger percentage of the top ranking nodes including the not so stable
(towards perturbations) nodes. Moreover, the more general crawling strategies that we
consider in this work may not always be degree preserving as the case studied in the above
work.

Boldi et al. (2004) were the first to show the paradoxical effects of PAGERANK compu-
tation on Web graphs. They discuss a measure of effectiveness for crawl strategies based
on whether the graph obtained after a partial visit is in some sense representative of the
underlying Web graph for the PAGERANK computation. Similar to our setting, they study
how rapidly the computation of PAGERANK over the visited subgraph yields relative ranks
(measured by Kendall’s Tau) that agree with the ones the vertices have in the full graph.
In a later work (Boldi et al. 2006), they show a connection between graph fibrations and
Markov chains with restart, a particular kind of Markov chains that include the PAGER-
ANK one as a special case. In (Vattani et al. 2011) the authors operate on a given subset
of vertices and consider the general problem of maintaining multi-scale graph structures
by preserving a distance metric based on PAGERANK among all pairs of sampled vertices.
Other authors investigated this problem before as well, however, none of them focused on
random walk algorithms, such as the widely used PAGERANK, neither explored the effect
of missing nodes in real-world Web graphs (Wang et al. 2012; Smith and Moody 2013;
Smith et al. 2017).

The other area of related work comprises of graph sampling approaches which can be
broadly classified into two categories: traversal based methods (Leskovec and Faloutsos
2006; Wang et al. 2010; Maiya and Berger-Wolf 2011) and random walk based meth-
ods (Gjoka et al. 2011; Li et al. 2015; Hiibler et al. 2008). Graph-traversal based methods
employ breadth-first search (BFS) or the depth-first search (DFS) algorithm to sample
vertices and are typically shown to exhibit bias towards high-degree vertices (Wang et
al. 2010). Maiya and Berger-Wolf (2011) compare various traversal based algorithms and
define representativeness of a sample while proposing how to guide the sampling pro-
cess towards inclusion of desired properties. On the other hand, the random walk based
methods are popular for graph sampling because they can produce unbiased samples or
generate samples with a known bias (Zhou et al. 2016; Gjoka et al. 2011; Li et al. 2015;
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Hiibler et al. 2008). Other works have directly tried to estimate graph properties such
as degree distribution estimation (Gjoka et al. 2011), clustering coefficient estimation
(Hardiman and Katzir 2013), size estimation (Katzir et al. 2011), and average degree esti-
mation (Dasgupta et al. 2014). One of the popular sampling algorithms used for Web
graphs is the Forest Fire algorithm by Leskovec and Faloutsos (2006), a generative graph
model, in which new edges are added via an iterative “forest fire” burning process where it
is shown to produce graphs exhibiting a network community profile plot similar to many
real-world graphs. We use this approach in generating synthetic real-world graphs.

However, most of these works, with the exception of (Li et al. 2015), assume a known
graph topology. Our work focuses on the unknown graph topology, an arguably more
general and useful scenario in Web graphs and social networks gathered by crawlers.
In addition, with our component selection approach we optimize for a more reliable
PAGERANK ordering instead of other properties like degree distributions or clustering
coefficients as considered in earlier works.

Preliminaries and problem

PageRank. As originally conceived, PAGERANK ranks vertices of a directed graph G =
(V,E) where V and E are the vertices and edges respectively, based on the topological
structure of the graph using random walks (Page et al. 1999). The problem we are address-
ing in this paper is attributed to this random walk model behind PAGERANK, representing
the authority or importance of a vertex.

For some fixed probability «, a surfer at vertex v € V jumps to a random vertex with
probability o and goes to a linked vertex with probability 1 — «. The authority of a vertex
v is the expected sum of the importance of all the vertices u that link to v. Consequently, a
vertex receives a high PAGERANK value and is ranked at the top by ordering the webpages
by importance when it is either connected by many incoming edges or reachable from
another important page.

We first define the notions of target graph, crawl and ghost vertices in the context of
partial discovery/sampling in graphs:

Definition 1 (Target graph) The subset of vertices (with the induced edges) of a larger
graph (e.g., the Web) that is theoretically reachable by a crawler given its seeds, e.g., a
domain, a top-level domain, or all webpages that belong to a certain topic in case of focused
crawlers. This graph would be available if every link was followed and every page captured
by the crawler, illustrated by the target in Fig. 1.

Definition 2 (Crawled graph or Crawl) The (partial) graph derived from the set of web-
pages that have actually been visited by the crawler, discovered/linked yet uncrawled pages
are not included. This subset of the target graph is illustrated by the crawl in Fig. 1.

Definition 3 (Ghost vertex) Although a hyperlink on a crawled page points to another
page that belongs to the target graph, there is a chance the crawler never crawled that page,
yet it has discovered its existence as it was pointed from one of the crawled pages. Such
a page or vertex, which is never crawled (or its outgoing neighbors are not known) but its
existence and incoming edges from other crawled page/pages are known, is referred to as
ghost vertex, shown by the gray vertices outside the crawl in Fig. 1.
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Fig. 1 Neighborhood of a webpage in different subgraphs of the Web

Ranking Deviations. The deviation among two rankings induced by PAGERANK is a
global objective, independent of a specific query. Hence, local or relevance-based mea-
sures such as nDCG are not applicable here. The most common metrics to quantify rank
correlation are Spearman’s Rho and Kendall's Tau, which are both similar as they are
special cases of a more general correlation coefficient and measure relative displacements.

In this work, we use Kendall’s Tau (Kendall 1938), ranging from [ —1, 1], with 1 cor-
responding to a perfect rank correlation, 0 corresponding to no correlation and —1 to a
perfect inverse correlation, to compare the correlation/deviation of rankings computed
on the vertices of a crawl G¢ with respect to that of the target graph Gr.

In Fig. 2 we provide a few examples of possible graph structures, where partial knowl-
edge of the graph may affect the ranking returned by the PAGERANK values. We remark
that in the next sections, we will also provide empirical evidence, supporting the fact that
there exists ranking deviations in crawls of some real-world graphs. In the first subfig-
ure (a), we show the positive case of a DAG where the partial knowledge of the graph will
not cause any ranking deviations. As only the topmost vertices shown here receive signif-
icantly more links than the others, these are also the most important vertices. It is easy
to see here that generating a crawl from this structure by removing some vertices will not
cause any significant changes in the ranking orderings of the crawl. In the next subfigure
(b), a backlink has been introduced (left) that feeds back the importance of a top most
page to a previously unimportant page and its successors. This importance gets propa-
gated through the cycle which has been created due to the inserted backlink. In the next
subfigure (c), we illustrate the case of a crawl in which vertices are removed uniformly at
random. The changes here are that primarily unimportant vertices are removed, which
would still not cause much deviations in the ranking orderings. Finally, if we remove any
vertex from the cycle as shown in subfigure (d), its succeeding vertices drastically lose in

importance and hence, the ranking among the pages in the crawl changes noticeably.
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Fig. 2 Example graphs : Darker vertices have a higher importance (cp. “Preliminaries and problem” section)

The HAK measure

With our measure, we estimate quantitatively how reliable a crawl is with respect to the
relative ordering of the PAGERANK values on its vertices compared to the corresponding
target graph. To this end, we first try to estimate the size of the target graph: Given
the crawled vertex set and the distinct hyperlinks on the corresponding webpages, some
of which are pointing to an uncrawled page (ghost vertex), how big is the target graph
or a subgraph that would potentially impact or contribute to the PAGERANK values of
the vertices in the crawl? We show that for simple crawling strategies where it can be
assumed that each vertex is part of the crawl independently from all other vertices with
some sampling probability p;, the size of the target graph can be estimated in terms of a
very simple property of the crawled vertices, namely, the fraction of its crawled neighbors,
referred to as fidelity. Secondly, we try to estimate the impact exerted by the vertices in
the target graph on the crawled vertices, which we in turn use to estimate the number
of discordant pairs in the crawl. We now describe in detail the construction of the HAK
measure. Let C = (V¢, Ec) denote the crawled graph and let n be the number of vertices
in this graph. The main steps in our computation are as follows:

1  Estimate the size of the target graph by using connectivity properties of the crawl.
Let T = (VT, ET) represent the target graph.
Estimate the impact (as functions of PAGERANK) of the vertices in V.

3 Assume that the vertices in V1 exert similar impacts on other vertices.

4 Estimate the number of discordant pairs due to impacts exerted by vertices in
V1 — Vc on vertices in V.

Estimating the target graph

Let N denote the number of vertices in the target graph. In this section we will estimate
the value of A/ assuming that the crawl is constructed by sampling vertices from the tar-
get graph independently and uniformly at random with some probability p;. Note that if
ps is known, one can easily estimate A as pls' We therefore first estimate p; from the con-
nectivity properties of the crawl and the target graph, for which we need the following
definition:

For any vertex v € Vr, we define fidelity (y (v)) of v as the ratio of its immediate neigh-
bors in V(¢ to its total out-degree (number of distinct hyperlinks on a webpage pointing
to vertex in V7). Let d. (v) count the number of vertices v/ € V¢ reachable from v in one
step (hop) and d (v) denotes the total out-degree of v.

dc(v)
dv)

Definition 4 (Fidelity) The fidelity of a vertexv € T,y (v), is given by y (v) = and

veVc y(®)
—Y

the average fidelity of all vertices in Cisy (C) = z
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We will now show that E (y (v)) = ps(1 — P(d (v) = 0)). In essence we would like
to estimate the unknown sampling probability that is used to generate the crawl using
empirically computable fidelity of the observed crawl.

Proposition 1 Let for some 0 < ps < 1, each vertex in the target graph is sampled
independently and uniformly at random with probability ps. For any v € T,E (y (v)) =
ps(1 =P (d(v) =0)).

Proof The probability that a vertex has fidelity £/k is given by
14 k
P (y V)= k) =P =td =k -PdW=k= <E>p£(1—ps)k—‘31@ d) =k.

The expected value of fidelity of T can now be computed as

L (k
EGo= > > ¢ ( g)pf(l —p) P W) =k)

k>1 <k

k
k—1
=p > PAV=kY ( . 1)pf—1<1—ps>k—ﬁ =ps(1—P(d ) =0)).
=1

k>1
O

With ps as the sampling probability, p, N gives us the expected number of vertices in
the crawl. Using Proposition 1 we obtain

_E(veD
E(y )

We note that for Web graphs P (d (v) = 0) is the probability that a webpage has no links
to other webpages, i.e., there exists a page with pure text and no links. Such a sce-

(1-Pdv) =0).

nario is extremely rare on the Web. Moreover, for synthetic graphs generated using G, ,
(s. “Synthetic graphs” section) one can show that P (d (v) = 0) = e~ 0P) which goes to
zero for n — 0o and constant p. Note that as we do not have complete information about
the target graph we cannot compute y (v) for all vertices in V7. We instead approximate
it by the observed average fidelity of the crawl, y (C). This amounts to assuming that the
degree distribution of target graph with respect to number of pointing inside the crawl
and outside is homogeneous for all vertices in the target graph. Hence, using the observed
average y (C) and the observed size of the crawl, i.e., n, ignoring the multiplicative factor
of 1-P (d (v) = 0) (as P (d (v) = 0) = o(1) for all practical purposes), we can approximate
N as ﬁ
PageRank and impacts
In this section we present a heuristic to measure the PAGERANK contribution of a vertex
to its neigbors in the crawl, which we then use to estimate the contribution of ghost ver-
tices to their neigbors in the crawl, as if the PAGERANK algorithm ran on the whole target
graph. In the following, we first define a measure that we will extrapolate for the ghost
vertices in the next subsection.

For any vertex v in C, w(v) denotes its computed PAGERANK in the crawl. Let d (v)
denote the out-degree of v and N(v) denote the neighbors of v reachable from v in one

step. Note that PAGERANK of any vertex u can be considered as 7 (1) = }_, ,cn) %
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(Haveliwala 1999). We then define the impact of a vertex v € C on a neighbor u € N(v) as
_7(/d®)

Im(v,u) = G0

The impact on any vertex # € V' is ﬁ D vueNw) %, which is always 1. This implies

that an extra impact of x on a vertex will increase its PAGERANK by x times the current
PAGERANK. The total impact of a vertex v, Im(v) is then defined as

w(v)/d v 1 (v

= Y = 3 TOAO L 5 10)

ueN (@) ueN (@) n(u) d (V) ueN () n(u)

We denote the average of impacts of vertices in C by Im(C), i.e. Im(C) = M

In the next subsection we will compute the impact of ghost vertices on the vertices in
the crawl assuming that each ghost vertex exerts on average an impact of Im(C) on its
neighbor.

Estimating the impact of ghost vertices

We next compute the impact that could have been exerted by the ghost vertices on the
crawled vertices. For this we assume that the impact of each vertex in T is Im(C), which
gives us the total impact, 7, exerted by ghost vertices as

1
I=|T-C|-ImC)=n|———1) Im(C).
| | - Im(C) n(y(c) ) m(C)

To understand the intution behind this extrapolation of impacts, consider the extreme
case, i.e., when Im(C) is close to 0. This can happen when for vertices in the crawl y (v) is
very small, i.e., vertices in the crawl have relatively high number of ghost neighbors. Note
that we estimate the ground truth, i.e., the PAGERANK of vertices in the target graph with
respect to (personalized to) the crawl. This would mean that at each step of the random
walk, there is a higher probability of coming back to a vertex in the crawl (as compared to
the probability of going back to some random ghost vertex). This intuitively means that
ghost vertices (in this setting where we use crawl as the seed) cannot generate impact
much more than the impact initially generated by the crawl. Similarly /m(C) = 1 implies
that none of the vertices in the crawl has a ghost neighbor, i.e., y (C) = 1, and therefore,
the total impact of the ghost vertices will be 0. In terms of computing the PAGERANK in
the target graph, this implies that the set of ghost vertices is unreachable from the crawl,
and hence, will have no effect on the PAGERANK of vertices in the crawl as the crawl acts
as the seed set.

Some of this extra impact (generated due to ghost vertices) will be acquired by some
or all of the vertices in C, changing their PAGERANK values accordingly. This is reflected
by the pairs of each two crawled vertices (v,u) € C x C for which their order in the
ranking flip, i.e., discordant pairs, or is preserved, i.e., concordant pairs. Such flips or
discordant and concordant pairs of vertices are the main ingredients of Kendall’s Tau and
also estimated in HAK.

Now based on the graph structure this extra impact can be divided among the ver-
tices of the crawl in several ways. For example, it can happen that the vertex with the
lowest PAGERANK receives the total impact, increasing its PAGERANK by a large factor.
In this case the number of discordant pairs is upper bounded by n — 1. Moreover, we
know from (Ng et al. 2001a) that vertices with low original PAGERANK scores will also
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have low PAGERANKS in the modified graph. Therefore, the effect of the loss of informa-
tion is observed mostly on the PAGERANKS of the nodes higher in the original ranking.
We checked experimentally several variants for impact distributions and the best variant,
which is affirmative with our tests on real-world and synthetic graphs, is to distribute the
total impact Z equally among 7 vertices. If 7 is the number of impacted vertices in T, then
the expected number of impacted vertices that belong to the crawled set will be

I=T y(C).

In the worst case, each of these impacted vertices will result in forming a discordant pair
with each of the unaffected vertex, we obtain the number of discordant pairs as

D=mn-1I-1 (1)

We recall that with our measure we aim at estimating the ranking deviation between the
crawl and target graphs by means of Kendall’s Tau rank correlation coefficient, which is
based on concordant and discordant pairs among the rankings. As an example, if a pair of
vertices from the crawled graph, (v;, vj), have the same relative ranks in both the ranking
measures ( i.e.,, when measured using only crawl and when measured using the target
graph), then such a pair is called a concordant pair. One the other hand, if v; is ranked
higher than v; in one ranking whereas the other way around in the other ranking, then it
constitutes a discordant pair. Now the total number of vertex pairs in the crawled graph
is n(n — 1) /2. We already computed an estimate of discordant pairs in (1).

We therefore compute HAK measure as follows:

#concordant pairs - #discordant pairs "(anl) -D-D D
# total pairs a n(nz—l) - nn—1)
(2)

In the next section we answer RQ III by proposing an approach for finding components

HAK =

of the crawl which exhibit a good rank correlation with respect to the target graph.

Time Complexity. The theoretical time complexity of HAK computation is O(m) where
m in the number of edges in the crawl. Note that the first step in order to compute HAK
is the computation of fidelity of a vertex v requires looking at each of its outgoing neigh-
bors. Therefore, the computation of average fidelity of the crawl requires O(m) time. The
next step is to compute PageRank of all vertices in the crawl which takes O(m) time. Com-
putation of impact of crawl is again O(m) as for each vertex one has to compute impacts
by incorporating the PageRank of each of its outgoing neighbors. The rest of the HAK
computation then requires O(1) time.

High-fidelity component selection
So far, we have concerned ourselves in computing a local measure that estimates deviation
of ranks induced by PAGERANK, i.e., it serves as a confidence measure for PAGERANK
computation over a crawl with respect to its target graph. In this section, we propose
an algorithm to identify small (connected) subgraphs from the input graph/crawl that
potentially have lower rank deviations.

Ideally in such an approach, we should optimize for a high Kendall’s Tau, indicating low
deviation between the crawl and the target graph. However, in the absence of the target
graph this is not possible. As a proxy, we should then care about identifying subgraphs
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Algorithm 1: High-fidelity Component Selection Algorithm
Data: input graph ginput = (Vinputr Einput)
Parameter: fidelity threshold T

Result: high-fidelity connected components
1 begin
2 initout <— min{d(v) | v € Vinput A d(v) > 0}
3 V <« {v € Vinput | d(v) < initout}
4 E < {(mn) € Eppue | meVAneV}
5 G <~ (V,E)
6 while |[{v € Viypus \ V | yg(v) > T}| > 0 do

7 V < VU e Vinpu [ vg(v) = T}

8 E <« {(m,n) € Epnpue |meVAneV}
o G < (V,E)

10 end

11 result <~ ConnectedComponents(G)

12 end

that optimize for our HAK measure, which estimates the Kendall’s Tau. Unfortunately,
any routine to optimize for HAK would induce an expensive global computation per can-
didate subgraph to compute the average impact in the graph (cp. “The HAK measure”
section). Especially for Web graphs with millions of vertices, computing HAK on the
refined subgraphs in each iteration is computationally infeasible. In our algorithm, we
rather optimize for the most important ingredient of the HAK measure, namely fidelity
of the given crawl, which we also use to estimate the target graph (cp. “The HAK mea-
sure” section). Intuitively, high fidelity in a graph translates to fewer vertices potentially
losing impact in PAGERANK to ghost vertices, which in turn reduces their effect on the
crawled vertices. This reduces the number of affected vertices as well as discordant pairs.
In essence, the fidelity criterion can be set by the system designer based on the intended
confidence level for the output graphs. We now state the formal definition of our problem
of finding high-fidelity components.

Definition 5 (High-fidelity Component Selection) Given a crawl or input graph G, we
are interested in selecting a set of maximal connected subgraphs of high fidelity given a
fidelity threshold of T.

Selecting such components in a graph with high fidelity turns out to be NP-hard since
it is a generalization of the all-neighbors knapsack problem (equivalent when T = 1.0)
as shown by Borradaile et al. (2012). To this extent, we propose a heuristic algorithm
(Algorithm 1), which intends to select the largest subgraph (possibly consisting of mul-
tiple connected components) that satisfies the fidelity criterion, i.e., the fidelity y for all
vertices in the graph is greater than or equal to T, before splitting it into its connected
components. In our algorithm described below, yg(v) refers to the fidelity of v with
respect to crawl graph G (cp. “The HAK measure” section). If v is not part of this graph,
yg (v) calculates the fidelity of v if it was part of G, including its outgoing edges to other
vertices in G.
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We found that the naive pruning approach, which sequentially removes vertices under
the threshold, returns very small components, even for smaller values of T. Our algo-
rithm, instead, first chooses from the input vertex set Vj,;,,; a subset V' that contains all
vertices with either 0 out-edges (fidelity is automatically 1, hence y (v) > T) or the min-
imum non-zero out-degree in the input graph (initout). We then iteratively extend V' by
adding vertices for which the fidelity constraint is satisfied with respect to the current
graph G (yg(v) > 1), considering that all vertices in Vj,,; but not in yet V" are ghost ver-
tices. The resulting subgraph is the induced subgraph on the final vertex set V. Finally, we
return all connected components in the resulting subgraph. The algorithm can be easily
implemented in a distributed manner and in practice, as we will see in the experiments,
the connected components in the resulting graph actually exhibit very low variance rank
deviations with respect to the ranking of the target graph.

Experiments

To validate our research questions enumerated in “Introduction” section we consider a
host of large real-world graphs as well as synthetic graphs of different structures and
carefully consider crawling strategies over them. In what follows we first describe our
setup and rationale for our evaluation, before we discuss the results of HAK and our
High-fidelity Component Selection approach.

Experimental setup

In order to evaluate HAK one require the availability of crawls as well as the target
graphs that these crawls were derived from. This is necessary in order to compute how
the rankings on both graphs differ and to evaluate the performance of HAK to estimate
this deviation. In reality, neither obtaining the target graph is possible nor the actual crawl
policy can be determined accurately. To this extent, we consider very large (as full as
possible) real-world graphs under the assumption that those graphs are fully discovered
(“Real-world graphs” section). We additionally simulate alternative topological structures
by generating synthetic graphs (“Synthetic graphs” section). We then simulate crawls on
these graphs using different crawling strategies (“Seed selection and crawling” section).
For all graph and crawl combinations we ran PAGERANK on both graphs (crawl and target
graphs) and compared the rankings using Kendall’s Tau to evaluate HAK (“Evaluation
strategy” section).

Real-world graphs

The experiments on real-world graphs were run on a computer cluster using Apache
Spark and its graph processing framework GraphX (Xin et al. 2013). Loading the graphs
locally on a single server was impossible with our available infrastructure because of their
sizes of up to more than 100M vertices and 10B edges. As discussed earlier, we obtained
multiple large real-world graphs that themselves had missing information and considered
them as target graphs by discarding edges that connect to ghost vertices. The following
graphs were analyzed and are summarized in Table 1:

e GOV : This graph is based on crawled webpages provided by the Internet Archive
(The Internet Archive 1996). It was extracted from the latest captures of all their
archived webpages under the . gov top-level domain (TLD) from 2005 to 2013.
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Table 1 Statistics on the studied real-world graphs, see “Seed selection and crawling”
and “Real-world graphs” sections for details (#V: original number of vertices, #£: original number of
edges, #Viarger: target number of vertices, #Earger: target number of edges)

GOV DE UK Friendster
#V 301,128,778 247,641,473 39,454,746 68,349,466
#Vrarget 5,418,054 133,895,590 38,838,959 61,100,375
#E 2,111,229,433 14,795,732,782 936,364,282 2,586,147,869
#Etarget 180,657,788 10,085,242,536 928,939,162 2,575,600,737

e DE: Like GOV, this . de TLD graph was also extracted from webpages archived by
the Internet Archive, crawled in 2012 and generously provided to us in the project
Alexandria?.

e UK: This .uk TLD crawl from 2005 is publicly available, already in the form of a
graph without corresponding webpages (Boldi and Vigna 2004; Boldi et al. 2011).

¢ Friendster : Unlike the previous Web graphs, this is a publicly available social
network, extracted from an extensive crawl of the former online platform
Friendster.com in June 2011 (Archiveteam 2011).

Synthetic graphs

In order to investigate ranking deviations caused by different crawling strategies on dif-
ferent graph topologies, we ran a more comprehensive set of experiments on smaller,
synthetically generated target graphs. This allowed for more extensive experimentation
as the experiments could run locally on a single server, using the NetworkX graph anal-
ysis framework (Hagberg et al. 2008). All synthetic graphs that we studied in this work
(cp. Table 2) were generated with 10,000 vertices to be reasonably sized for a thorough
analysis.

The graphs were constructed using well-known graph generators, except for FFBack-
links, which is an extension by us to the ForestFire model. Although Forest Fire graphs
include cycles, the model never generates backlinks from the early created vertices, which
are more likely to receive many in-links over time, to newer ones. However, these links are
common on the Web, where already prominent pages add links to less important ones,
having a strong impact on the value propagation in PAGERANK (s. “Preliminaries and
problem” section). In this graph, we added such edges between 0.05% of all pairs of an old
and young vertex.

Seed selection and crawling

Crawling can be considered a special case of network sampling from a more practical
point of view, where subsequent vertices can only be chosen from already discovered ones
or seeds. Maiya and Berger-Wolf (2011) define this type of sampling as link-trace sampling

Table 2 Synthetic graphs (all have 10,000 vertices)

Graph generator #tdges  Parameters

G,p (Erdos and Rényi 1959; Gilbert 1959) 299,722 p ~ 0.0003 (based on #E in Table 1)

ScaleFree(Bollobas et al. 2003) 21,732 a =041,8 =054,y = 0.05 (default)
ForestFire(Leskovec et al. 2007) 87,060 pr = 0.37,pp = 0.32 (most realistic (Leskovec et al. 2007))
FFBacklinks 96,262 pr = 0.37,pp = 0.32, Ppackiink = 0.0005

2http://alexandria-project.eu
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and give a nice overview of available models for this behavior. Naturally, such approaches
commonly exhibit BFS-like (Breadth-First Search) growth, but feature different strate-
gies to prioritize or select the next vertices to be crawled. These variations determine the
probability of a vertex to be part of the final sample.

How we model crawls. Although most crawlers employ BES-like traversals, there are
practical constraints like random timeouts and crawl restrictions on websites that make it
hard to model crawls perfectly. Therefore, we focus on the most impartial strategy, which
is vanilla BFS, but explicitely produce partial crawls by dropping randomly x% of the
vertices of the input graph (where x € {10, 20, 30,40, 50}). We refer to this percentage as
the block fraction and the remainder as desired fraction.

Statistics about the target graphs (Viaget and Etarget), which are potentially reach-
able from the seeds by not blocking any vertices are shown in Table 1. Addition-
ally, we discuss a few edge cases by looking at slight variations of BEFS as well as
SEC with the synthetic graphs. Due to their scale it was computationally infeasi-
ble for us given our cluster setup to analyze these on real-world graphs as well.
More details on the crawling strategies as well as our seed selection are given in
“More details on crawling strategies and seed selection” section.

Evaluation strategy

The objective of this evaluation is to assess ranking deviations as quantified by Kendall’s
Tau (cf. “Preliminaries and problem” section) for rankings induced by PAGERANK, com-
puted on the target graph vs. a crawl and compare it against our HAK measure, which is
designed to yield values on the same scale. For this, we focus only on high-ranked ver-
tices, as these are typically more interesting in most practical scenarios (Ng et al. 2001a):
Firstly, because there is no tangible score difference between the PAGERANK values of
the tail vertices. Secondly, ranking deviations in authoritative vertices are typically con-
sidered more severe than among the tail ones. Since Kendall’s Tau makes no distinctions
where rank reversals take place, we compared the ordering among the top 30%, top 50%
and top 70% vertices of the crawl and target graph that appeared in both graphs according
to the corresponding PAGERANK values. This also helps us characterize where the rank
reversals indeed do appear.

The rankings for each of the graphs are computed based on the PAGERANK values.
While we employed the regular version PAGERANK on the crawl (with added ghost ver-
tices as sinks), we used the personalized variant of PAGERANK for running it on the target
graph. In this version, the algorithm is personalized to a set of vertices, which constitute
the starting points as well as teleportation destinations in the algorithm (Page et al. 1999).
The resulting PAGERANK values can be interpreted as their importance with respect to
these vertices or the domain represented by the crawl. Both variants of PAGERANK ran for

30 iterations with the damping factor parameter set to the frequently cited value of 0.85.
For a given synthetic (target) graph and a crawling strategy, we repeat each experi-

ment by building different crawls from 100 random seed-sets and provide the average
results as well as the 95% confidence intervals. For real-world graphs we perform exper-
iments by generating crawls from the most important vertices chosen as seeds ( also see
“Seed selection” section). We, therefore, run each experiment for real-world graphs cor-
responding to the crawl generated using this most realistic seed-selection strategy (as
against random seed sets employed in synthetic graphs for designing multiple runs) and
BES crawling strategy.
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Crawls and ranking deviations in graphs

In this section, we aim to answer RQ I and justify the need for estimating ranking devia-
tions before employing PAGERANK for incomplete graphs. In particular, we argue about
the results where we witness noticeable ranking deviations of partial crawls with respect

to target graphs.

We clearly observe that all real-world graphs exhibit a decreasing t with increasing
block fraction (see Fig. 3). Most acutely, T decreases to 0.55 for the GOV. Synthetic graphs
like Gy, and FFBacklinks (first and last row in Fig. 4) exhibit a similar trend with T decreas-
ing for increasing block fraction. On the other hand, for the ScaleFree (second row) and
ForeFire graphs (third row), we do not witness much change in the ranking orderings,

except in the BFS crawls.

A detailed study of the crawls reveals the reasons for such disparate trends for ScaleFree
and ForeFire: the crawling strategy combined with the underlying structural properties of
the graph sometimes lead to extremely small crawls (n < 1, 000), much below the desired
fraction (cp. “Seed selection and crawling” section). First, we observe a scarcity of back-
links in ForestFire and ScaleFree. That leads to these graphs to be DAG-like without an
inadequate number of cycles in the corresponding graphs (cp. “Preliminaries and prob-
lem” section). PAGERANK computations over such graphs (or over their subgraphs) tend
to finish quickly since the lack of cycles prohibit the random walk to re-cycle back into
the graph. This results in small high-fidelity crawls that do not exhibit large ranking devi-
ations when highly linked vertices are prioritized, explicitly (SEC) or by chance (BfsRnd
and BfsGeo). Only the BFS strategy that explicitly blocks random vertices causes a devi-
ation in these crawls, as top vertices may be missed as well (conceivable on the Web for

different reasons, e.g., restrictive policies and random failures).
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Fig. 3 Ranking deviations measured and estimated for real-world graphs and crawls for different fractions of
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Fig. 4 Ranking deviations measured and estimated with different synthetic graphs and crawls for different
fractions of uncrawled vertices (rows) as well as different crawling strategies (columns). Averaged Ranking
deviations in 100 crawls (generated using random seed sets) are presented along with 95% confidence
intervals

Reinforcing our claim, the addition of backlinks in FFBacklinks resulted in a growing
ranking deviation with increasing block fraction with the BFS crawling strategy. We argue
that most of the real-world graphs will not be DAG-like and will have backlinks induc-
ing large cycles. Moreover, the random walk nature of PAGERANK computation increases
the importance of these backlinks (or feedback loops) towards reaching an equilibrium
state. As the core structure of FFBacklinks still resembles the original ForestFire graph, the
observed rank deviation is much less severe as compared to Gy .

In addition, we observe that the ranking deviations (in most of the presented cases)
increase when we consider a small fraction of the most important vertices. This indicates
that most of the low rank vertices in the target graph do not flip their ranks with the more
important ones in the crawl, leading to a lower ratio of discordant pairs to the overall
total number of pairs. On the other hand, crucial to most applications are the ranking
deviations of the high PAGERANK vertices, thus making it essential to monitor them.

Finally, we observe that ranking deviation in the Web graphs shown in Fig. 3 are inter-
estingly similar to the random graphs in Fig. 4 and less so with other generative models
like ForestFire or ScaleFree graphs. This, we believe, has strong implications in explaining
the structure of Web graphs.

Effectiveness of HAK
We first discuss about the general applicability of the HAK measure and then argue about
the supporting experimental evidence reported in Figs. 3 and 4. We recall that the main
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assumption behind the construction of HAK is that each of the unseen or ghost ver-
tices from the target graph would exert the same fraction of impact (on average) to the
crawled set as the actual vertices in the crawl (cp. “The HAK measure” section). We
ensure this by constructing the target graph such that each of its vertex has the same
fraction of crawled neighbors as the crawled vertices (computed by fidelity). This assump-
tion would not be followed by target graphs, which for example are DAG-like, because
the ghost vertices there might not have edges back into the crawl. We remark that HAK
cannot identify structures in target graph which are not similar to the crawl, yet leading
to severe ranking changes in the crawl. For instance, consider a very small crawl with a
very high fidelity and low impact. In such a case HAK would always estimate a very low
ranking deviation. It could in the worst happen that there exist a few ghost vertices in
the target graph with very high PAGERANK, having outgoing edges to only the low rank
vertices in the crawl. Our results in Figs. 3 and 4, on the other hand, support the effective-
ness of HAK in most of the studied graphs and therefore also validate our assumptions
behind HAK.

We first discuss our findings on synthetic graphs. HAK performs fairly well for G, , for
instance with the BFS crawl strategy with 50% block fraction, we record an absolute error
of 0.007 (actual average: 0.252, estimated: 0.259) for rank correlation of top 30% vertices.
The little ranking deviations in ScaleFree and ForestFire can be attributed to the small
crawls with high fidelity (y €[0.93,1.0]). As already discussed, HAK in these cases would
always result in a high value, which also explains HAK adapting to the trends. However, we
observe a larger deviation for BFS crawls in ScaleFree graphs. Here, HAK underestimates
the ranking deviation, which might reflect the existence of the worst case (caused by the
random vertex removal in BFS, cf. “Seed selection and crawling” section), resulting in
a similar estimation as the one described above for very small crawls. However, HAK
overestimates the deviation in FFBacklink (see the middle 2 plots shown in Fig. 4). We
attribute this to the fact that the average impact of the crawl increases in presence of
backlinks (cp. “Preliminaries and problem” section), which is an overestimation of the
actual impact since Forest Fire is nevertheless the dominant topology in this graph. For
our measure, a higher average impact corresponds to higher impact on the crawl from the
ghost vertices (in our constructed target graph, cp. “The HAK measure” section), leading
to increased number of discordant pairs. The uniformly random blocking strategy in the
BFS crawls on the other hand might break such backlinks, which lead to a more realistic
ranking deviation.

We report more promising results in case of real-world graphs (s. Fig. 3). For instance,
for the UK graph we report an almost precise estimation (actual: 0.58, estimated: 0.61).
The observed trend in UK is more similar to that seen in to G, and FFBacklinks, which
might also suggest existence of more backlinks in this graph, leading to large cycles (cp.
Fig. 2). In contrast, the deviation in Friendster is less strong and slightly overestimated by
HAK (actual: 0.76, estimated: 0.66) similar to ForestFire. We remark here that ForestFire
also aims to model social networks and we believe that the similarity of these trends might
be caused by the scarcity of backlinks in these graphs. We also note that our estimates
reflect more closely the ranking deviations among the top PAGERANK vertices (in either
of the compared rankings, cp. “Evaluation strategy” section), which we believe to be more
interesting for most practical purposes than deviations in less important vertices or the
entire graph.
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Table 3 High-fidelity Component Selection for three largest components (out of 8998 identified
components) of the 50% GOV crawl (with T = 0.5)

#Vertices #Edges Fidelity Kendall's Tau (top 1000)
1. 12,965 17,559 0.9822 09156
. 8,836 134,582 0.6177 0.7842
3. 8,365 32,268 0.9941 09130

In summary, the effectiveness of HAK is dependent on the fact that how well we
estimate the target graph using properties like fidelity. Moreover, we would require big
enough crawls to allow for a representative estimation® of the target graph. We believe
that a more sophisticated use of the fidelity and impact of vertices in crawls, for instance
using their distributions instead of simple average, will allow us to estimate the target
graph and hence the ranking deviation more accurately. In addition, we plan to investigate
more properties of the crawled graph, which can be used to predict the corresponding
target graph. As our final goal, we will like to extend HAK as a black-box of measures,
from which a suitable measure can be chosen in order to estimate ranking deviations in

some particular crawl.

High-fidelity component selection

In this section we discuss the applicability of our proposed algorithm in selecting high-
fidelity connected subgraphs that have low rank deviation when compared against the
target graph. As mentioned in “High-fidelity component selection” section, we pro-
vide a heuristic to find high-fidelity components, which might also be of interest for
other applications (Borradaile et al. 2012). By applying our algorithm with threshold
T = 0.5 to the highly distorted 50% crawl of the GOV graph (Kendall’s Tau of 0.55, s.
“Crawls and ranking deviations in graphs” section), we identified 8998 such components,
featuring a reasonably high rank correlation. Table 3 shows the measured values for the
three largest of these components, with vertex set sizes ranging from 8,000 to 13,000.
As before, the evaluated rankings are based on PAGERANK personalized to the respec-
tive component (cp. “Evaluation strategy” section), resulting in correlations measured by
Kendall’s Tau of over 0.9. We remark that, since the returned components are very small,
a relatively large fraction of vertices with low importance are already present among the
top 30% as studied before (cp. “Evaluation strategy” section). In addition, their inter-
PAGERANK distances are so small, that a small change in their PAGERANK values give
rise to a larger number of discordant pairs, resulting in low rank correlation values for
the whole component. We, therefore, report the measured values only for the top 1000
vertices.

As our algorithm returns a high number of components and we believe that compo-
nents with higher fidelity will have correspondingly high rank correlation values, the
desired components may be filtered with respect to their size and final fidelity values.

We recall that we optimize for high fidelity instead of our HAK measure with
this approach, because of the associated high computational costs. Moreover, due
to the unsuitability of using HAK for evaluating small crawls as discussed in
“Effectiveness of HAK” section, we do not compare the rank deviations of the identified

3We do not want to give recommendations for a minimal size as this is dependent on the target graph and requires some
knowledge about it, which should anyway exist when working with a crawl.
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components with their corresponding HAK values. As a matter of fact, for such small
components, HAK would almost always return a very high value.

Finally, we conclude two interesting facts from our results: First, our original assump-
tion in HAK about the close relation of fidelity with the rank deviation is justified by our
results. We observe that components with higher fidelity also exhibit a higher rank cor-
relation with respect to the target graph. Second, it suffices to use a low threshold T to be
able to select high-fidelity components. Setting T to a higher value increases the fidelity of
the returned components, but these components would be too small to be of any practical

use.

More details on crawling strategies and seed selection
Crawling strategies

e BFS: The breadth-first search (BES) starts from a set of seed vertices and runs until
all vertices are reached. A number of vertices according to the block fraction were
chosen uniformly at random and blocked/discarded before the BFS, simulating
vertices that cannot be crawled, e.g., due to robots.txt, slow response times, etc.

e BfsRnd : Instead of blocking vertices from the beginning we determine a number of
vertices to pursue at each vertex, chosen uniformly at random from its outgoing edges.
Additionally, we remove a random number of vertices according to the block fraction
from the seed set and run the BFS until the specified desired fraction is discovered.

¢ BfsGeo : Similar to BfsRnd, but the number of edges to follow was geometrically
distributed with parameter p = 0.3, resembling Forrest Fire Sampling (Leskovec and
Faloutsos 2006).

e SEC: In this Sample Edge Count stategy (Maiya and Berger-Wolf 2011), at each step
the number of edges from the crawled vertices to all remaining vertices are tracked
and those with incoming edges are prioritized.

Seed selection

We found out that the most realistic seed selection strategy is to pick the most important
vertices as seeds. This is also the case for real crawls as these correspond to more well-
known pages. To identify such pages in our target graphs, we first ran PAGERANK on
them and constructed the seed set from the top 1%. This allowed us to reduce the size of
the large real-world graphs by pre-computing the actual target graphs, consisting only of
vertices that are reachable from the seeds (s. Table 1, Vigrget and Earget). Interestingly, for
the GOV and DE graphs, the size difference of the target graphs compared to the originally
provided graphs is huge, which confirms common characteristics of these Web archive
graphs, i.e., they are not constructed in one crawl, leading to a fairly large number of
unimportant vertices (with no in-edges) that were discovered from crawls outside target
graphs. The UK and Friendster graphs on the other hand remained at almost the same size,
suggesting that they have already been created that way in the first place, which proves
our seed selection strategy actually realistic.

Conclusion

In this paper, we focused on the problem of PAGERANK deviations in Web graphs, typi-
cally caused by restricted crawling. We established that deviations in ranking indeed do
occur and can be drastic, as shown in our GOV graph where the correlation among the
rankings is only 0.55, measured by Kendall’s Tau. To this effect, we proposed the HAK
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measure, which can reliably estimate such deviations purely on the crawl without any
knowledge of the original graph. We also presented an algorithm that is capable of select-
ing multiple connected subgraphs (high-fidelity components) from the crawl in which the
relative ordering is much closer to the original ranking.

Our results suggest that crawled Web graphs behave surprisingly similar to random
graph models and unlike other generative Web models, such as Forest Fire, in terms of
PAGERANK deviations. Thus, this study on crawled Web graphs could be important in
studying the structure of the Web as well. For future work, it would be interesting to
check if Web graphs are indeed composed of local random structures. Further, from the
insights on the effect of backlinks in this work, we intend to look into other representative
formal Web models. Also, we would like to investigate the applicability of our measure
to determine the confidence of results produced by other centrality measures on partially
discovered graphs. Finally, understanding the high-fidelity components might also allow
us to identify vertices that cause a severe ranking deviation if not present in a crawl, which
is valuable in improving crawling strategies.
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