
Applied Network ScienceBlanthorn et al. Applied Network Science (2019) 4:120
https://doi.org/10.1007/s41109-019-0193-5

RESEARCH Open Access

Evolution of communities of software:
using tensor decompositions to compare
software ecosystems
Oliver A. Blanthorn1* , Colin M. Caine2 and Eva M. Navarro-López3

*Correspondence:
oliver.blanthorn@manchester.ac.uk
1School of Computer Science,
University of Manchester,
Manchester, UK
Full list of author information is
available at the end of the article

Abstract
Modern software development is often a collaborative effort involving many authors
through the re-use and sharing of code through software libraries. Modern software
“ecosystems” are complex socio-technical systems which can be represented as a
multilayer dynamic network. Many of these libraries and software packages are
open-source and developed in the open on sites such as GitHub, so there is a large
amount of data available about these networks. Studying these networks could be of
interest to anyone choosing or designing a programming language. In this work, we
use tensor factorisation to explore the dynamics of communities of software, and then
compare these dynamics between languages on a dataset of approximately 1 million
software projects. We hope to be able to inform the debate on software dependencies
that has been recently re-ignited by the malicious takeover of the npm package
event-stream and other incidents through giving a clearer picture of the structure
of software dependency networks, and by exploring how the choices of language
designers—for example, in the size of standard libraries, or the standards to which
packages are held before admission to a language ecosystem is granted—may have
shaped their language ecosystems. We establish that adjusted mutual information is a
valid metric by which to assess the number of communities in a tensor decomposition
and find that there are striking differences between the communities found across
different software ecosystems and that communities do experience large and
interpretable changes in activity over time. The differences between the elm and R
software ecosystems, which see some communities decline over time, and the more
conventional software ecosystems of Python, Java and JavaScript, which do not see
many declining communities, are particularly marked.

Keywords: Tensor factorisation, Multilayer temporal networks, Software dependency
networks

Introduction
Contemporary software authors routinely depend on and re-use the software packages
of authors with whom they have no contact. This uncoordinated process creates what
have recently been called “software ecosystems” (Decan et al. 2018): extensive networks of
interdependent software components that are used and maintained by large communities
of contributors all over the world. These ecosystems are complex multi-layered networks
whose nodes and edges both evolve over time. Throughout this work, terminology such
as ‘package’, ‘package manager’, ‘dependency’ follow the usual software engineering con-
vention, as documented by Decan et al. (2018).With this work we would like to contribute

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-019-0193-5&domain=pdf
http://orcid.org/0000-0002-1324-128X
mailto: oliver.blanthorn@manchester.ac.uk
http://creativecommons.org/licenses/by/4.0/

Blanthorn et al. Applied Network Science (2019) 4:120 Page 2 of 22

to the debate on software dependencies, which recently re-emerged due to the hijacking
of the event-stream package after previous incidents (Baldwin 2018; Schlueter 2016;
Durumeric et al. 2014), by giving a clearer picture of the structure of software dependency
networks. For this, we propose a novel framework to model and analyse the formation,
long-term behaviour and change with time of communities of software packages, and
compare these behaviours across several programming languages.
The evolution of software and package dependency networks has been extensively stud-

ied by using network science techniques over the past 15 years. An early such work is
(Myers 2003), which has been followed by others (Pan et al. 2011; Xu et al. 2005; Zheng et
al. 2008). A recent survey on this topic is given by Savić et al. (2019). Methods and tools
used for social networks have also been applied to analyse software evolution (Chatzige-
orgiou and Melas 2012), reinforcing the importance of the social component in evolving
software networks. There has been recent success in applying standard network metrics
to analyse how software ecosystems have evolved with time (Decan et al. 2018).
Collaborative software networks—mainly in free and open-source software (FOSS)

environments—can be considered as adaptive, evolving or temporal networks. Most of
the published works highlight the fact that software networks exhibit scale-free network
properties with a power-law-type node degree distribution (Cai and Yin 2009; Lian Wen
et al. 2009; Louridas et al. 2008) and a clear preferential attachment in the network growth
process (Li et al. 2013; Chaikalis and Chatzigeorgiou 2015), confirming the heterogeneity
and hierarchical characteristics of networks of software. Other key properties in software
systems like maintainability and reliability (Chong and Lee 2015), robustness (Gao et al.
2014), and modularity (Zanetti and Schweitzer 2012) have been also analysed using the
complex network paradigm.
The identification of communities in software dependency networks that evolve over

time is one of the main motivations of our work. Community detection in temporal,
evolving or adaptive networks has largely attracted network scientists’ attention due to its
important implications in the analysis of dynamical processes in complex networks, such
as spreading and cascading dynamics, stability, synchronisation and robustness. Differ-
ent types of methods and algorithms have been used, for example: the Louvain algorithm
(Aynaud and Guillaume 2010), statistical null models (Bassett et al. 2013; Sarzynska et al.
2016), algorithms which exploit the historic community structure of the network (He et al.
2017; He and Chen 2015),Markovmodels (Rosvall et al. 2014), semidefinite programming
(Tantipathananandh and Berger-Wolf 2011), gravitational relationship between nodes
(Yin et al. 2017), and temporal matrix factorisation (Yu et al. 2017), amongst others.
Machine learning techniques (Savić et al. 2019; Xin et al. 2017), genetic algorithms (Folino
and Pizzuti 2014), consensus clustering (Aynaud and Guillaume 2010) and tensor fac-
torisation (Araujo et al. 2014; Gauvin et al. 2014) have only recently been used for the
detection of communities in temporal networks.
There has been much less work on finding clusters or communities in software depen-

dency networks: some representative works are Dietrich et al. (2008); Paymal et al. (2011);
Concas et al. (2013) and Savić et al. (2012). However, it is still a challenge to give satisfac-
tory solutions for the dynamic treatment of these clusters and inter-language comparison.
Savić et al. (2012), for example, give some dynamic treatment of communities within the
“class collaboration” network of Apache Ant. This is a single piece of software in which the
classes are more witting participants in the software than in general software dependency

Blanthorn et al. Applied Network Science (2019) 4:120 Page 3 of 22

networks where the authors of a packagemay have no idea where their work is being used.
Additionally, the community detection methods used are static, so it is the metrics on the
types of communities found at each version of Apache Ant which are compared rather
than the qualities of any individual communities being tracked across time.
The novelty of our work is the detection of dynamic communities in temporal software

dependency networks, the use of tensor decompositions on software ecosystems, and
the use of adjusted mutual information (AMI) to assist in choosing the number of com-
munities. Additionally, some of the networks we study are amongst the largest dynamic
networks to which tensor factorisation has been applied, although there have been studies
considering much larger static networks (Kang et al. 2012).
Our work addresses three research questions corresponding to unsolved problems in

collaborative large-scale software development and evolution over time:

• RQ1 What are the differences between different software ecosystems?
• RQ2 What do communities of commonly-used-together software packages look like?
• RQ3 How do these communities change with time?

By answering these questions, we identify communities of packages in the ecosystems
of several languages. Namely: Elm; JavaScript; Rust; Python; R; and Java. These languages
were chosen because data on their package ecosystems are readily available and they rep-
resent a variety of uses and ages: low-level systems languages; scientific computing; and
web development; with histories between 3 and 20 years long.
The rest of this manuscript is structured as follows. Firstly, in the “Methods” section,

we detail the data, mathematical tools, software and hardware used to conduct this
study. Next, the “Results and discussion” section presents our results and provides some
discussion of why they might have arisen. Finally, the “Conclusions” section compares
our results with prior work and provides a summary of this works’ limitations while
elucidating further avenues of research.

Methods
What is a community?

Software packages associated with a single programming language and package manager
form an ecosystem, and a community is a collection of packages that tensor decomposi-
tion has identified. Communities may be related by some theme and by co-occurrence
of activity over time. They might be collections of numerical computing packages, or a
community of packages that use a particular library, or a community of older packages
that became obsolete. Packages may be in more than one community, which is modelled
by vectors of continuous strengths of membership to each community as detailed in the
“Tensor decompositions” section below. Communities may wax and wane over time.
Further detail on how we calculate communities and membership strengths thereof

is given in the “Tensor decompositions” and “Choosing the number of communities, R”
sections.

Shape of the data

We considered the following package managers (corresponding to specific languages):
elm-get (Elm), npm (JavaScript), crates.io (Rust), PyPI (Python), CRAN (R), and Maven
(Java). All publicly registered packages for these package managers were included in our

Blanthorn et al. Applied Network Science (2019) 4:120 Page 4 of 22

analysis. To simplify our analysis, we do not consider specific versions of dependent
packages—each package depends on some other packages at each time, each of which
is assumed to be the most up-to-date package available at that time. We only consider
packages registered with these package managers and do not consider cross-platform
(inter-language) dependencies. The data cover 1 million projects listed in package man-
agers. This is sourced from Libraries.io (Katz 2018). The network of Elm dependencies at
the final time-step is shown in Fig. 1.

Brief introduction to each ecosystem

Here, we will briefly introduce each language and ecosystem considered.

Elm (elm-lang.org) is a relatively small new language created in 2012 as a func-
tional language for developing web applications. It is unusually focused on a single
domain and unusually restrictive in what can be expressed in listed packages. The
language authors explicitly discourage proliferation of packages in favour of a unified
and carefully designed standard package for each task. It aims to eliminate runtime

Fig. 1 Elm network. Elm network visualised using Gephi. Node and label size corresponds to out-degree.
Each node i is coloured according to the strongest strength of community membership given by κ i as
described in the Methods section. Legend: light-green corresponds to the community we labelled as
elm-lang/core, purple to elm-lang/http, blue to elm-lang/html, and orange to
evancz/elm-html, dark-green to unassigned nodes, i.e. those without any dependencies

https://elm-lang.org/

Blanthorn et al. Applied Network Science (2019) 4:120 Page 5 of 22

errors and many classes of logical errors through static analysis and careful language
design.

Python is a very popular general-purpose interpreted programming language. It was
first released in 1991. Its package manager, PyPI (https://pypi.org/), was released in 2002.
Python is notable for having a large standard library; many features such as HTTP and
GUI support that would be external packages in other languages are included by default.
We therefore suspect that Python’s package ecosystem will look quite different to many of
the other languages we consider. It is perhaps pertinent to note that some of the packages
listed in PyPI are designed to be used by end-users, not developers.

JavaScript is another popular general-purpose interpreted programming language. It
was first released in 1995 as part of the Netscape browser and was initially used for
client-side scripts on web pages, but now has several server-side implementations, most
notably Node.js. JavaScript has a very small standard library, with the exception of the
DOM interface (Document Object Model—a representation of a web page), which is
included. We therefore expect most JavaScript packages to have to depend on many other
packages. JavaScript’s most common package manager is npm (npmjs.com), the Node.js
package manager, which was released in 2010. The JavaScript ecosystem we describe in
this paper is the public npm registry, which is the de facto canonical list of JavaScript
packages. Despite its name, the registry is used for all types of JavaScript, not just server-
side applications. Like PyPI, some of the packages listed in npm are designed to be used
by end-users, not developers.

Rust is another relatively new systems programming language. Unlike many of the other
ecosystems we have considered, it is statically compiled. One of its main aims is safe
concurrent programming. We suspect that because of this conservative focus, packages
written in Rust will have relatively few dependencies. Rust’s package manager is Cargo,
which was released in 2014, and its registry is crates.io. Like PyPI, some of the packages
listed on crates.io are designed to be used by end-users, not developers.

R is an interpreted programming language for statistical computing. It was first released
in 1993. Its standard library for statistical computing is large. Its package manager is the
Comprehensive R Archive Network (CRAN cran.r-project.org).

Java is a general-purpose typed compiled programming language, first released in 1995.
Its standard library is large. Java has no official packagemanager, but themost widely used
is Apache Maven (maven.apache.org), which was released in 2004.

Representing the data

We represent each language’s network as a tensor, Alang, where each

Aijt ∈ {0, 1}
denotes whether the package i depends on the package j at time t. We consider links as
going from j to i, so the direction of each link reflects the flow of code. Software packages
have unweighted directed links to packages that they depend on at time t according to the

file:pypi.org
https://npmjs.com
https://crates.io/
https://cran.r-project.org
https://maven.apache.org/

Blanthorn et al. Applied Network Science (2019) 4:120 Page 6 of 22

most recently available version of the software package at that time. The time is quantised
into timesteps. We chose a resolution of one month on the basis that packages are long-
lived and change dependencies rarely.

Tensor decompositions

A rank-N tensor X can be approximated as

X ≈
R∑

r=1
reduceNn=1(⊗,anr),

where reduceNn=1(�, bn) returns the reduction of {bn|n ∈ 1..N} by applying an arbitrary
associative binary operator � repeatedly, i.e.

reduceNn=1(�, bn) = b1 � b2 � b3 � . . . � bN ;

⊗ is the tensor product; and each anr ∈ R
dn+ where dn is the dimension of the nth-mode

of the tensor X.
Each anr for a specific n is called a factor, and maps its indices (in our case, software

packages or time) to strength of membership to the community r. The total number of
communities or components, R, is a fixed chosen parameter. Each anr for a specific r is
called a community or component. The concept of a temporal index having strengths
of community membership may seem odd; it is perhaps more easily understood as the
amount of community activity at a certain time (Gauvin et al. 2014).
There are many algorithms for performing tensor decompositions of this kind. We

selected a non-negative method with a public implementation that will allow us to later
extend our analysis to large rank-N tensors: Alternating Proximal Gradient (APG-TF)1

(Xu and Yin 2013), an efficient non-negative CANDECOMP/PARAFAC (CP) method.
We consider the use of tensor decomposition (Kolda and Bader 2009) more adequate for
community detection in temporal networks than other static methods, such as the Lou-
vain algorithm (Aynaud and Guillaume 2010), because tensor decompositions explicitly
integrate evolution over time and can scale very efficiently for large graphs.
For our specific application, we approximate our temporal adjacency matrix as

Aijt ≈
R∑

r=1
κirhjrτtr , (1)

where κri are the elements of a matrix K ∈ R
+Np×R that describe the strengths of com-

munity membership of each node i based on outgoing links, hrj are the elements of a
matrix H ∈ R

+Np×R which represent the strengths of community membership of each
node j based on incoming links, τrt are the elements of a matrix T ∈ R

+Nt×R that describe
the activity levels of each community r at each time step t, and Np and Nt are the number
of packages considered and the number of timesteps chosen, respectively.
We will now describe H and K in more detail. We will use two facts about software

dependency networks (Decan et al. 2018):

• the number of outgoing links from each package (number of packages that depend
on a package) follows a power-law;

• the number of incoming links to each package (number of packages that a package
depends on) is fairly evenly distributed.

1Implementation: https://www.caam.rice.edu/~optimization/bcu/ncp/

https://www.caam.rice.edu/~optimization/bcu/ncp/

Blanthorn et al. Applied Network Science (2019) 4:120 Page 7 of 22

SinceH represents groups of nodes which are linked to by similar nodes, it is very sparse
with only a few hub nodes having any community membership due to high strengths inH.
K is much more evenly distributed as it represents groups of nodes which link to similar
nodes; most packages are strongly associated with at least one community.
If a community has significantly declined from its peak according to a plot of τ r , we will

define its lifetime as the full width at half maximum.

Choosing the number of communities, R

One of the major downsides to tensor decompositions is that one must choose the num-
ber of communities, R. We take a multi-faceted approach to evaluating our choice of R for
each ecosystem, which we detail in this section. The first component of our approach is
to look at the normalised residual sum of squares or relative error, NRSSR, a measure of
reconstruction error (Papalexakis et al. 2012). We use it to inform our choice of R by look-
ing for the number of components where the rate at which the residual sum of squares
decreases as the number of components increases becomes linear, commonly known as
an elbow. We define the normalised residual sum of squares as:

NRSSR(X) = ‖X − ∑R
r=1 reduce

N
n=1(⊗,anr)‖F

‖X‖F , (2)

where ‖X‖F is the Frobenius norm of X.
The second component of our approach is to run the decomposition multiple times for

each likely R to determine whether the decomposition is stable, that is, if multiple runs
produce the same results. We look to see if nodes appear in the same communities as
each other by considering the mean pairwise adjusted mutual information (AMI, Vinh et
al. 2009) between repeated runs for a single R. We use hard clustering for this process by
assigning nodes to communities from the maximum strength in each vector κ i.
We also check visually to see if the temporal activity of communities looks similar across

multiple decompositions. If the decomposition is unstable, i.e. if multiple runs produce
different results, it suggests that ground-truth communities are being merged or split up.
Another check we perform is to look at the metadata associated with a sample of software
projects from each community and make a qualitative judgement as to whether they are
similar. For example, if a numerical computing package and a front-end web development
package are in the same community, the number of communities is probably too small.
Our final check is whether adding an extra component adds interesting new behaviour to
the temporal community activity, or if it instead seems to break an existing community
into noisy subcommunities. All of these approaches are quite subjective, so there is quite
a large uncertainty in exactly how many communities is ideal for each language.

Adjustedmutual information

The adjusted mutual information between two partitions U and V where U =
{U1,U2, . . .} is a finite-length partition of some set of length N and V is another finite
partition of that set is

AMI(U ,V) = I(U ;V) − E[I(U ;V)]
max(S(U), S(V)) − E[I(U ;V)]

,

Blanthorn et al. Applied Network Science (2019) 4:120 Page 8 of 22

where the entropy S is

S(U) = −
∑

i

|Ui|
N

log
|Ui|
N

,

the mutual information between U and V is

I(U ;V) =
|U|∑

i=1

|V |∑

j=1

|Ui ∩ Vj|
N

log
N |Ui ∩ Vj|

|Ui||Vj| ,

and E[W] is the expectation of a random variable W. Here, it can be calculated using a
hypergeometric model of all possible random clusterings (Vinh et al. 2009). AMI mea-
sures the amount of agreement between two partitions. It has an upper bound of 1. An
AMI score of 0 corresponds to the amount of agreement one would expect if one of the
partitions was totally random, and 1 corresponds to perfect agreement between the two
clusters. The AMI score can be negative if there is more disagreement between the clus-
ters than one would expect from random chance. It is hard to interpret the meaning of
scores between 0 and 1, but it is important to bear in mind that anything greater than 0
is a good score in the sense that it is better than random guessing. AMI is quite sensitive
to the number of clusters and awards higher scores to pairs of clusterings that agree on
the same number of assignments but have a larger number of clusters, to the limit where
if each element is given its own cluster the AMI must be 1. Since we are mostly using
AMI to compare clusterings with each other and have far fewer clusters (or communities)
than nodes, we believe the interpretability of the absolute value of the AMI is not impor-
tant. We are concerned primarily with the relative changes in AMI as we move from one
number of communities to another.

Labelling communities

H is a sparsematrix that denotes the packages that are most depended on in each commu-
nity. The package name associated with a community r is the name of the package pr that
is maximal in hr , such that pr does not have a higher hr′ value in any other community r′.
That is,

pr = indmax([mask(H)]r),

where indmax(x) of any vector x returns the index of its maximum value, and

[mask(M)]ij =
⎧
⎨

⎩
mij ifmij = max(mi)

0 otherwise,
(3)

wheremij andmi are the elements and column vectors of a matrixM.

Hardware and software used

Julia (Bezanson et al. 2012), LightGraphs.jl (Bromberger 2017), Plots.jl, and Jupyter
(Kluyver et al. 2016) with IJulia were used for exploratory data analysis, data pre-
processing, figures and co-ordinating external software. The actual tensor decomposi-
tions were performed usingMATLAB.jl, MATLAB, and TensorToolbox (Bader and Kolda
2007). Adjusted mutual information was calculated using ScikitLearn.jl and scikit-learn
(Pedregosa et al. 2011). The decompositions were performed on 20-core Xeon servers
with 250GB of RAM provided by MARC1, part of the High Performance Computing and
Leeds Institute for Data Analytics (LIDA) facilities at the University of Leeds, UK.

Blanthorn et al. Applied Network Science (2019) 4:120 Page 9 of 22

Summary

We examine the pairwise average adjusted mutual information (AMI) score and
NRSSR(X) as defined in Eq. (2) to identify a suitable number of communities for each
ecosystem. A high AMI would indicate that the communities created by the decomposi-
tion are stable across repeated runs of the algorithm.
Troughs between peaks in our AMI plots would indicate that communities are being

split inappropriately. We will interpret the first peak in AMI as the minimum valid
number of communities for an ecosystem.
Each community will then be labelled according to Eq. (3).

Results and discussion
Table 1 shows that there are clear differences between the language ecosystems in all the
statistics we calculate.

Degree distribution

Python packages have a mean number of 2.4 ± 2.9 direct dependencies where JavaScript
packages have 9.9± 22. Figures 2, 3, 4, 5, 6 and 7 show that the distributions of in and out
degree look fairly similar in shape; broadly, all out degree distributions follow a power-law
and the in degree distributions follow more Poissonian distributions.
The exception to this rule is npm, the JavaScript ecosystem, whose in-degree distribu-

tion is bimodal: there are more packages with the highest numbers of dependencies than
there are with middling numbers of dependencies. Upon further investigation, it turns
out that the distribution is skewed by a few hundred joke/malicious packages2 and some
irregularly packaged packages that list all their recursive dependencies as their direct
dependencies3.We chose not to omit these packages from the decomposition as we hoped
that tensor decomposition might discover them as a community.
We believe that the presence of a rich and well-used standard library—the functions

included in the language without any other dependencies—reduces the mean degree
of an ecosystem. Python (degree 2.4) has such a library, while JavaScript (degree 9.9)
emphatically does not.
Elm (degree 2.6) features a small standard library compared to Python, but its library is

very rich within its domain of web application development.
Rust (degree 4.4) features a small standard library by design (instead promoting and

curating community packages). R (degree 5.3) features a fairly small standard library, and
many users now prefer the community tidyverse collection as a consistent community
alternative.

Number of communities

Figures 7, 8, 9, 10 and 11 show mean AMI and NRSS for each number of communities we
evaluated for each ecosystem. We computed 10 decompositions for each trialled number
of communities in each ecosystem.
Of all the techniques mentioned in the “Choosing the number of communities, R”

section, identifying a suitable number of communities was easiest by looking for early

2Such as neat-230
3@ckeditor5-build-inline and possibly react-misc-toolbox

https://libraries.io/npm/neat-230
https://libraries.io/npm/@southcn%2Fckeditor5-build-inline
https://libraries.io/npm/react-misc-toolbox

Blanthorn et al. Applied Network Science (2019) 4:120 Page 10 of 22

Table 1 Summary statistics for each ecosystem

Package manager E(kin,out) σ (kin) σ (kout) # Communities AMI % declined

elm-get 2.6 1.8 42 4 0.67 ± 0.16 50

PyPI 2.4 2.9 28 6 0.62 ± 0.11 0

npm 9.9 22 450 3 0.35 ± 0.17 33

Cargo 4.4 4.2 60 8 0.73 ± 0.087 25

CRAN 5.3 5.4 110 7 0.61 ± 0.10 43

Maven 4.0 5.8 120 5 0.62 ± 0.11 20

Number of communities is the number we choose to plot and analyse. For elm-get, CRAN and PyPI, other numbers of
communities also seemed reasonable. NRSS not reported because it did not contribute to analysis. Communities are considered
to have declined if their activity at the end of the study period is substantially lower than their peak activity. All numbers are
provided to two significant figures. k refers to the in and out degrees, σ is the standard deviation, and E is the arithmetic mean.

peaks in the AMI plots, which correlated well with visual inspection of decomposition sta-
bility and our manual checks on package names. The NRSS plots have no obvious elbows
and contributed nothing to our analysis; we include them as a relevant negative result.
For Elm, CRAN, and PyPI, AMI indicates more than one “good” number of communi-

ties to split the ecosystem into. We have chosen the smallest good number except when
that number was two.
We observed interesting differences between ecosystems in this metric: Elm and R have

relatively high AMIs at relatively low numbers of components while other languages such
as JavaScript had low AMIs for all of the numbers of components we tried, suggesting
that a more representative number of components might be much higher. This tells us
something about the diversity of an ecosystem: the more communities it has, the more
diverse it must be.

Activity over time

Figures 12, 13, 14, 15, and 16 show the relative activity of communities in each ecosystem
over time for a representative decomposition; i.e. they are plots of τrt from Eq. (1) against
time, t.
The labels are reasonably stable across decompositions when AMI is high and they

appear to be informative in most ecosystems. The relative size and activity over time of
the communities can often be matched with what we know about the their constituent
packages and the ecosystem from other sources.

Fig. 2 Elm degree distributions. In and out degree distributions for the Elm package ecosystem

Blanthorn et al. Applied Network Science (2019) 4:120 Page 11 of 22

Fig. 3 PyPI degree distributions. In and out degree distributions for the PyPI package ecosystem

The community activity plots show clear differences between the various ecosystems.
Elm, R and Rust all contain communities that decline in activity over time. Some lan-
guages such as Elm, R and Rust have “peaky” community activity where packages have
been replaced by others. Java, Python and JavaScript do not exhibit such behaviour; sug-
gesting that their communities are more stable. The “% declined” column in Table 1
summarises this behaviour.

Community composition

Comparing ecosystems, we observe that Python has communities centred around mak-
ing websites (django), scientific computing (numpy), or interpreting configuration files
(pyyaml). By contrast, Elm’s communities are all to do with building web applications,
and R’s communities are mostly focused towards scientific computing. This suggests,
uncontroversially, that Elm and R are less general purpose languages than Python.
In the following sections we examine and provide interpretations for the composition

of communities within each ecosystem.

Ecosystem-specific results

Elm

Figure 12 shows community activity over time. evancz/html is the precursor of
elm-lang/html and we can see an early community of packages using evancz/html
that decays over time as the newer community using elm-lang/html emerges. We can

Fig. 4 npm degree distributions. In and out degree distributions for the npm package ecosystem

Blanthorn et al. Applied Network Science (2019) 4:120 Page 12 of 22

Fig. 5 Cargo degree distributions. In and out degree distributions for the Cargo package ecosystem

also see the swift rise of a community of HTTP-using packages. This is perhaps particu-
larly pronounced in Elm because the language is unusually restrictive (there was no offi-
cial way to write HTTP packages before the package which became elm-lang/http)
and young (there was a strong known demand for an obvious feature like HTTP support).
The evancz/html deprecation neatly shows that many earlier packages were aban-

doned and did not make the jump to Elm 0.17 and elm-lang/html4. Those that do
make the jump move community and those that do not remain in the package manager
as abandonware.
Elm is a young and deliberately unconventional and experimental language, so it is to

be expected that many packages will be abandoned as the community experiments with
different approaches.
The rapid changes in activity indicate that the Elm ecosystem is not stable, that is,

communities have experienced large relative changes in activity recently.
High AMI for communities two and four suggest that the Elm ecosystem is not diverse

as it is well described by small numbers of communities.

Python

Figure 13 demonstrates how these communities change over time: it is interesting that
there are no communities which have declined particularly. One community, django,
a web application framework, seems to have stagnated. Google Trends data suggest that
interest in it has reached a plateau compared to frameworks in other languages such as
React for JavaScript.
The growth of communities, as shown in Fig. 13, seems to be monotonic. There do not

appear to be any major deprecated packages, which is surprising, given the impending
deprecation of Python version 2, which is incompatible with Python version 3. This could
be due to the popular package six which provides compatibility helpers for Python 2
and 3.

JavaScript

The AMI plot for npm is given in Fig. 9. We chose not to calculate the NRSS values due
to computational constraints. The AMI for every number of communities we trialled is
very low and although we use three communities in the time activity plot, Fig. 14, we are
not particularly confident that the communities picked are meaningful. It is plausible that
some larger number of communities would fit the data better, however we trialled up to
50 communities with no success.
4evancz/html is deprecated in Elm 0.17

Blanthorn et al. Applied Network Science (2019) 4:120 Page 13 of 22

Fig. 6 CRAN degree distributions. In and out degree distributions for the CRAN package ecosystem

Rust

The AMI and NRSS plots for Rust are shown in Fig. 10. The AMI plot strongly indicates
a first peak at 8 communities.
Figure 15 demonstrates how these communities change over time. Of particu-

lar note are the communities centered around rustc-serialize and serde.
rustc-serialize has been deprecated and officially replaced with the serde pack-
age. The decline in activity of the rustc-serialize community and rise of the serde
community is quite distinct and clearly occurs at the same time.
The community labelled winapi is also easily interpretable. The K factor for this

community is bimodal and the size of the higher strength cluster indicates that there
are around 450 packages in this community. A brief review of these packages suggests
that they are low-level cross-platform packages for interacting with the operating system.
These packages were amongst the first written and predate the package manager, which
explains their steep initial rise.

R

As shown in Fig. 11, AMI suggests that decomposition into two, seven, or nine communi-
ties is acceptable. That CRAN can be stably decomposed into two communities suggests
that the ecosystem is not very diverse, which is as we would expect from a language
focused on scientific and statistical computing.

Fig. 7 Choosing the number of communities: Elm. Left: the mean pairwise adjusted mutual information of
the community-node membership across repeated decompositions. 1 is a perfectly stable assignment to
communities; 0 is perfectly random. The shaded area corresponds to twice the standard error of the mean.
Right: the mean normalised residual sum of squares error for repeated decompositions on the Elm network
against the number of components. The shaded area corresponds to twice the standard error of the mean
above and below the line

Blanthorn et al. Applied Network Science (2019) 4:120 Page 14 of 22

Fig. 8 Choosing the number of communities: PyPI. Left: the mean pairwise adjusted mutual information of
the community-node membership across repeated decompositions. 1 is a perfectly stable assignment to
communities; 0 is perfectly random. The shaded area corresponds to twice the standard error of the mean.
Right: the mean normalised residual sum of squares error for repeated decompositions on the PyPI network
against the number of components. The shaded area corresponds to twice the standard error of the mean
above and below the line

It can be seen in Fig. 16 that when decomposed into seven communities, distinctive
waves of activity over time exist. We believe these waves are driven by CRAN’s rolling
release model which requires packages to be actively maintained or de-listed. This is a
strong incentive for package authors to switch dependencies if e.g. one of two testing
libraries is actively maintained. The de-listing also means that older, unused packages
are removed from the dependency graph over time, unlike any of the other studied
ecosystems.
Visible in Fig. 16 and an exemplar of this behaviour, RUnit is an older unmaintained

testing library and testthat is a more modern replacement. Unlike any other long-
established language in this analysis, there is a clear and steep decline of the earlier library
in favour of the competitor5.

Fig. 9 npm adjusted mutual information against components. The pairwise adjusted mutual information of
the community-node membership across repeated decompositions. 1 is a perfectly stable assignment to
communities; 0 is perfectly random. The shaded area corresponds to twice the standard error of the mean
above and below the line

5Package popularity indicated on METACRAN https://cranlogs.r-pkg.org/

https://cranlogs.r-pkg.org/

Blanthorn et al. Applied Network Science (2019) 4:120 Page 15 of 22

Fig. 10 Choosing the number of communities: Cargo. Left: the mean pairwise adjusted mutual information
of the community-node membership across repeated decompositions. 1 is a perfectly stable assignment to
communities; 0 is perfectly random. The shaded area corresponds to twice the standard error of the mean.
Right: the mean normalised residual sum of squares error for repeated decompositions on the Cargo network
against the number of components. The shaded area corresponds to twice the standard error of the mean
above and below the line

Despite R being an old language, some of its communities have grown at a rapid rate,
specifically those relating to knitr, and testthat. This suggests that, despite being an
older language, R’s ecosystem is still subject to significant change.
Defining community lifetime as the full width at half maximum, we can see from Fig. 16

that communities tend to stay active for approximately 4 to 8 years.

Java

The AMI plot, Fig. 17, strongly indicates an unambiguous peak at 5 communities. AMI is
very low for two communities and comparatively low for three and four, suggesting that
Maven has a wider diversity of communities than CRAN or elm-get. These communities
include a distinct Scala community, a kind of dialect of Java, centered around the Scala
standard library.
Figure 18 demonstrates how these communities change over time. There is a general

upwards trend and some noise that may be spurious. As noted in Decan et al. (2018),
there may be issues with the Maven dataset that are affecting these results.

Conclusions
We have found a large amount of variation between different software ecosystems; some,
such as Python, are stable and long-lived, and others, such as Elm, have packages that
have been important but short-lived due to deprecation. It is our suspicion that a large
amount of the variation between languages is due to the size and usefulness of their stan-
dard libraries. However, some of the differences, especially those found by the tensor
decompositions, could be because early communities which fall out of use are ignored

Blanthorn et al. Applied Network Science (2019) 4:120 Page 16 of 22

Fig. 11 Choosing the number of communities: CRAN. Left: the mean pairwise adjusted mutual information
of the community-node membership across repeated decompositions. 1 is a perfectly stable assignment to
communities; 0 is perfectly random. The shaded area corresponds to twice the standard error of the mean.
Right: the mean normalised residual sum of squares error for repeated decompositions on the CRAN network
against the number of components. The shaded area corresponds to twice the standard error of the mean
above and below the line

by the decomposition in favour of later, larger communities. It would be interesting to
investigate whether this effect is real.
Based on our analysis, we have the following answers to our research questions:

• RQ1 What are the differences between different software ecosystems?

There are differences in the number of communities of software packages, the rate at
which communities of software packages gain and lose popularity as measured by how
often they are dependant on each other, and in the overall trajectory of the growth of
these communities.

• RQ2 What do communities of commonly-used-together software packages look like?

Similar to the languages as a whole, the communities have fairly homogeneous in-degree
distributions but heterogeneous power-law out-degree distributions.

• RQ3 How do these communities change with time?

Fig. 12 Elm community activity. Relative activity of each community in each month. The communities are
named by important packages as detailed in the Methods section

Blanthorn et al. Applied Network Science (2019) 4:120 Page 17 of 22

Fig. 13 PyPI community activity. Relative activity of each community in each month. The communities are
named by important packages as detailed in the “Methods” section

The general rule is “up and to the right”: all of the ecosystems we considered increased in
activity as time went on, in agreement with Decan et al. (2018). This is unsurprising as it is
relatively rare for a package to lose dependencies—it can fall out of use, but the packages
that previously depended on it will tend to continue to depend on it.
Our results agree with that found in other works, especially that of Decan et al. (2018).

Figure 16 in particular shows the effect of CRAN’s strict rolling-release model where out-
of-date packages are archived (meaning that they are no longer as easy to install); Fig. 15

Fig. 14 npm community activity. Relative activity of each community in each month. The communities are
named by important packages as detailed in the “Methods” section

Blanthorn et al. Applied Network Science (2019) 4:120 Page 18 of 22

Fig. 15 Cargo community activity. Relative activity of each community in each month. The communities are
named by important packages as detailed in the “Methods” section

shows how the Rust ecosystem seems to start very suddenly as the package manager came
relatively late into the language’s life.
For Java specifically, our work does not show much overlap with the communities

found by Šubelj and Bajec (2011). This could be due to differences in between their
static and our dynamic community detection, but it could also be that the validity of our

Fig. 16 CRAN community activity. Relative activity of each community in each month. The communities are
named by important packages as detailed in the “Methods” section

Blanthorn et al. Applied Network Science (2019) 4:120 Page 19 of 22

Fig. 17 Choosing the number of communities: Maven. Left: the mean pairwise adjusted mutual information
of the community-node membership across repeated decompositions. 1 is a perfectly stable assignment to
communities; 0 is perfectly random. The shaded area corresponds to twice the standard error of the mean.
Right: the mean normalised residual sum of squares error for repeated decompositions on the Maven
network against the number of components. The shaded area corresponds to twice the standard error of the
mean above and below the line

results is questionable for Maven as the Libraries.io data for Maven is incomplete
(Decan et al. 2018).
The absolute level of the adjusted mutual information at low numbers of communities

seems to reflect the diversity of an ecosystem: R and elm, both domain specific languages,
have high levels of AMI for 2 and 3, whereas all of the general purpose languages we
consider do not.
Methodologically, we found that using adjusted mutual information as a metric by

which to choose the number of communities led to (predominantly) explainable commu-
nities that appeared to be stable across multiple runs of the decompositions and across
multiple values of the number of communities chosen. Our labelling algorithm, Eq. (3)

Fig. 18 Maven community activity. Relative activity of each community in each month. The communities are
named by important packages as detailed in the “Methods” section

Blanthorn et al. Applied Network Science (2019) 4:120 Page 20 of 22

Fig. 19 Maven degree distributions. In and out degree distributions for the Maven package ecosystem

worked well for our application, giving plausible and comprehensible labels, and could
plausibly work well for any communities in networks with power-law degree distribu-
tions. The stability of an ecosystem can be seen from our activity over time plots, i.e. the
τ r vectors.
Further work could involve investigating larger components for languages for which we

currently have fairly low AMI scores. It would also be fairly straight-forward to extend
our technique to consider the co-authorship network that creates the software as another
layer in the network. Knowledge of how the ecosystem evolves organically could be used
to detect fraudulent packages, especially by unknown authors. The creation of models of
software ecosystem evolution from simple sets of rules (for example, 10% of packages are
deprecated every 6 months) to try to replicate our results synthetically could also prove
insightful.
Our work could have applications in helping designers of software ecosystems to make

informed choices; it is clear that, for example, CRAN’s rolling release policy has a big
impact on its software communities. One could imagine using clusterings like those we
have created to determine whether part of a software ecosystem was on the wane and was
likely to be replaced soon. Such considerations would make sense if one was choosing
dependencies for a project that was intended to lastmany years. Additionally, if one knows
how communities form naturally, it becomes easier to pick out outliers, as we have seen
with the npm “joke” packages.
In conclusion, we have described the long term evolution of several software ecosys-

tems by breaking them up into their constituent communities. We have been able
to spot ground-truth events such as the deprecation of major software packages in
the temporal activities of these communities. We have demonstrated clear differences
between different software ecosystems.

Blanthorn et al. Applied Network Science (2019) 4:120 Page 21 of 22

Abbreviations
AMI: Adjusted mutual information; APG-TF: Alternating proximal gradient tensor factorisation; CANDECOMP: Canonical
decomposition; CP: CANDECOMP/PARAFAC; CRAN: Comprehensive R archive network; DOM: Document object model;
FOSS: Free and open-source software, HTTP: Hypertext transfer protocol; LIDA: Leeds institute for data analytics; NRSS:
Normalised residual sum of squares; PARAFAC: parallel factor analysis; PyPI: Python package index

Acknowledgements
This work was undertaken on MARC1, part of the High Performance Computing and Leeds Institute for Data Analytics
(LIDA) facilities at the University of Leeds, UK. The authors would also like to thank Andrea Schalk, Emlyn Price, and
Joseph French for providing useful feedback on an early version of the manuscript.

Authors’ contributions
OAB created the initial concept—the research plan, methodology, and the application to software packages—and wrote
the majority of the paper. CMC and OAB wrote the code and the results and discussion section in a roughly even split.
ENL wrote the introduction. All authors discussed the experimental design and edited the paper.

Funding
OAB’s work was supported as part of an Engineering and Physical Sciences Research Council (EPSRC) grant, project
reference EP/I028099/1.

Availability of data andmaterials
The data used in this research is available from doi.org/10.5281/zenodo.2536573. All of our code is available at
doi.org/10.5281/zenodo.2610369 and github.com/bovine3dom/evolution-of-software-communities.

Competing interests
The authors declare that they have no competing interests.

Author details
1School of Computer Science, University of Manchester, Manchester, UK. 2School of Geography, University of Leeds,
Leeds, UK. 3School of Environment, Education and Development, University of Manchester, Manchester, UK.

Received: 27 March 2019 Accepted: 23 August 2019

References
Araujo M, Papadimitriou S, Stephan G, Papalexakis EE, Koutra D (2014) Com2 : Fast Automatic Discovery of Temporal

(‘Comet’) Communities. PAKDD 2014, Part II, LNAI 8444:271–283
Aynaud T, Guillaume J-L (2010) Static community detection algorithms for evolving networks. In: Proceedings of

Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). pp 513–519. https://doi.org/10.1016/j.
niox.2011.03.001

Bader BW, Kolda TG (2007) Efficient MATLAB computations with sparse and factored tensors. SIAM J Sci Comput
30(1):205–231. https://doi.org/10.1137/060676489

Baldwin A (2018) Details about the event-stream incident. https://blog.npmjs.org/post/180565383195/details-about-
the-event-stream-incident

Bassett DS, Porter MA, Wymbs NF, Grafton ST, Carlson JM, Mucha PJ (2013) Robust detection of dynamic community
structure in networks. Chaos 23(1). https://doi.org/10.1063/1.4790830. 1206.4358

Bezanson J, Karpinski S, Shah VB, Edelman A (2012) Julia: A fast dynamic language for technical computing. arXiv preprint
arXiv:1209.5145

Bromberger S (2017) JuliaGraphs/LightGraphs.jl. https://doi.org/10.5281/zenodo.1412141
Cai KY, Yin BB (2009) Software execution processes as an evolving complex network. Inf Sci 179(12):1903–1928. https://

doi.org/10.1016/j.ins.2009.01.011
Chaikalis T, Chatzigeorgiou A (2015) Forecasting java software evolution trends employing network models. IEEE Trans

Softw Eng 41(6):582–602. https://doi.org/10.1109/TSE.2014.2381249
Chatzigeorgiou A, Melas G (2012) Trends in object-oriented software evolution: Investigating network properties. Proc Int

Confer Softw Eng:1309–1312. https://doi.org/10.1109/ICSE.2012.6227092
Chong CY, Lee SP (2015) Analyzing maintainability and reliability of object-oriented software using weighted complex

network. J Syst Softw 110:28–53. https://doi.org/10.1016/j.jss.2015.08.014
Concas G, Monni C, Orru M, Tonelli R (2013) A study of the community structure of a complex software network.

International Workshop on Emerging Trends in Software Metrics, WETSoM:14–20. https://doi.org/10.1109/WETSoM.
2013.6619331

Decan A, Mens T, Grosjean P (2018) An empirical comparison of dependency network evolution in seven software
packaging ecosystems. Empirical Software Engineering:1–36. https://doi.org/10.1007/s10664-017-9589-y. 1710.04936

Dietrich J, Yakovlev V, McCartin C, Jenson G, Duchrow M (2008) Cluster analysis of Java dependency graphs. In:
Proceedings of the 4th ACM Symposium on Software Visuallization - SoftVis ’08. ACM Press, New York. p 91. https://
doi.org/10.1145/1409720.1409735. http://portal.acm.org/citation.cfm?doid=1409720.1409735

Durumeric Z, Li F, Kasten J, Amann J, Beekman J, Payer M, Weaver N, Adrian D, Paxson V, Bailey M, Halderman JA (2014)
The Matter of Heartbleed. In: Proceedings of the 2014 Conference on Internet Measurement Conference. IMC ’14.
ACM, New York. pp 475–488. https://doi.org/10.1145/2663716.2663755

Folino F, Pizzuti C (2014) An evolutionary multiobjective approach for community discovery in dynamic networks. IEEE
Trans Knowl Data Eng 26(8):1838–1852. https://doi.org/10.1109/TKDE.2013.131

Gao Y, Zheng Z, Qin F (2014) Analysis of Linux kernel as a complex network. Chaos, Solitons and Fractals 69:246–252.
https://doi.org/10.1016/j.chaos.2014.10.008

https://doi.org/10.5281/zenodo.2536573
https://doi.org/10.5281/zenodo.2610369
https://github.com/bovine3dom/evolution-of-software-communities
https://doi.org/10.1016/j.niox.2011.03.001
https://doi.org/10.1016/j.niox.2011.03.001
https://doi.org/10.1137/060676489
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://doi.org/10.1063/1.4790830
http://arxiv.org/abs/1206.4358
https://doi.org/10.5281/zenodo.1412141
https://doi.org/10.1016/j.ins.2009.01.011
https://doi.org/10.1016/j.ins.2009.01.011
https://doi.org/10.1109/TSE.2014.2381249
https://doi.org/10.1109/ICSE.2012.6227092
https://doi.org/10.1016/j.jss.2015.08.014
https://doi.org/10.1109/WETSoM.2013.6619331
https://doi.org/10.1109/WETSoM.2013.6619331
https://doi.org/10.1007/s10664-017-9589-y
http://arxiv.org/abs/1710.04936
https://doi.org/10.1145/1409720.1409735
https://doi.org/10.1145/1409720.1409735
http://portal.acm.org/citation.cfm?doid=1409720.1409735
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1109/TKDE.2013.131
https://doi.org/10.1016/j.chaos.2014.10.008

Blanthorn et al. Applied Network Science (2019) 4:120 Page 22 of 22

Gauvin L, Panisson A, Cattuto C (2014) Detecting the community structure and activity patterns of temporal networks: A
non-negative tensor factorization approach. PLoS ONE 9(1). https://doi.org/10.1002/9781119156253.ch10. 1308.0723

He J, Chen D (2015) A fast algorithm for community detection in temporal network. Physica A: Stat Mech Appl 429:87–94.
https://doi.org/10.1016/j.physa.2015.02.069

He J, Chen D, Sun C, Fu Y, Li W (2017) Efficient stepwise detection of communities in temporal networks. Physica A: Stat
Mech Appl 469:438–446. https://doi.org/10.1016/j.physa.2016.11.019

Kang U, Papalexakis E, Harpale A, Faloutsos C (2012) Gigatensor: scaling tensor analysis up by 100 times-algorithms and
discoveries. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM. pp 316–324

Katz J (2018) Libraries.io Open Source Repository and Dependency Metadata. https://doi.org/10.5281/zenodo.2536573.
https://doi.org/10.5281/zenodo.2536573

Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K, Hamrick J, Grout J, Corlay S, Ivanov P, Avila
D, Abdalla S, Willing C (2016) Jupyter Notebooks – a Publishing Format for Reproducible Computational Workflows.
In: Loizides F, Schmidt B (eds). Positioning and Power in Academic Publishing: Players, Agents and Agendas. IOS Press.
pp 87–90

Kolda TG, Bader BW (2009) Tensor Decompositions and Applications. SIAM Review 51(3):455–500. https://doi.org/10.
1137/07070111X

Li H, Zhao H, Cai W, Xu J-Q, Ai J (2013) A modular attachment mechanism for software network evolution. Physica A:
Statistical Mechanics and its Applications 392(9):2025–2037. https://doi.org/10.1016/j.physa.2013.01.035

Lian Wen, Dromey RG, Kirk D (2009) Software Engineering and Scale-Free Networks, Vol. 39. https://doi.org/10.1109/
TSMCB.2009.2020206

Louridas P, Spinellis D, Vlachos V (2008) Power laws in software. ACM Trans Softw Eng Methodol 18(1):1–26. https://doi.
org/10.1145/1391984.1391986

Myers CR (2003) Software systems as complex networks: Structure, function, and evolvability of software collaboration
graphs, Vol. 68. https://doi.org/10.1103/PhysRevE.68.046116. 0305575

Pan W, Li B, Ma Y, Liu J (2011) Multi-granularity evolution analysis of software using complex network theory. J Syst Sci
Compl 24(6):1068–1082. https://doi.org/10.1007/s11424-011-0319-z

Papalexakis EE, Faloutsos C, Sidiropoulos ND (2012) Parcube: Sparse parallelizable tensor decompositions. In: Joint
European Conference on Machine Learning and Knowledge Discovery in Databases. Springer Vol. 10. pp 521–536.
https://doi.org/10.1145/2729980. http://dl.acm.org/citation.cfm?doid=2808688.2729980

Paymal P, Patil R, Bhowmick S, Siy H (2011) Empirical Study of Software Evolution Using Community Detection.
Cs.Unomaha.Edu. January 2015

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,
Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine learning in
Python. J Mach Learn Res 12:2825–2830

Rosvall M, Esquivel AV, Lancichinetti A, West JD, Lambiotte R (2014) Memory in network flows and its effects on spreading
dynamics and community detection. Nat Commun 5:1–13. https://doi.org/10.1038/ncomms5630

Sarzynska M, Leicht EA, Chowell G, Porter MA (2016) Null models for community detection in spatially embedded,
temporal networks. J Compl Netw 4(3):363–406. https://doi.org/10.1093/comnet/cnv027

Savić M, Ivanović M, Jain LC (2019) Complex Networks in Software, Knowledge, and Social Systems 148. https://doi.org/
10.1007/978-3-319-91196-0

Savić M, Radovanović M, Ivanović M (2012) Community detection and analysis of community evolution in Apache Ant
class collaboration networks:229. https://doi.org/10.1145/2371316.2371361

Schlueter I (2016) kik, left-pad, and npm. https://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
Šubelj L, Bajec M (2011) Community structure of complex software systems: Analysis and applications. Physica A: Stat

Mech Appl 390(16):2968–2975. https://doi.org/10.1016/j.physa.2011.03.036
Tantipathananandh C, Berger-Wolf TY (2011) Finding communities in dynamic social networks. Proc - IEEE Int Confer

Data Mining, ICDM:1236–1241. https://doi.org/10.1109/ICDM.2011.67
Vinh NX, Epps J, Bailey J (2009) Information theoretic measures for clusterings comparison: Is a correction for chance

necessary? In: Proceedings of the 26th Annual International Conference on Machine Learning. ICML ’09. ACM, New
York. pp 1073–1080. https://doi.org/10.1145/1553374.1553511

Xin X, Wang C, Ying X, Wang B (2017) Deep community detection in topologically incomplete networks. Phys A: Stat
Mech Appl 469:342–352. https://doi.org/10.1016/j.physa.2016.11.029

Xu J, Gao Y, Christley S, Madey G (2005) A TOPOLOGICAL ANALYSIS OF THE OPEN SOURCE SOFTWARE DEVELOPMENT
COMMUNITY Scott Christley Dept . of Computer Science and Engineering University of Notre Dame Notre Dame. In:
46556, Proceedings of the 38th Hawaii International Conference on System Sciences - 2005 Vol. 00. pp 1–10

Xu Y, Yin W (2013) A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to
Nonnegative Tensor Factorization and Completion. SIAM J Imag Sci 6(3):1758–1789. https://doi.org/10.1137/
120887795

Yin G, Chi K, Dong Y, Dong H (2017) An approach of community evolution based on gravitational relationship refactoring
in dynamic networks. Phys Lett, Sec A: Gen, Atom Solid State Phys 381(16):1349–1355. https://doi.org/10.1016/j.
physleta.2017.01.059

Yu W, Aggarwal CC, Wang W (2017) Temporally Factorized Network Modeling for Evolutionary Network
Analysis:455–464. https://doi.org/10.1145/3018661.3018669

Zanetti MS, Schweitzer F (2012) A Network Perspective on Software Modularity. ARCS 2012:1–8. http://arxiv.org/abs/
1201.3771

Zheng X, Zeng D, Li H, Wang F (2008) Analyzing open-source software systems as complex networks. Physica A: Stat
Mech Appl 387(24):6190–6200. https://doi.org/10.1016/j.physa.2008.06.050

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1002/9781119156253.ch10
http://arxiv.org/abs/1308.0723
https://doi.org/10.1016/j.physa.2015.02.069
https://doi.org/10.1016/j.physa.2016.11.019
https://doi.org/10.5281/zenodo.2536573
https://doi.org/10.5281/zenodo.2536573
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.1016/j.physa.2013.01.035
https://doi.org/10.1109/TSMCB.2009.2020206
https://doi.org/10.1109/TSMCB.2009.2020206
https://doi.org/10.1145/1391984.1391986
https://doi.org/10.1145/1391984.1391986
https://doi.org/10.1103/PhysRevE.68.046116
http://arxiv.org/abs/0305575
https://doi.org/10.1007/s11424-011-0319-z
https://doi.org/10.1145/2729980
http://dl.acm.org/citation.cfm?doid=2808688.2729980
https://doi.org/10.1038/ncomms5630
https://doi.org/10.1093/comnet/cnv027
https://doi.org/10.1007/978-3-319-91196-0
https://doi.org/10.1007/978-3-319-91196-0
https://doi.org/10.1145/2371316.2371361
https://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
https://doi.org/10.1016/j.physa.2011.03.036
https://doi.org/10.1109/ICDM.2011.67
https://doi.org/10.1145/1553374.1553511
https://doi.org/10.1016/j.physa.2016.11.029
https://doi.org/10.1137/120887795
https://doi.org/10.1137/120887795
https://doi.org/10.1016/j.physleta.2017.01.059
https://doi.org/10.1016/j.physleta.2017.01.059
https://doi.org/10.1145/3018661.3018669
http://arxiv.org/abs/1201.3771
http://arxiv.org/abs/1201.3771
https://doi.org/10.1016/j.physa.2008.06.050

	Abstract
	Keywords

	Introduction
	Methods
	What is a community?
	Shape of the data
	Brief introduction to each ecosystem
	Elm
	Python
	JavaScript
	Rust
	R
	Java

	Representing the data
	Tensor decompositions
	Choosing the number of communities, R
	Adjusted mutual information

	Labelling communities
	Hardware and software used
	Summary

	Results and discussion
	Degree distribution
	Number of communities
	Activity over time
	Community composition
	Ecosystem-specific results
	Elm
	Python
	JavaScript
	Rust
	R
	Java

	Conclusions
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

