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Abstract
The existence of groups of nodes with common characteristics and the relationships
between these groups are important factors influencing the structures of social,
technological, biological, and other networks. Uncovering such groups and the
relationships between them is, therefore, necessary for understanding these structures.
Groups can either be found by detection algorithms based solely on structural analysis
or identified on the basis of more in-depth knowledge of the processes taking place in
networks. In the first case, these are mainly algorithms detecting non-overlapping
communities or communities with small overlaps. The latter case is about identifying
ground-truth communities, also on the basis of characteristics other than only network
structure. Recent research into ground-truth communities shows that in real-world
networks, there are nested communities or communities with large and dense overlaps
which we are not yet able to detect satisfactorily only on the basis of structural network
properties.
In our approach, we present a new perspective on the problem of group detection
using only the structural properties of networks. Its main contribution is pointing out
the existence of large and dense overlaps of detected groups. We use the
non-symmetric structural similarity between pairs of nodes, which we refer to as
dependency, to detect groups that we call zones. Unlike other approaches, we are able,
thanks to non-symmetry, accurately to describe the prominent nodes in the zones
which are responsible for large zone overlaps and the reasons why overlaps occur. The
individual zones that are detected provide new information associated in particular
with the non-symmetric relationships within the group and the roles that individual
nodes play in the zone. From the perspective of global network structure, because of
the non-symmetric node-to-node relationships, we explore new properties of
real-world networks that describe the differences between various types of networks.
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Introduction
Frequently solved problems in complex network analysis include the study of network
structures. One of the challenges in this area is to design methods capable of detecting
groups of nodes that have empirically determined properties that are common in real-
world networks.
The procedure associated with this task is community detection, and it is a well-known

fact that some real-world networks, e.g., social networks, have a community structure.
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However, the concept of a network community is not precisely defined. Informally, a
network community is often described as a group of nodes that are strongly connected
inside the community but weakly connected with other communities. Unfortunately, this
definition cannot be applied in real-world situations, where one node may belong to mul-
tiple communities. In this case, communities either partially overlap or one community is
entirely nested into another community.
There are many different methods used to detect communities in networks. These

methods are based on various approaches, the first comprehensive overview of which can
be found in Fortunato (2010). This survey is also focused on the methods used for detect-
ing overlapping communities. In this survey, overlaps are understood mostly either as a
group of nodes connecting several communities (hubs) or as a connection within a hier-
archy described in a way similar to hierarchical clustering by a dendrogram. A detailed
overview of overlapping community detection methods can be found in Xie et al. (2013).
As the authors point out, a common feature of the methods being investigated is the small
fraction of the nodes in the overlaps.
Recent results have shown three essential properties describing network community

structure: (a) there are large overlaps that have a higher density compared to the density
of overlapping communities (Yang and Leskovec 2012); (b) the similarity of links has a sig-
nificant influence on the size of communities and their overlaps (Ahn et al. 2010), and (c)
on the basis of a close relationship between the high density of triangles and the existence
of a community structure, triadic closure as a natural mechanism leads to the emergence
of a community structure (Bianconi et al. 2014).
In our approach, we combine ego-network analysis and seed-based community detec-

tion methods (Bagrow and Bollt 2005; Clauset 2005) in that we choose a node as a seed
for the detection of a group. It differs from them in that, as in ego-network analysis,
each seed (ego) is the basis of the group which we call an ego-zone (a zone in short).
Ego-zone detection is, similarly to Ahn et al. (2010), based on the analysis of similari-
ties in a networks. However, we analyze the similarity of adjacent nodes, and moreover,
we understand the similarity as non-symmetric, which corresponds better to the reality
(Tversky 1977). Therefore, the approach presented in this article combines the properties
mentioned above with one additional principle – non-symmetric similarity.
To measure similarity, we use dependency (Kudelka et al. 2015). The calculation of the

dependency is based on the ratio of the weights of triangles shared by the adjacent nodes
and the weights of all the edges of each adjacent node. Using the non-symmetric rela-
tion of dependency, in this article we present several key findings based on observations
of real-world networks. First, we show that there are three types of nodes in the net-
works in terms of dependency. They are (1) nodes that are not dependent on any other
node, (2) nodes on which no other node depends, and (3) nodes that have around them
both dependent nodes and nodes they depend on. In particular, the first type of nodes
(independent) describes “key players”, especially in networks with social interaction. The
nodes of both the first and the third types significantly affect overlapping groups of nodes,
which we call ego-zones. For zones, we define the roles that nodes of each type play in
them. We will show that our definition of a zone as a group with two types of internal
dependencies and specific roles of nodes, not only in the neighborhood but also in the
wider surroundings of the chosen node (ego), leads to overlapping zones. We will explain
why overlaps are created and also that they can be large and other zones may be nested
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inside them. In experiments with both generated and real-world networks, we will show
what properties they have in terms of dependency and zones, and how the real-world
networks differ from the ones that are generated and among themselves. In experiments
with real-world networks, we will explore the relationship between zones and commu-
nities in the traditional sense and ground-truth communities. An interesting conclusion
is that in some types of networks, it is possible to find zones that correspond to the
traditional view of communities, while in others, they correspond to the ground-truth
communities. In our experiments, we investigate in particular those properties that are
related to dependency and detected zones. However, for some comparisons, we also uti-
lize known structural properties of networks, especially average degree, modularity, and
average clustering coefficient.

Related work
Groups of nodes that are likely to share common features and/or play similar roles in
the network are called clusters or, more often, communities. It is a well-known fact that
some real-world networks, e.g., social networks, have a community structure. Commu-
nity detection is not a well-defined problem because there is no universal definition of
community and the nature of communities is not known in advance. The problem is also
complicated by the variability of community forms: disjoint, overlapping or, for exam-
ple, hierarchical communities may appear. As a result, there is no manual on how to use
the algorithm, how to evaluate the performance of different algorithms or how to com-
pare them. The authors (Fortunato and Hric 2016) offer a guided tour of the main aspects
of this issue, discuss the strengths and weaknesses of popular methods, and provide
guidance on how to use them.
One of the first publications about communities that is most often mentioned is Gir-

van and Newman (2002). The authors proposed a community detection algorithm based
on edge betweenness, which is a generalization of Freeman’s node betweenness central-
ity (Freeman 1977). This method is an example of detection methods based on a division
of a network (or underlying graph). Simultaneously, it is an example of a global, or a top-
down, method. The method is not capable of finding overlapping communities, because
each node is assigned to only one community. Other representatives of global methods,
the results of which are non-overlapping communities, include, among others, one of the
oldest algorithms, the Kernighan-Lin algorithm (Kernighan and Lin 1970), the spectral
bisection method (Barnes 1982) and hierarchical clustering. The last example uses the
symmetrical similarity rate because it assumes that communities are made of mutually
similar nodes and this similarity is symmetrical. An example of a different approach to
hierarchical clustering is, e.g., the Walkatrap algorithm, which is based on a random walk
(Pons and Latapy 2005). The novel CAN algorithm (Zhang et al. 2018) is proposed to
reveal community structure using the correlation analysis of nodes. A wide scale of meth-
ods is further represented by methods based on modularity (Newman and Girvan 2004)
and its optimization (Blondel et al. 2008; Guimera et al. 2004). A large number of metrics
have been proposed, a detailed survey of the metrics proposed for community detection
and evaluation can be found in Chakraborty et al. (2017).
Local (or seed-based) methods begin searching from a random node and then gradually

add neighboring nodes one by one on the basis of the optimization of measured metrics
or heuristics. This process is named local expansion. From among the many methods,
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the following can be named: the well-known method of Bagrow and Bollt (2005) or the
agglomerative algorithm of Clauset (2005), which uses greedymaximization of local mod-
ularity to find local communities. The starting nodes need not only be chosen at random.
For instance, in Khorasgani et al. (2010), the community is created as a group of followers
assembled around a potential leader.
It is a natural property of many real-world networks, especially social networks, that a

node may be a member of multiple communities and not only of one community, which
leads to the emergence of overlapping communities. The Clique Percolation Method
(Palla et al. 2005), in which the community that is obtained, named the k-clique commu-
nity, is the union of all k-cliques that can be reached from each other through a series of
adjacent k-cliques, is a very popular method. This method, however, assumes the exis-
tence of cliques, which looks, even for social networks, like an unreal assumption. The
idea of partitioning edges instead of nodes was also explored. The node in the original
graph is called overlapping if the edges associated with it belong to more than one com-
munity (Ahn et al. 2010; Evans and Lambiotte 2010). Local expansion is also used to
detect overlapping communities (Lancichinetti et al. 2009; Baumes et al. 2005). Another,
dynamic, approach is the algorithm to detect overlapping communities in networks by
label propagation called COPRA (Gregory 2010).
There is a question whether the structural view on communities corresponds to

real-world communities, about the existence of which information is available from non-
topological properties of networks (or from the attributes of nodes). A negative answer
can be found in Hric et al. (2014). The authors (Yang and Leskovec 2015) introduced
the concept of ground-truth communities and proposed a methodology, which compares
and evaluates how do various structural definitions of network communities correspond
to ground-truth communities. They allow ground-truth communities to be nested and
to overlap. The existence of these nested communities and their detection was also
published by, e.g., Tatti and Gionis (2013).
The community view on groups of nodes is one of the possible ones. A different

approach to the analysis of groups of nodes is the egocentric approach. It is focused on
the node referred to as the “ego” and its neighbors, known as “alters”. This approach nat-
urally applies mainly to the analysis of social networks. For example, in Abbasi et al.
(2012) the authors dealt with the analysis of co-authorship networks and the question of
whether the collaboration skills and research performance of researchers were correlated.
McAuley and Leskovec (2014) designed an algorithm to automatically detect circles in
ego-networks, so that alters may belong to any number of circles, including none. They
found circles that were disjoint, overlapping and hierarchically nested.
Our approach to the detection of groups of nodes (ego-zones) is related to Danisch

et al. (2013). The authors suspect that a well-chosen set of few nodes could define a sin-
gle community. The key idea is that, although one node generally belongs to numerous
communities, a small set of appropriate nodes can fully characterize a single community.
They work with similarity measure called Carryover opinion metric.
The term “dependency” can be found in Parshani et al. (2011); Bashan et al. (2011).

The authors work with what are termed “dependency links” and “dependency networks”
and analyze the cascade dissemination of errors in a system and state that if a node has
a lot of neighbors that are dependent on it, then its vulnerability will affect the vulner-
ability of all of the dependent nodes. This fits in with our concept of ego-zones (see
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“Ego-zones” section), where we can watch ego-zones through the lens of “dependency
links”, so that the removal of the ego from a network means, for example, the removal
of the entire zone (if it is small and has no sub-zones). Alternatively, it can mean only
the break-up of a large zone into sub-zones, in which the removed ego does not play an
important role (most of the nodes in such a sub-zone are not dependent on this ego).
A similar term, “influence”, is used by Jacob et al. (2016), who propose a graph the-

ory approach that focuses on the correlation influence between selected brain regions,
named Dependency Network Analysis. Partial correlations are used to quantify the level
of influence of each node during the performance of this task.

Dependency
If we consider a group of nodes fulfilling a particular purpose or function in a network,
then we can expect that the nodes in a group will be similar in terms of this purpose. On
the other hand, we can assume that the similarity between two objects in a group does
not generally have to be symmetrical. This is based on the assumption that, in assessing
the similarity of two objects, it is necessary to take into account not only their common
properties but also the properties in which both objects differ (Tversky 1977).
Let us now project this assumption into the structure of a network in order to use this

structure to measure the similarity between a pair of adjacent nodes, x and y. Consider all
the nodes adjacent to node x or node y. These nodes can be divided into three groups. The
first group is the shared neighbors of nodes x and y. These neighbors represent triangles
shared by both nodes and can be understood as the basis of the similarity. Therefore, a
higher number of triangles increases the similarity of nodes x and y. The remaining two
groups of nodes include those nodes that are adjacent either to node x or node y. Here, a
higher number of non-shared neighbors of nodes x or y reduces their similarity.
When formalizing these considerations, let us further assume that we are working

with a weighted undirected network. The non-symmetrical similarity of node x to
node y will be called a structural dependency, from now on referred to as dependency
(Kudelka et al. 2015).

Definition 1 Structural dependency. Let x, y be nodes, then dependency D(x, y) of node
x on node y is defined as follows:

D(x, y) = w(x, y) + ∑
vi∈CN(x,y) w(x, vi) · r(x, vi, y)

∑
vj∈N(x) w(x, vj)

(1)

r(x, vi, y) = w(vi, y)
w(x, vi) + w(vi, y)

, (2)

where CN(x, y) is set of all common neighbors of x, y, N(x) is set of all neighbors of x, w(x, y)
is weight of edge between x, y, and r(x, vi, y) is the coefficient of the dependency of node x on
node y via the common neighbor vi.

Equation 1 shows that the numerator contains the dependency of node x on y with
the edge weight between nodes x and y counted in, as well as reduced edge weights
between node x and particularly shared neighbors. The reduction is a value depen-
dent on the weight of the edges between nodes x or y and their shared neighbors.
The reduction value increases or decreases with an increase or decrease in the weight
of the edge between a shared neighbor and node y. The denominator contains the
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sum of the weights of the edges between node x and all its neighbors. When we
consider a reverse dependency of node y on node x, then the denominator will be
the sum of the weights of the edges between node y and all its neighbors, and the
numerator will also differ because of different weights and reduction values. There-
fore, the dependency of node x on node y can differ from the dependency of node
y on node x.
If we work with an unweighted network, then the weights of all the edges will be

equal to 1, and all the reduced values will be equal to 0.5. The value of an expression
in the numerator will be the same for both dependencies, but the values of denomina-
tors can vary. Therefore, even for an unweighted network, the dependency of the nodes
is non-symmetric. Thus, our method is designed with weighted networks in mind, but
can also be applied to unweighted ones. Moreover, the formulas from Definition 1 can
also be used for directed networks; however, this case lies beyond the scope of this
article. Therefore, below we will work only with weighted or unweighted undirected
networks.
Figure 1 shows an undirected unweighted network with nine nodes to illus-

trate different dependencies of neighboring nodes and two zones with their over-
lap (which will be explained in detail in “Ego-zones” section and the experimental
“Zones in generated networks” and “Zones in real-world networks” sections).

IsDependent relationship

To simplify the view on the dependency between two adjacent nodes x and y, let us define
the relationship IsDependent as follows:

Fig. 1 Dependency and zones in unweighted network. The network presented here is undirected and
unweighted. However, the arrows in this network express the direction of the dependency in a case when
D(x, y) ≥ 0.5 (informally, a strong dependency). The values of these dependencies are displayed on the
edges. It can be seen that all the green nodes are strongly dependent either on node 4 or node 7 or both of
them (for nodes 5 and 6). Moreover, the pairs of nodes 5, 6, and 8, 9 are mutually strongly dependent. Nodes
4 and 7 are specific (independent); they are not strongly dependent on any other node and have only weaker
mutual dependencies (0.33 and 0.4). On the basis of the explanation in the “Ego-zones” section, the two
largest detected zones in the network are displayed, the green zone with ego 4 and the yellow with ego 7.
Their overlap with four nodes is a multi-ego zone with egos 5 and 6. Nodes 4 and 7, thanks to their
independency on other nodes, induce this overlap. Moreover, nodes 5 and 6 belong to the overlap because
of their strong dependency on both of these independent nodes. It can be noticed that the overlap is a
clique and is denser than both overlapping zones. A total of seven zones were detected in this network. In
addition to the three already mentioned, these are zones [1 4], [2 4], [3 4] with egos 1, 2, and 3, and one
multi-ego zone [8 9 7] with egos 8 and 9



Kudelka et al. Applied Network Science            (2019) 4:81 Page 7 of 49

Definition 2 IsDependent. Let x, y be neighboring nodes, then IsDependent relationship
is defined as follows:
IsDependent(x, y) = True if D(x, y) ≥ 0.5; otherwise IsDependent(x, y) = False. The

dependency threshold is set to 0.5 to take into account and reasonably balance a mutual
dependency between two neighboring network nodes.

This relationship can be used to transform the original network into an unweighted
directed network. In Fig. 2a is a well-known Karate Club network after the transfor-
mation. Edges exist only between nodes where at least one is dependent on the other,
and their direction corresponds to the relationship IsDependent. The node size cor-
responds to the in-degree centrality of the given node. The transformed network in
Fig. 2a emphasizes information about the structure of the original network, which is
in Fig. 2b.

Fig. 2 Karate Club. Transformed unweighted directed network (a), and network with strongly-prominent
nodes marked in red and weakly-prominent nodes in yellow (b). For the isolated node 28 in sub-figure a it is
true that it is not dependent on any other node and at the same time, no other node in the network is
dependent on it. Node 10 is dependent on nodes 3 and 34. Most nodes are dependent on nodes 1 or 34.
There are nodes 32, 6, 7, 14, 28 with different prominency (see Definition 5), but a comparable degree.
Node 32 is strongly-prominent (OwIndep = 3, TwDep = 0, OwDep = 0, Prominency = 1, Degree = 6). Nodes
6 and 7 are weakly-prominent (OwIndep = 2, TwDep = 1, OwDep = 1, Prominency = 0.667, Degree = 4)
because of their dependency on each other and on node 1. Nodes 14 or 28 are non-prominent
(OwIndep = 0, TwDep = 0, OwDep = 4 or 0, resp., Prominency = 0, Degree = 5 or 4, resp.) because no other
nodes are dependent on them. As explained in Fig. 7 in “Ego-zones” section, sub-figure b displays one
multi-ego zone (green) with egos 6 and 7, and one group of nodes (yellow) representing two alternative
zones with egos 9 or 31, respectively
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After the network has been transformed into its unweighted directed version, all the
neighbors of each node of the network can be, by using Definition 3, divided into four
groups described by different types of dependencies (for examples, see Fig. 2).

Definition 3 Four types of dependencies. Let x be a node, then:

OwDepx is the number of neighbors on which x is dependent, but which are not dependent
on x (one-way dependency);

OwIndepx is the number of neighbors which are dependent on x, but x is not dependent on
them (one-way independency);

TwDepx is the number of neighbors which are dependent on x, and x is dependent on them
(two-way dependency);

TwIndepx is the number of neighbors which are not dependent on x, and x is not dependent
on them (two-way independency).

The nodes that have a non-zero value for OwIndep deserve special attention. These
nodes can be divided into two groups (see Fig. 2b). The first group includes (red) nodes
that are not dependent on other nodes. The second group contains (yellow) nodes that
are dependent on at least one other node.

Definition 4 Prominent nodes. Let x be a node, then:

• a node x is called prominent if OwIndepx > 0;
• a prominent node x is called strongly-prominent if OwDepx = 0 and TwDepx = 0.
• a prominent node x which is not strongly-prominent is called weakly-prominent.

Strongly-prominent or weakly-prominent nodes play roles of global or local authorities
for those network nodes that are unilaterally dependent on them. Below, we will call the
nodes in the roles of authorities “centers”. In “Cause of overlaps” section, we show that the
existence of prominent nodes is an important aspect causing overlaps between groups.
To determine whether and to what extent a node plays the center role, we define the

value of node prominency (see Definition 5). When calculating this value, we measure the
degree of independency of the node as the F1 score, based on a confusion matrix in which
true positives = OwIndep, false negatives = TwDep, and false positives = OwDep. The
point is to assess the network node x from the perspective of dependency of its neighbors
on it and, also conversely, its independency on its neighbors; it means that positives are
neighboring nodes dependent on the x node, and negatives are other neighbors.

Definition 5 Prominency. Let x be a node, then its prominency is

Prominency(x) = 2 · OwIndepx
2 · OwIndepx + TwDepx + OwDepx

. (3)

Prominency is not defined for nodes having zero values for all types of dependencies in
the formula. In this case, we set Prominency = 0.

In fact, using prominency, we can divide all network nodes into three prominency
types. For strongly-prominent nodes, the Prominency = 1, and for weakly-prominent
nodes, the Prominency > 0. The remaining network nodes are non-prominent and have
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Prominency = 0. However, prominency should not be seen as a new centrality. For
example, there may be nodes that have a comparable degree, but with different types of
prominency. Nodes 6, 7 (weakly-prominent), 14, 28 (non-prominent), and 32 (strongly-
prominent) in Fig. 2 are examples. Basically, prominency expresses the importance of a
node for its neighbors, regardless of the number of these neighbors.
While strongly-prominent nodes are entirely independent, weakly-prominent nodes

share their prominency with weakly-prominent or strongly-prominent nodes in their sur-
roundings. In “Zones in real-world networks” section, we analyze 16 real-world networks.
One of the key findings is the different proportion between the number of nodes of the
three types of prominency for different types of networks (see Fig. 3).
In Fig. 2b, strongly-prominent or weakly-prominent nodes are marked in red or yellow.

In Figs. 18 and 19 in Appendix C, the Les Misérables network is presented as well as the
largest connected component of the Net Science network.
The node properties of all three small networks are summarized in Table 1, and the

properties associated with the IsDependent relationship are shown in Table 2 (theNetDep
property will be explained in “Zones in generated networks” section).

Ego-zones
Using the dependency, we are able to describe a node group within a network with spe-
cific characteristics exactly and unambiguously. This description is based on one “central”
node and dependencies in its surroundings.

Definition 6 Ego-zone. The ego-zone is a group of network nodes meeting three following
criteria:

1. the default member of the ego-zone is any network node called ego;
2. a member of the ego-zone is any node that is dependent on ego or another node of

the ego-zone; the set of all such nodes including the ego is called the inner-zone;

Fig. 3 Prominency types in real-world networks. The bar chart shows, in particular, the difference in the
proportion of weakly-prominent nodes. This proportion is especially high in the collaboration networks
(astro-ph, cond-mat, cond-mat-2005), and low in the biological (ChCh-Miner, PP-Decagon, PP-Pathways,
Yeast) and technological (as-22july06, power) networks
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Table 1 Properties of small networks

Network n m
Degree

CC
Strong-prominents Weak-prominents

Modularity
Max Avg Total Percent Total Percent

karate 34 78 17 4.58 0.485 4 11.7 8 23.5 0.416

lesmis 77 254 36 6.59 0.580 5 6.5 26 33.7 0.565

netscience 379 914 34 4.82 0.741 40 10.5 96 23.5 0.850

A high percentage of weakly-prominent nodes shows, despite the small network size, that these networks are close to real-world
collaboration networks (see Fig. 3)

3. a member of an ego-zone is each node outside the inner-zone on which at least one
node of the inner zone is dependent; the set of all such nodes is called the
outer-zone.

Outer-zone nodes can be divided into two groups based on whether they are dependent
on other nodes in the outer-zone.

Definition 7 Outer-zone nodes. The outer-zone consist of two types of nodes:

Liaison is the outer-zone node which is not dependent on any other nodes of the outer-zone;
Co-liaison is the outer-zone node which is dependent on at least one another node of the

outer-zone.

For ego-zones, an alternative name – dependency zone – can be used in networks
other than social ones; below, we will only use zone. The algorithm to detect zones based
on an iterative procedure derived from Definition 6, including its scalability, is given in
Appendix A.
For illustration, Fig. 4 shows a zone with the red ego and four regular nodes in the yellow

inner-zone, one liaison and two co-liaisons in the blue outer-zone and, four green nodes
outside the zone. The edge directions represent the dependency between nodes.
Thus, for each node of the network (ego), there exists its inner-zone, the size of which

depends on the degree of direct or indirect dependency of the surrounding nodes on this
ego. The natural characteristic is that there may be, especially in clique-close structures,
more egos that have the same inner-zone. In this case, as is apparent from point 3 in
Definition 6, their outer-zone must also be the same, and thus the zones as a whole. We
consider those zones with the same inner-zone a single zone and refer to them as amulti-
ego zone. Individual pairs of egos in these multi-ego zones must be dependent on one
another (TwDep); otherwise, the individual egos would generate different inner-zones.
On the other hand, theremay be zones with corresponding nodes but with different inner-
zones, and therefore their outer-zones also differ. Such zones are considered different and

Table 2 Node dependencies and network dependency in small networks

Network
OwDep OwIndep TwDep TwIndep

NetDep
Max Avg Max Avg Max Avg Max Avg

karate 4 1.647 13 1.647 1 0.176 6 1.118 0.756

lesmis 9 1.909 21 1.909 6 1.065 15 1.714 0.740

netscience 8 1.599 27 1.599 4 0.755 10 0.871 0.819

The average values of OwDep and OwIndep are the same because they are only opposite views of the IsDependent property. As
can be seen, the Net Science network has stronger internal dependencies because its nodes have a lower average number of
neighbors with which they are mutually independent
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Fig. 4 Zone with eight nodes in four different roles. The zone has yellow inner-zone and blue outer-zone.
Ego is dependent on Liaison and Co-liaison on the left, both Co-liaisons are dependent on Liaison, and other
yellow nodes from inner-zone are dependent either on Ego or on Liaison or Co-liaison on the right. From a
global perspective, the Liaison is a strongly-prominent node because it is not dependent on any other nodes
and all its neighbors are one one-way dependent on it. The Ego, two Co-liaisons, and the dark yellow
neighbor of Ego are weakly-prominent nodes; all of them have at least one neighbor dependent on them.
Other nodes are non-prominent

are referred to as zones with alternative role configurations or an alternative zones. For
examples of multi-ego and alternative zones, see Fig. 2.
As we will demonstrate in “Zones in real-world networks” section, depending on the

network structure, zones of various sizes may exist, including zones with hundreds of
nodes. Nevertheless, there may be trivial zones with a single node (e.g., node 28 at the
Karate Club). In a more detailed view of the zone as a whole, there may be zones that have,
for example, more nodes in the outer-zone than the inner-zone, or vice versa - zones that
have no outer-zone.
From Definition 6 it follows that the zone in the network is unambiguously detected

and that, in addition to the group of nodes belonging to the zone, we also receive further
information:

1 the first one is about non-symmetric dependencies within a group. This information
results in knowledge of the prominency of the individual nodes in the group;

2 the second one is the roles that individual nodes play in the zone. In particular, the
questions are whether and to what extent there are prominent nodes in the group
playing the role of egos in the inner-zone or liaisons and co-liaisons in the
outer-zone. Both these pieces of information are crucial for a detailed assessment
of intra and inter-group relationships;

3 the third one is the size of the zone and its density. Small densely connected zones
are expected to be homogeneous, and their heterogeneity increases as the number
of nodes (especially liaisons) in the zone increases and their density decreases.

We can suppose that the more interconnected the group is, the higher the consen-
sus on the purpose or function of the group will be. Nodes that correspond entirely to
this purpose have no edges that face outward. Conversely, if the nodes have edges that
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face outward, they represent this purpose only in part of their egos. Moreover, the more
prominent nodes the zone contains, the higher the potential of the zone overlapping with
other zones will be, as will be explained in “Cause of overlaps” section.
Although this is an intuition-based estimation, in an experiment in “Zones and

ground-truth communities” section with four networks with identified ground-truth
communities, we will show that the zones detected in some of these networks are a
relatively good match for a non-trivial number of real communities.
We divide the nodes of the zone into four groups. In the first group, there are egos,

and, the other nodes of the inner-zone are the second group. The third and fourth groups
contain liaisons and co-liaisons, both belonging to the outer-zone. An example of the
inner and outer-zones in the Les Misérables network is shown in Fig. 5. The properties of
the nodes associated with zones are summarized in Table 3, the properties of zones are
listed in Table 4, and the properties related to zone overlaps are listed in Table 5.
The values in Table 4 show that zones may overlap, so that one node can be a member

of multiple zones. It is also clear that the maximum value of zone membership corre-
sponds to the maximum value of membership in the liaison or co-liaison role. Here the
key parameter is prominency; nodes with a non-zero value of prominency, i.e., strongly-
prominent or weakly-prominent nodes, have a non-zero value of OwIndep; for this
reason, they have neighbors that are dependent on them, but they are not dependent on
these neighbors. In the zones to which these neighbors belong, there can be a strongly or
weakly-prominent node in the liaison role, and weakly-prominent node in the co-liaison
role. Thus, it is evident that the higher the value of OwIndep, the higher the potential

Fig. 5 Cosette’s zone in Les Misérables network. The zone in which the red node Cosette is ego; the yellow
nodes belong to inner-zone and the blue nodes to outer-zone; dark blue nodes play liaison role and light
blue nodes co-liaison role. Green nodes are outside the zone
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Table 3 Zone properties in small networks

Network Zones
Zone size Inner-zone size Outer-zone size

Trivial Dyad Triad Multi ego Embed.
Max Avg Max Avg Max Avg

karate 31 16 5.129 15 3.065 4 2.065 1 1 14 3 0.384

lesmis 58 37 6.483 32 3.776 12 2.707 0 17 10 8 0.366

netscience 276 49 5.859 40 3.547 9 2.312 0 26 66 71 0.500

In all networks, relatively large zones were detected considering the total number of network nodes and the average zone size.
The Net Science network has a higher quality of zones measured by the embeddedness value; this means that nodes in zones are
more strongly connected inside than outside the zone

of the prominent node for membership in different overlapping zones in the liaison role
is. In all the three networks mentioned above, the node with the maximum member-
ship value is in the liaison role in all the zones it belongs to (except for its own, where it
is the ego).

Cause of overlaps

Nodes in the role of liaison or co-liaison are the cause of large overlaps. This follows from
the fact that these nodes can be in both the outer and inner-zones of different zones. If
we have such a node in two different zones, in the first of which it is in the outer-zone
and in the second zone it is in the inner-zone, then the nodes from the first zone that are
dependent on this node must be in the overlap of these zones as well.
For a better idea, let us have zone Z in which node v is a liaison (or co-liaison). Then

node v is in its outer-zone. Thus, according to point 3 of Definition 6, one or more nodes
ui from the zone Z belonging to its inner-zone must be dependent on node v. Next, let
us have zone Zv in which v is any node of its inner-zone (e.g., ego). Then from point 2 of
Definition 6 it follows that zone Zv also contains nodes ui which are dependent on v. As a
result, nodes v and ui must belong to the overlap of zones Z and Zv.
The emergence of overlaps is illustrated in Fig. 1, where node 4 is the ego of the green

zone and node 7 is its liaison; at the same time it applies that node 7 is the ego of the
yellow zone. Thus, the overlap of these zones includes both nodes 4 and 7 and nodes 5 and
6, which are dependent on node 7. The same is true vice versa, where node 7 is the ego of
the yellow zone, for which the liaison is node 4. Moreover, the overlap is a multi-ego zone
in which the egos are nodes 5 and 6; nodes 4 and 7 are the liaisons of this zone.
To assess network community structure and quality of detected zones, we utilize two

parameters; the first one is modularity, and the second one is embeddedness. With a
higher value ofmodularity, the network community structure becomesmore clear. Table 1
shows the weightedmodularityQ for each network which comes from the interval [−1, 1]
and is defined as follows (Blondel et al. 2008):

Table 4Memberships in small networks

Network
Membership Liaisonship Co-liaisonship

Max Avg Max Avg Max Avg

karate 16 4.676 15 1.088 9 0.794

lesmis 21 4.883 20 0.883 7 1.156

netscience 26 4.266 25 0.995 16 0.689

The maximum value of zone membership corresponds to the maximum value of membership in the liaison role. The difference
of one is because the node is an ego in its own zone
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Table 5 Properties of zone overlaps in small networks

Network Overlaps
Overlap size Zones in overlaps Zones in O size

Max Avg Total Percent Max Avg

karate 145 7 1.490 4 2.6 7 5.000

lesmis 206 16 1.845 17 8.3 15 5.824

netscience 1275 13 1.562 93 7.3 11 4.763

Zones nested in overlaps exist even in small networks; the size of a nested zone may be close to or equal to the size of the overlap

Q = 1
2m

∑

ij

[

wij − ki · kj
2m

]

δ(ci, cj), (4)

where wij is the edge weight between nodes i and j, ci is the community to which node i
is assigned, ki = ∑

j Aij is the sum of weights of the edges attached to node i, Kronecker
delta δci,cj is 1 if ci = cj and 0 otherwise, andm = 1

2
∑

ij Aij.
To evaluate the quality of zones, we use the value of embeddedness from the inter-

val [ 0, 1]; see Table 3. Group embeddedness is defined as the ratio between the internal
degree of the group and its total degree (Hric et al. 2014). The higher the zone embedded-
ness value, the stronger the belonging of groups of nodes to the group as a whole. For a
group of nodes, a sum of internal degrees kin and a sum of total degrees of ktot , the group
embeddedness ξ is defined as follows:

ξ = kin
ktot

. (5)

The modularity in Table 1 shows that all three small networks have a community
structure. However, the zones that are detected have a lower average value of zone embed-
dedness and therefore a lower quality than can be expected from communities. This fact
is the first factor to indicate that zones, despite their exact and deterministic definition,
cannot generally be considered communities. This is because the dependencies in both
the inner and outer-zones implicitly do not provide a higher degree of interconnection
within the zone than outside of it.
For each network, all pairs of overlapping zones were found. Table 5 lists the total num-

ber of overlaps, and their maximum and average sizes. The last four columns of the table
show the total number of zones that are nested in some overlap of two other zones and
their maximum and average sizes. The maximum overlap sizes are 7, 16, and 13, and the
maximum zone sizes in the overlaps are 7, 15, and 11. In Fig. 6, for illustration, the Les
Misérables network is shown with zone overlaps marked. There exist zones with other
nested zones. We will use the terms super-zone and sub-zone to describe such situations.
Simply put, in this example, the two listed zones are super-zones for all the zones in the
overlap, and, vice versa, the zones in the overlap are sub-zones of both zones.
Figure 6 also shows two essential characteristics that correspond to the observation

of real-world networks (Yang and Leskovec 2015). The overlaps of groups can be large
and in the overlaps other groups can exist. To gain comprehensible visualization of these
relations, we visualize the zone structures as weighted directed networks of sub-zones
and zones that are nested in the overlaps of other zones. The visualized networks also
include multi-ego zones and zones with the same group of nodes, but with alternative
role configurations. Figure 7 shows the structures of zones for the Karate Club (A) and
Les Misérables (B) networks. Figure 20 in Appendix C shows the same structure for the
largest connected component of the Net Science network.
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Fig. 6 Overlapping and nested zones in Les Misérables network. Two zones with Valjean (green) and Marius
(yellow) egos overlap, and the other nodes of this overlap are red. The overlap nests Cosette’s zone (peach
color), for which the two selected egos play the liaison role. The Cosette’s zone thus covers the entire overlap
except for the Thenardier node. Further, other sub-zones nested in the overlap and in Cosette’s super-zone
are marked in dark yellow, dark green, orange and violet colors

In the experiments described in “Zones in generated networks” and “Zones in real–
world networks” sections, we analyze the zone properties of generated and real-world
networks. To analyze the overlaps, we detected only those overlapping pairs of zones in
each network for which each pair of overlapping zones had at least ten nodes. For each
overlap with at least four nodes, we found the largest zone that the overlap contained (if
such exists).

Zones in generated networks
How the network structure affects the properties of zones is a natural question. Typi-
cal properties of real-world networks include, for example, scale-freeness related to the
power-law distribution of node degree or community structure. Generative models can
be used to explore various properties of networks. We use three models to assess how
the properties of zones with network properties are related. The first is Erdös-Rényi (ER)
model which generates random networks (Erdös and Rényi 1959), the second is Barabási-
Albert (BA) model based on preferential attachment generating scale-free networks
(Albert and Barabási 2002), and the third is Triadic Closure based (TC) model generating
scale-free networks with a community structure (Bianconi et al. 2014). We used vari-
ous settings for the experiments. The result was unweighted undirected networks with
10000 nodes. If an unconnected network was generated, we used the largest connected
component for the analysis.
For networks generated using the ER model, we set the probability p of having an

edge between a pair of nodes to the values of 0.0005 and 0.001. These are the values



Kudelka et al. Applied Network Science            (2019) 4:81 Page 16 of 49

Fig. 7 Karate Club (a) and Les Misérables (b) zone networks. The networks were transformed into the
weighted directed networks of sub-zones and zones nested in overlaps. Each pair of nodes in this transformed
network connected by a directed edge represents zones; the smaller node represents the sub-zone that is
nested into the super-zone represented by the larger node. The size of each zone corresponds to the
number of nodes in this zone, and the edge strength corresponds to the number of nodes of the sub-zone.
Red nodes represent zones that have no super-zone, green ones zones without sub-zones. The yellow zones
have both sub-zones and super-zones, and blue zones have neither sub-zones nor super-zones. In sub-figure
a with Karate Club, there is a multi-ego zone (node 6+1) with two egos 6 and 7, one liaison 1 and three other
nodes 5, 11, 17 (see also Fig. 2). Moreover, there are, e.g., two alternative zones with egos 9 or 31 (9 ALT or 31
ALT). The first one has one liaison, 34, one co-liaison, 33, and one other node, 31. The second one has the
same liaison, 34; however, it has two co-liaisons, 9, 33, and no other node. Similarly, in sub-figure b, Enjolras’s
zone has three other egos and one alternative Gavroche’s zone. If the zone has at least two edges directed to
different zones, then it is contained in their overlap. While in Karate Club, there are no zones nested in
overlaps, the Les Misérables network has, for instance, such zones for Cosette, Pontmercy, and Mabeuf

that levitate around the threshold of when the network becomes connected (0.0009).
For the BA model, we chose the values 3 and 4 of m representing a number of exist-
ing nodes to which a new node is connected. In its basic version, the TC model works
with two parameters that are related to the connection of a new node to the network.
This new node is connected to the randomly selected network node in the first step.
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In the second step, the first parameter is the probability p, with which a neighbor of
the selected node is preferred for connecting before a randomly selected node. The
second parameter m defines the total number of connections for the new node, and,
as a result, defines m − 1 repeated connections in the second step. A higher proba-
bility value of p increases the local connectedness among nodes and thus emphasizes
the community structure of the network. In contrast, a higher value of m increases the
network density. For the experiments, we chose 0.7 and 0.97 for p and 2, 3, and 4 for
m. The results of the analysis of the networks that were generated are summarized in
Tables 6, 7, 8, 9, and 10.
The values of some parameters point to differences from the results of the analysis for

the three small networks in “Ego-zones” section. These differences are most significant in
the ER model, as can be expected (see Table 6).
Table 7 shows that the low maximum values of OwDep and TwDep are a common

feature of all the networks that were generated, not only when compared with the three
small networks from “Ego-zones” section but also compared to the real-world networks
that will be analyzed in “Zones in real-world networks” section.
Table 7 also shows that ER and BA models generate networks that have low aver-

age values of OwDep, TwDep, and OwIndep. On the contrary, the average value of
TwIndep is higher than in TC networks. These characteristics can be interpreted as the
cause of the fact that in these generated networks there is a very high proportion of
small zones, such as trivial zones (only with ego node), dyads, and triads (zones with
two or three nodes), as shown in Table 8. Therefore, the average size of the zone is
small, as is the average number of nodes in the zones. Networks also have very few
(or no) multi-ego zones. This is because network nodes predominantly have neigh-
bors with which they are not two-way dependent (the two-way dependency of a pair
of egos is a condition for both being in the same zone). We will informally refer to
networks that predominantly have pairs of two-way independent neighboring nodes
as weakly dependent. For this characteristic, we define NetDep – the total network
dependency.

Table 6 Properties of generated networks

Network n m
Degree

CC
Strong-prominents Weak-prominents

Modularity
Max Avg Total Percent Total Percent

BA 3 10000 29991 1319 5.998 0.059 516 5.1 16 0.3 0.380

BA 4 10000 39984 1877 7.996 0.106 133 1.3 7 0.7 0.301

TC 0.7 2 10000 19996 40 3.999 0.463 3044 30.4 1314 13.1 0.809

TC 0.7 3 10000 29991 83 5.998 0.375 3679 36.7 1019 10.1 0.675

TC 0.7 4 10000 39984 117 7.996 0.314 3124 31.2 499 4.9 0.572

TC 0.97 2 10000 19996 88 3.999 0.669 2093 20.9 1619 16.9 0.945

TC 0.97 3 10000 29991 117 5.998 0.618 2472 24.7 2404 24.0 0.899

TC 0.97 4 10000 39984 193 7.996 0.581 2730 27.3 2355 23.5 0.793

ER 0.0005 9936 25109 15 5.054 0.001 1702 17.1 0 0 0.439

ER 0.001 10000 49957 23 9.991 0.001 45 4.5 0 0 0.259

football 115 613 12 10.660 0.404 4 3.4 0 0 0.604

When compared to the three small networks (see Table 1), a higher proportion of prominent nodes was found for the TC model,
where the networks have a community structure represented by a high modularity value
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Table 7 Node dependencies and network dependency in generated networks

Network
OwDep OwIndep TwDep TwIndep

NetDep
Max Avg Max Avg Max Avg Max Avg

BA 3 3 0.261 386 0.261 1 0.000 933 5.476 0.087

BA 4 4 0.184 392 0.184 0 0.000 1532 7.629 0.046

TC 0.7 2 3 1.088 16 1.088 2 0.284 29 1.540 0.615

TC 0.7 3 4 1.022 21 1.022 2 0.104 66 3.850 0.358

TC 0.7 4 4 0.591 9 0.591 2 0.048 110 6.767 0.154

TC 0.97 2 3 1.224 28 1.224 2 0.469 62 1.082 0.729

TC 0.97 3 4 1.691 39 1.691 2 0.309 88 2.307 0.615

TC 0.97 4 5 1.740 45 1.740 2 0.241 153 4.277 0.465

ER 0.0005 2 0.191 4 0.191 1 0.008 15 4.665 0.077

ER 0.001 2 0.004 1 0.004 0 0.000 23 9.982 0.001

football 2 0.035 1 0.035 0 0.000 12 10.591 0.007

In the networks that were generated, there are no nodes that have a high number of neighbors on which they are dependent.
Moreover, the ER and BA networks have low average values of OwDep, TwDep, and OwIndep, and also a very low NetDep value

Definition 8 Network dependency. Let m∗ be the number of edges connecting mutually
(two-way) independent nodes and m is the number of all the edges of the network. Then
network dependency NetDep is defined as follows:

NetDep = 1 − m∗

m
. (6)

The NetDep value is from the interval [ 0, 1], and the lower it is, the higher the pro-
portion of two-way independent neighbors, while the overall dependency of the network
becomes weaker. NetDep is low for connected networks with a high proportion of small
zones. On the other hand, low NetDep value does not automatically imply a higher frac-
tion of trivial zones. Even though individual nodes may not be dependent on most of
their neighbors, they may have neighbors on which they are dependent or vice versa. In
this case, as shown in Observation 2, the low NetDep value influences, in particular, the
quality (embeddedness) of the zones. Our experiments show that ER and BA networks
are weakly dependent because the NetDep value is very low (see Table 7). The same does
not apply to TC networks.

Table 8 Zone properties in generated networks

Network Zones
Zone size Inner-zone size Outer-zone size

Trivial Dyad Triad Multi ego Embed.
Max Avg Max Avg Max Avg

BA 3 9999 555 1.680 390 1.262 165 0.418 8228 65 1291 1 0.002

BA 4 10000 450 1.421 393 1.184 57 0.237 8545 1011 169 0 0.000

TC 0.7 2 8581 26 4.623 18 2.664 12 1.960 219 37 4103 1172 0.438

TC 0.7 3 9479 39 4.246 24 2.213 16 2.033 1325 404 2169 483 0.315

TC 0.7 4 9762 19 2.844 10 1.666 11 1.178 3403 2323 372 231 0.173

TC 0.97 2 7656 55 5.160 38 3.225 17 1.935 16 13 2828 1768 0.483

TC 0.97 3 8453 83 6.564 48 3.424 36 3.139 64 81 319 1237 0.411

TC 0.97 4 8797 99 6.723 50 3.278 50 3.446 247 775 255 991 0.331

ER 0.0005 9897 8 1.553 5 1.202 3 0.351 7087 570 1998 39 0.085

ER 0.001 10000 3 1.013 2 1.004 2 0.008 9930 10 60 0 0.001

football 115 3 1.087 2 1.035 2 0.052 108 4 3 0 0.008

In the ER and BA networks, there is a very high proportion of small zones, such as trivial zones, dyads, and triads and, conversely, a
low proportion of multi-ego zones. Moreover, the embeddedness of these networks is extremely low
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Table 9Memberships in generated networks

Network
Membership Liaisonship Co-liaisonship

Max Avg Max Avg Max Avg

BA 3 552 1.680 551 0.416 2 0.002

BA 4 450 1.421 449 0.235 2 0.001

TC 0.7 2 20 3.967 19 1.568 4 0.113

TC 0.7 3 34 4.025 33 1.757 6 0.170

TC 0.7 4 19 2.776 18 1.064 5 0.086

TC 0.97 2 43 3.950 42 1.251 5 0.230

TC 0.97 3 67 5.548 66 2.105 9 0.549

TC 0.97 4 81 5.915 80 2.409 12 0.623

ER 0.0005 8 1.547 7 0.349 0 0.000

ER 0.001 3 1.013 2 0.008 0 0.000

football 3 1.087 2 0.052 0 0.000

The ER networks have very low maximummembership of nodes in zones, and all the networks that are generated have a low
maximum co-liaisonship. Moreover, the ER and BA networks have extremely low (or equal to zero) co-liaisonship

Table 10 summarizes the results of the detection of zone overlaps and the detection of
zones within the overlaps in the networks that are generated. The ER networks have a
low maximum zone size and node memberships in zones (see Table 9); as can be seen in
Table 10, no overlaps exist in these networks. Conversely, there are large zones in the BA
networks, and it can be noticed that despite the relatively large maximum size of the zone
overlap (75 or 73 nodes), there are no large zones in the overlaps (the maximum zone size
in the overlap is 5 or 7 nodes respectively). The networks generated by the TCmodel differ
from ER and BA networks. There are relatively small overlaps (the maximum overlap size
is 24 nodes), but they may contain zones of comparable size (up to 11 nodes). For most
of the properties, TC networks resemble the three small networks analyzed above and, as
will be seen later, large-scale real-world networks.
The small maximum sizes of overlaps in TC networks are related to the low OwDep

and TwDep values (see Table 7), which represent the dependency of one node onmultiple
nodes. The first property increases the chance of there being more nodes in liaison or
co-liaison roles in the surroundings of the node. These are the primary cause for the

Table 10 Properties of zone overlaps in generated networks

Network Overlaps
Overlap size Zones in overlaps Zones in O size

Max Avg Total Percent Max Avg

BA 3 707 75 3.833 132 18.7 5 3.788

BA 4 169 73 7.385 64 37.9 7 4.609

TC 0.7 2 774 10 2.535 372 48.1 8 3.839

TC 0.7 3 807 10 2.615 331 41.0 7 4.299

TC 0.7 4 57 7 3.456 36 63.2 7 4.667

TC 0.97 2 1111 13 2.809 527 47.4 8 3.947

TC 0.97 3 7419 17 2.549 2077 28.0 11 4.847

TC 0.97 4 12037 24 2.524 2843 23.6 11 5.534

ER 0.0005 0 0 0.000 0 0 0 0.000

ER 0.001 0 0 0.000 0 0 0 0.000

football 0 0 0.000 0 0 0 0.000

The ER networks have no overlaps and, conversely, the BA networks have large overlaps; however, no large zones are contained
in these overlaps. The networks generated by the TC model have relatively small overlaps, but they may contain zones of
comparable size
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overlapping of multiple zones. The TwDep property then ensures that there are pairs of
nodes that are part of the same inner or outer-zone.
Random networks generated by ER model are not scale-free and do not have a com-

munity structure; BA networks are scale-free but are known to have no community
structure (they have low modularity). It is, therefore, a question what properties would
be possessed by networks which do not have a high proportion of small zones. A
natural expectation may be that, for non-trivial zones to exist, it should suffice for
the network to have a community structure. On a well-known football network that
has a community structure (its modularity is 0.604; see Fig. 8) it can be seen that it
does not.
The results of the analysis of the football network are summarized in the last row of

the tables with generated networks. It can be seen that in the network with 115 nodes,
there are only seven non-trivial zones with a maximum size of three. It can be concluded
that apart from community structure, more varied occurrences of differently-sized zones
are determined by other properties. From the point of view of NetDep and four param-
eters based on different types of dependencies between pairs of nodes (see Table 7), the
football network is closest to the ER networks, less to the BA networks, and the least
to the TC networks. The low NetDep value and the low averages of OwDep, OwIndep
and TwDep, and, conversely, the high average of TwIndep for the football, ER and BA
networks, affect together the small or zero percentage of strongly-prominent and weakly-
prominent nodes, and therefore, the low share of the centers in these networks (see
Table 6). But as can be seen, the football network does not contain any centers. Conse-
quently, we can assume that the size of the zones (as well as the structure associated with
their overlaps) is influenced by two factors.

Fig. 8 The football network. Zones are not communities; no larger zones can be detected in the football
network. It is evident that the network has a community structure. However, the network almost does not
include central nodes in communities or centers linking communities; the node size is proportional to its
degree and, as can be seen, most of the nodes have a similar degree
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Observation 1 Zones are not communities: Zones cannot, in general, be considered com-
munities. Large zones exist in networks that have a community structure and, moreover,
centers representing both global and local authorities, i.e., strongly and weakly-prominent
nodes with a higher degree.

To further assess the properties of the networks concerning the parameters associated
with the detected zones, Figs. 9 and 10 show the distributions (CCDF – complementary
cumulative distribution function) and plots of selected properties of four of the generated
networks described above.
The upper row in Fig. 9 shows the degree distributions and distributions of four zone-

related properties (zone size, liaisonship, co-liaisonship and membership). For the ER
networks analyzed here, there are no nodes in the co-liaison role, for the BA networks
only a small number of them and only exceptionally in more than two zones. This indi-
cates that in these two networks, there are virtually no dependencies of weakly-prominent
nodes on both types of prominent nodes. But as we show in “Zones in real-world
networks” section, the dependency between strongly-prominent and weakly-prominent
nodes is a common feature in real-world networks (see Observation 3). An example may
be the dependencies of node 4 on nodes 2 and 3, node 33 on node 34 and node 2 on node
1 in the Karate Club network (see Fig. 2).
The lower row shows the distributions of properties related to types of node depen-

dencies on their neighbors. As shown in Table 7, for the BA and TC networks there is a
non-trivial number of nodes that have a larger number of neighbors with a higher maxi-
mum and average value of the OwIndep property than for the ER networks. This can be

Fig. 9 Node and zone properties in generated networks. The upper row shows distributions of degree and
four zone-related properties of four selected generated networks. It can be seen that the shapes of these four
distributions copy the shape of the degree distribution. Moreover, it is clear that three of them (zone size,
liaisonship, membership) have almost identical distributions, while for liaisonship it is true approximately
from the value of 10. The lower row shows the distributions of properties related to types of node
dependencies. A common characteristic of all the networks is a very low (or zero) number of neighbors on
which the nodes are dependent (OwDep and TwDep properties). Moreover, the shape of the distribution of
the TwIndep property copies the shape of the node degree distribution, with nodes not being dependent on
most of their neighbors (higher TwIndep values prevail)
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Fig. 10 Embeddedness and prominency in generated networks. The average embeddedness in relation to
the size of the zone is shown in the upper row of plots. In the ER networks, there are only very small zones
(up to ten nodes), with the average zone embeddedness increasing with the size of the zone and the
maximum being around 0.4. A similar behavior is seen in the BA network with the modularity of 0.380, where
the maximum average zone embeddedness is only around 0.2. The TC networks show a growing trend of the
average embeddedness value up to the zone size being around 10 nodes; then the trend is rather reversed.
However, the zone embeddedness value is higher than for the ER and BA networks, which is also associated
with high modularity (see Table 6). At its peak, the average value of the zone embeddedness exceeds 0.5 or
0.6 for networks with the parameters 0.7 3 or 0.97 3 and with the modularity of 0.675 or 0.899. The occurrence
of nodes with a given prominency in generated networks is shown in the lower row of cumulative
distributions. In ER and BA networks, which are weakly dependent, nodes with a prominency value of 0
prevail, and most or all of the other nodes have a value of 1. It is different in TC networks, which have a larger
number of weakly-prominent nodes with a prominency value between 0 and 1

interpreted as the existence of network centers; in the BA network, they are nodes with
up to hundreds of neighbors, while in the TC networks there are dozens of neighbors.
Besides, the TC networks show that the distribution of OwIndep and OwDep properties
is almost identical for networks with a stronger community structure (higher modularity).
This means that one-way dependencies increase at the expense of independency, which
can also be confirmed by the NetDep value in Table 7, which, for TC 0.7 3, is equal to 0.358
and, for TC 0.97 3, is equal to 0.615 (for BA 3 it is 0.087).
The upper row in Fig. 10 displays plots showing the relationship between zone size and

zone quality measured by the average zone embeddedness. The lower row contains cumu-
lative distributions (CDF) expressing the frequency of occurrences of nodes with a given
prominency value. We further show that higher occurrence and diversity in prominency
values are a significant characteristic of networks resulting from human interaction (see
Observation 5).

Zones in real-world networks
There are three key findings related to the analysis of the three small and ten generated
networks. The first is the effect of the weakly dependent network (low NetDep value) on
zone quality measured by embeddedness and on the ratio of trivial and generally small
zones. The second finding is the existence of zone overlaps. For the small and TC net-
works, there are larger zones inside overlaps. The third is the finding that zones cannot
be considered communities. The prerequisite for the existence of the zones is not only
the community structure but also the more complex dependencies in the network. We
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continue to study these findings when analyzing real-world networks, mainly focusing on
differences between them. Besides, we focus more on overlaps and their sizes and den-
sities compared to zone densities, and moreover, on the relationship between zones and
non-overlapping or ground-truth communities, respectively.
For the experiments, we used a total of 16 known networks serving different ana-

lytical purposes. They are three collaboration networks (astro-ph, cond-mat, cond-
mat-2005), five communication (Brightkite, Email-Enron) and social (artist, facebook,
new_sites) networks, two technological networks (as-22july06, power), four biological
networks (ChCh-Miner, PP-Decagon, PP-Pathways, Yeast) and two networks constructed
from ground-truth communities (com-amazon, com-dblp). For details of the individual
datasets, see Appendix B. It is natural that the networks that are analyzed differ in their
structure, which is also affected by the way the networks were constructed. The results of
the analysis of real-world networks are summarized in Tables 11, 12, 13, 14, and 15.
Table 11 shows the percentage of nodes with a non-zero prominency, i.e., strongly-

prominent and weakly-prominent nodes. In these values, the collaboration networks and
networks with ground-truth communities differ from others. For each network of these
two types, there are higher proportions of weakly-prominent nodes (9 percent or more),
which is not the case for other networks. For networks with ground-truth communities,
the share of prominent nodes is slightly lower, which is also reflected in the lower average
value of co-liaisonship (see Table 14). All of these networks represent the result of human
activities. In collaboration networks, it is the direct activity of the authors associated with
the publication of research articles. For both networks with ground-truth communities,
specific activities are involved. In the com-amazon dataset, the result of this activity is a
network of products that people buy together (co-purchasing). At com-dblp, the network

Table 11 Properties of real-world networks

Network n m
Degree

CC
Strong-prominents Weak-prominents

Modularity
Max Avg Total Percent Total Percent

artist 50515 819090 1469 32.438 0.137 8755 17.3 325 0.6 0.604

as-22july06 22963 48436 2390 4.218 0.230 2416 10.5 363 1.5 0.663

astro-ph 14845 119652 360 16.120 0.669 3291 22.1 3473 23.3 0.755

Brightkite 56739 212945 1134 15.012 0.173 14297 25.1 1961 3.4 0.660

com-amazon 334863 925872 549 5.529 0.396 75603 22.5 43161 12.8 0.926

com-dblp 317080 1049866 343 6.622 0.632 65090 20.5 29139 9.1 0.810

cond-mat 13861 44619 107 6.438 0.651 2241 16.1 3315 23.9 0.862

cond-2005 36458 171735 278 9.420 0.656 6372 17.4 8904 24.4 0.786

email-Enron 33696 180811 1383 21.463 0.509 5180 15.3 2591 7.6 0.584

facebook 4039 88234 1045 43.691 0.605 61 1.5 1242 30.7 0.835

ChCh-Miner 1510 48512 443 64.254 0.304 197 13.0 48 3.1 0.392

new_sites 27917 205964 678 14.776 0.294 7276 26.0 1588 5.6 0.611

power 4941 6594 19 2.669 0.080 1494 30.2 144 2.9 0.935

PP-Decagon 19065 715602 251 75.069 0.233 3500 18.3 147 0.7 0.445

PP-Pathways 21521 338625 213 31.812 0.124 3492 16.2 46 0.2 0.386

Yeast 2224 6609 64 6.339 0.125 563 25.3 38 1.7 0.587

LFR 20 500 2000 10000 102054 200 20.411 0.399 1499 15.0 225 2.3 0.659

LFR 7 60 4000 10000 32262 99 6.452 0.349 2280 22.8 472 4.7 0.578

The collaboration networks and networks with ground-truth communities differ from others (except facebook) in
weakly-prominent nodes. For networks of these two types, there is a higher percentage of weakly-prominent nodes than for other
networks. Biological networks, social networks (except facebook), and communication networks have a lower clustering coefficient
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Table 12 Node dependencies and network dependency in real-world networks

Network
OwDep OwIndep TwDep TwIndep

NetDep
Max Avg Max Avg Max Avg Max Avg

artist 16 0.308 41 0.308 8 0.019 1463 31.795 0.020

as-22july06 12 1.399 2024 1.399 3 0.038 503 1.383 0.672

astro-ph 55 3.256 136 3.256 30 1.414 239 8.193 0.492

Brightkite 31 0.857 245 0.857 7 0.130 1027 5.661 0.246

com-amazon 6 1.221 348 1.221 6 0.281 201 2.806 0.493

com-dblp 75 1.602 112 1.602 39 0.882 237 2.536 0.617

cond-mat 15 1.648 53 1.648 9 0.686 79 2.456 0.619

cond-2005 24 2.024 83 2.024 15 0.595 228 4.777 0.493

email-Enron 10 1.575 1319 1.575 7 0.426 870 7.155 0.333

facebook 26 1.959 1001 1.959 12 0.236 290 39.536 0.095

ChCh-Miner 16 1.053 62 1.053 3 0.021 432 62.127 0.033

new_sites 27 0.793 107 0.793 13 0.128 672 13.042 0.116

power 4 0.711 12 0.711 3 0.340 10 0.906 0.661

PP-Decagon 180 0.572 267 0.572 16 0.040 2426 73.886 0.016

PP-Pathways 80 0.485 584 0.485 7 0.007 1950 30.493 0.031

Yeast 6 0.819 24 0.819 2 0.040 56 4.265 0.282

LFR 20 500 2000 16 1.215 63 1.215 6 0.054 194 17.927 0.122

LFR 7 60 4000 10 1.207 42 1.207 3 0.111 74 3.927 0.391

Biological networks, social networks, and communication networks have a low NetDep value. The technological networks have a
low average TwIndep compared to the other networks; in both of technological networks, there is the highest NetDep value.
Thus, the highest dependencies were found in the technological networks

Table 13 Zone properties in real-world networks

Network Zones
Zone size Inner-zone size Outer-zone size

Trivial Dyad Triad Multi ego Embed.
Max Avg Max Avg Max Avg

artist 50126 73 1.885 43 1.325 33 0.560 32169 5701 7455 307 0.037

as-22july06 22522 23284.423 2083 2.499 245 1.924 784 8111 10300 430 0.070

astro-ph 11521 530 14.738 199 5.542 331 9.196 247 1316 1566 1792 0.323

Brightkite 53308 375 3.494 265 2.063 110 1.431 6364 21930 12344 2891 0.181

com-amazon 297805 451 4.551 360 2.556 91 1.995 45566 40210 64374 24143 0.316

com-dblp 236688 255 6.557 116 3.530 146 3.027 3585 43712 50846 50311 0.315

cond-mat 10712 91 6.444 59 3.442 48 3.002 166 1635 2122 2200 0.412

cond-2005 29389 271 8.490 117 3.857 154 4.633 483 3664 4755 4870 0.309

email-Enron 28704 13716.251 1326 3.056 247 3.195 1309 9837 3467 3299 0.089

facebook 3788 10176.587 1002 3.078 42 3.510 30 1635 346 118 0.047

ChCh-Miner 1498 78 3.766 63 2.004 17 1.762 769 209 173 9 0.027

new_sites 26729 177 3.537 110 1.894 67 1.642 9777 3783 4612 758 0.141

power 4120 24 3.674 20 2.382 8 1.292 259 1239 1162 562 0.457

PP-Decagon 18933 614 6.627 269 1.593 378 5.034 12652 1692 1787 76 0.037

PP-Pathways 21471 652 2.939 585 1.491 120 1.448 11135 5060 2992 37 0.025

Yeast 2181 32 3.169 26 1.887 10 1.282 414 796 476 38 0.177

LFR 20 500 2000 9848 88 4.591 64 2.235 31 2.356 4819 909 693 57 0.587

LFR 7 60 4000 9476 72 4.638 46 2.418 27 2.219 2270 129 3619 430 0.425

All the biological networks (ChCh-Miner, PP-Decagon, PP-Pathways, Yeast), social networks (artist, facebook, new_sites), and
communication networks (Brightkite, Email-Enron) have a low average value of zone embeddedness



Kudelka et al. Applied Network Science            (2019) 4:81 Page 25 of 49

Table 14Memberships in real-world networks

Network
Membership Liaisonship Co-liaisonship

Max Avg Max Avg Max Avg

artist 71 1.870 70 0.543 18 0.013

as-22july06 2262 4.338 2261 1.875 12 0.012

astro-ph 272 11.438 271 4.827 207 2.309

Brightkite 354 3.283 353 1.274 76 0.070

com-amazon 429 4.047 428 1.439 29 0.335

com-dblp 177 4.894 176 1.938 96 0.322

cond-mat 72 4.980 71 1.524 62 0.796

cond-2005 170 6.844 169 2.492 99 1.243

email-Enron 1314 5.325 1313 2.457 36 0.265

facebook 993 6.178 992 1.057 69 2.234

ChCh-Miner 77 3.736 76 1.351 48 0.397

new_sites 165 3.386 164 1.402 27 0.171

power 18 3.063 17 1.062 6 0.015

PP-Decagon 589 6.581 588 4.623 351 0.376

PP-Pathways 652 2.932 651 1.434 42 0.010

Yeast 32 3.107 31 1.210 10 0.048

LFR 20 500 2000 88 4.521 87 2.554 11 0.066

LFR 7 60 4000 68 4.395 67 2.008 11 0.095
Some biological (PP-Pathways, Yeast), technological (as-22july06, power), communication (Brightkite, email-
Enron), and social (artist, new_sites) networks have a very low average value of co-liaisonship. The same applies to
both the LFR networks

Table 15 Properties of zone overlaps in real-world networks

Network Overlaps
Overlap size Zones in overlaps Zones in O size

Max Avg Total Percent Max Avg

artist 750 26 3.667 292 38.9 22 6.007

as-22july06 58095 583 2.763 3628 6.2 13 4.089

astro-ph 500677 311 3.705 33119 6.6 203 23.743

Brightkite 27925 114 4.779 4942 17.7 55 10.169

com-amazon 65057 128 4.601 29576 45.5 24 5.498

com-dblp 925712 177 2.859 116482 12.6 163 12.946

cond-mat 27516 47 2.771 4519 16.4 47 8.483

cond-mat-2005 375065 184 2.345 30731 8.2 78 10.124

email-Enron 302590 169 1.817 15609 5.2 41 6.379

facebook 26322 42 1.759 973 3.7 34 12.807

ChCh-Miner 670 73 10.213 238 35.5 43 16.008

new_sites 3819 41 5.933 1637 42.9 28 9.296

power 125 12 3.272 66 52.8 12 4.712

PP-Decagon 86548 382 19.909 4453 5.1 382 128.530

PP-Pathways 17880 122 11.439 2510 14.0 122 43.175

Yeast 227 17 3.802 112 49.3 8 4.688

LFR 20 500 2000 5420 81 9.782 2290 42.3 35 8.932

LFR 7 60 4000 14577 27 2.060 2331 16.0 17 5.961

Except for the two biological networks, the average size of the overlaps for most networks is small. However, it can be seen in all
the networks that a non-trivial number of larger zones exists in the overlaps; some of the networks have zones (nested in
overlaps) with a high number of nodes. In the last column, there are average zone sizes detected in overlaps of two other zones.
These sizes are greater than the average overlap sizes in ‘avg overlap size’ column. Thus, the zones exist more likely in larger
overlaps. The size of a nested zone can correspond with the size of the entire overlap; e.g., in two biological networks
(PP-Decagon and PP-Pathways), the maximum overlap of two zones is also a zone
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is constructed on the basis of co-authorship activity related to the participation of people
in the same conference, or publishing articles in the same journal. All of these networks
have a distinct community structure represented by highmodularity and a high clustering
coefficient (except com-amazon). This is also related to the higher average values of zone
embeddedness and NetDep values (see Tables 12 and 13); the lower clustering coefficient
of the com-amazon network is projected to a smaller average zone size (see Table 13).
Here, let us note that this is due to the low average number of nodes in the outer-zone
(1.995). This, in turn, means that most of the zones are connected to their surroundings
more weakly than in other networks; this is confirmed by the very high modularity of this
network (0.926).
While social, communication, technological and biological networks share a higher pro-

portion of strongly-prominent nodes, they have a very low fraction of weakly-prominent
nodes. The only exception is the facebook network. This network, uniquely among the
social networks, has a very low fraction of strongly-prominent nodes and a larger frac-
tion of weakly-prominent nodes. This network is an exception in the whole group of
real-world networks, which is probably due to the specific construction of the network
by merging more ego-networks. It is possible that the ego-networks were chosen in such a
way that almost every ego was dependent on some other ego. As a result, there are only a
few strongly-prominent nodes in the network. Note also that the facebook network has
highmodularity but a very lowNetDep value and a very low average of zone embeddedness.
What is noteworthy is the relationship between low NetDep values and zone embed-

dedness. Tables 12 and 13 show that a low NetDep value and a low average value of zone
embeddedness have biological networks, social networks, and communication networks.
Table 11 also shows that all of these networks, except facebook, have a low clustering
coefficient.

Observation 2 Relationship of NetDep and embeddedness. If the network has a low
NetDep value, then it also has a low average of zone embeddedness.

This observation can naturally be interpreted in such a way that if the network does
not have a high degree of dependency between pairs of nodes, it is not possible to
assume the frequent occurrence of zones strongly interconnected inwardly and weakly
outwardly. However, the opposite relationship between NetDep and zone embeddedness
does not apply; e.g., a technological network such as-22july06 has a very low value of zone
embeddedness and yet a high NetDep value.
A higher NetDep value is a characteristic feature of technological and collaboration net-

works, and networks with ground-truth communities. Both technological networks have
a low clustering coefficient; the other mentioned networks have a higher clustering coeffi-
cient and zone embeddedness. For technological networks, Table 12 also shows that they
have (in addition to a lower average degree 4.218 or 2.669, respectively) a lower average
TwIndep compared to other networks (1.383 or 0.906, respectively). The two technolog-
ical networks that were analyzed, therefore, have the highest dependency (the highest
NetDep value).
Figures 11 and 12 display the distributions and plots of properties of four

selected real-world networks described above (as-22july06, com-dblp, Email-Enron,
PP-Decagon). This selection provides both common and distinct characteristics for
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Fig. 11 Node and zone properties in real-world networks. The upper row shows that the distributions of
zone-size, membership, and liaisonship roughly copy the shape of the node degree distribution. In as-
22july06 and PP-Decagon networks, there is a smaller fraction of nodes in the co-liaison role than in com-dblp
and Email-Enron networks. From dependency properties at the lower row plots, it is evident, that PP-Decagon
network has a higher proportion of nodes with two-way independent neighbors (TwIndep property)

different types of networks from the perspective of dependencies and detected
zones. The distributions and plots of the remaining twelve real-world networks that were
analyzed are shown in Appendix C in Figs. 21, 22, 23 and 24.
The upper row of distributions in Fig. 11 shows five properties related to nodes and

zones. The four networks that were analyzed (and also the distributions for the other

Fig. 12 Embeddedness and prominency in real-world networks. The average embeddedness in relation to
the size of the zone is shown in the upper row of plots. Obviously, for all the networks, small zones have a low
embeddedness. This is because small zones are often sub-zones of larger zones, and their connection to the
surroundings is stronger than in large zones. The occurrence of nodes with a given prominency is shown in
the lower row of cumulative distributions. In as-22july06 and PP-Decagon networks, there are not many
weakly-prominent nodes (the cumulative distributions are almost not growing). In particular, the
technological network as-22july06 has only a few different prominency values. On the other hand, in
com-dblp collaboration network, the occurrence of different prominency values is most varied, and
frequencies of individual values are higher. For other real-world networks see Figs. 23 and 24 in Appendix C
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networks in Appendix C) show that from a relatively low value the distributions of
three properties (zone-size, membership and liaisonship) roughly copy the shape of node
degree distribution. Conversely, there are two characteristics in which the networks differ
as described in Observations 3 and 4.
Figure 11 shows that the technological and biological networks (as-22july06, PP-

Decagon and other networks of these types in Appendix C) have a smaller fraction of
nodes in the co-liaison role than is the case in collaboration networks (including com-
dblp) and Email-Enron communication network (and also other networks with social
interaction in Fig. 20 in Appendix C).

Observation 3 Dependencies in networks with social interaction. In real-world net-
works, dependencies exist between the liaison nodes, i.e., the mutual dependencies between
pairs of co-liaisons or the dependency of co-liaisons on liaisons. In technological and
biological networks, however, there is a low proportion of co-liaison nodes; therefore,
dependencies between them (e.g., in outer-zones) do not exist so often as in networks
resulting from human interaction (e.g., collaboration and communication networks,
see Fig. 3).

When looking at the lower row of distributions of dependency properties, obviously,
the low number of co-liaisons is related to a small fraction of nodes, which have at least
one two-way dependent neighbor (TwDep property is shown in blue in the lower row of
plots).
From distributions in Fig. 11 and Figs.21 and 22 in Appendix C, it can be seen

for biological networks that there prevail nodes with two-way independent neighbors.
This is projected also to a greater distance of degree distribution from zone-size,
membership and liaisonship distributions, especially for those biological networks that
also have lower modularity (see Table 11 and degree distributions in plots shown
in red).

Observation 4 Independent neighbors in biological networks. Nodes in biological net-
works have a higher proportion of neighbors with which they are mutually independent in
comparison with technological, collaboration and communication networks.

However, a similar characteristic to that found in a biological network is found in
the social networks artist, new_sites and facebook (see Figs. 21 and 22 in Appendix C).
The distributions also show that the Email-Enron network and Brightkite communica-
tions network have characteristics at the boundary between collaboration and biological
networks and the com-amazon network at the boundary between technological and
collaboration networks.
Differences in the individual types of networks are also shown in plots in Fig. 12.

The upper row of plots represents zone quality, measured by the average embedded-
ness in relation to zone size. When the zone size increases, the average embeddedness
is more varied, and for most networks, it is slightly higher. For the com-dblp and col-
laboration networks, however, it is evident that the quality of the large zones is very
heterogeneous. This is probably due to differing relationships in large collaborating
teams.
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The lower row of plots shows cumulative distributions (CDF) expressing the frequency
of occurrence of nodes with a given prominency value. Here, the collaboration, commu-
nication, and social networks are distinctly different from the technological and biological
networks. Plots with the embeddednes and prominency values of the remaining twelve
real-world networks are shown in Figs. 23 and 24 in Appendix C).

Observation 5 Prominency in networks with social interaction. The networks resulting
from human interaction have amore varied occurrence of prominency values. This suggests
that in these networks, there aremore complex non-symmetric dependencies between nodes
than in the case of technological and biological networks.

This observation is due to the fact that technological and biological networks, unlike
collaboration, communication and social networks, have much less weakly-prominent
nodes with prominency between 0 and 1, i.e., the nodes with a potential to act in the zones
as a co-liaison. Additionally, especially in collaboration networks, the occurrence of dif-
ferent prominency values is most varied; it implies high flexibility of connections within
zones and between zones.

Zones in LFR networks

The last two rows in Tables 11, 12, 13, 14, 15 with the properties of real-world net-
works show the results of the analysis of two of LFR benchmark networks that were
generated (Lancichinetti and Fortunato 2009). The generator of the LFR networks pro-
vides settings ensuring the existence of overlapping communities. Both the networks we
analyzed were generated with 10000 nodes. The first network LFR 20 500 2000 was gen-
erated to have an average degree of 20, a maximum community size of 500, and a
total of 2000 nodes in the overlaps; a total of 186 communities with a minimum size
of 7 and an average size of 98 was generated in this network. In the second net-
work LFR 7 60 4000, for an average degree of 7, a maximum community size of 60,
and a total of 2000 nodes in the overlaps, a total of 1000 communities with a mini-
mum size of 3 and an average size of 19 was generated. The tables show that the LFR
networks, unlike the other generated networks from “Zones in generated networks”
section, do not significantly differ from real-world networks in any of the proper-
ties that were investigated. The distributions and plots in Fig. 13 confirm the same,
describing other properties of the LFR networks. However, two interesting results can
be seen.
The first is the maximum size of the zones found in the LFR networks. For the first net-

work (see Table 13), the largest zone is considerably smaller than the largest community
(88 vs. 500), while in the second network it is the opposite (72 vs. 60). The second result is
a low average value of co-liaisonship (0.066 and 0.095, respectively), which is particularly
characteristic of some biological, technological, and social networks (see Table 14). Over-
all, though, the LFR networks that were generated are closest to the biological networks,
as shown in the comparison of the LFR network properties in Fig. 13 with the properties
of real-world networks in Figs. 21, 22, 23 and 24 in Appendix C. Unlike the biological net-
works, however, the LFR networks have a higher NetDep and embeddedness value. From
this more detailed view, the LFR networks differ from the other real-world networks that
were analyzed.
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Fig. 13 Properties of LFR networks. The two LFR networks have similar characteristics to the biological
networks. However, they have higher average embeddedness, which is mainly due to the higher
embeddedness of larger zones with more than ten nodes

Zone overlaps and their density

Recent research on the properties of node groups in networks with ground-truth com-
munities has shown that (1) groups of nodes may overlap, (2) other overlapping groups
may exist in overlaps, and (3) overlaps may be denser than overlapping groups. We have
dealt with the first two properties in previous experiments with small and generated net-
works. Table 15 summarizes the results of detecting pairs of overlapping zones with at
least ten nodes and zone detection within overlaps with at least four nodes. As shown
through the average size of the overlaps, most of them are small (except for biological
networks). However, in all the networks, there is a non-trivial number of zones in larger
overlaps, and there are also zones with a high number of nodes. This can be read from
both the maximum and the average size of zones within overlaps in the last two columns
of the table.
In the next experiment, we investigated the density of zones and overlapping zones

of the same size. The goal was to verify that the overlaps are more densely connected
compared to zones. In the upper row of plots in Fig. 14, the average density of the zones in
relation to their size can be seen. The plots in the lower row provide the same information
for zone overlaps. The same plots for the remaining twelve real-world networks are shown
in Figs. 24 and 26 in Appendix C. When comparing the average densities for zones and
overlaps with the same number of nodes, it can be seen that, especially for a smaller
number (dozens) of nodes, the average density of the overlaps for most networks is higher
than the density of zones of the same size. For large overlaps, although not so clear, the
situation is similar. The exceptions are, in particular, the collaboration networks (astro-
ph, cond-mat-2005, cond-mat) networks, and also Email-Enron communication network,
where the average density of small zones is higher than overlaps of the same size. This is
because, in these networks, small zones are often formed by cliques.

Zones in community structure

As mentioned in “Zones in generated networks” section, zones cannot be considered
communities. That is why we prepared an experiment in which we applied the Louvain
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Fig. 14 Density of zones and overlaps in real-world networks. When comparing densities for zones in the
upper row and overlaps with the same size in the lower row, it can be noticed that the density of the
overlaps tends to be higher than the density of zones of the same size. For other real-world networks see
Figs. 25 and 26 in Appendix C

algorithm to detect non-overlapping communities across all of the real-world networks.
We then found the best matching zone to every detected community. To compare the
community and the zone, we utilized the Matthews Correlation Coefficient (MCC) based
on a confusion matrix in which true positives are the number of nodes in the intersec-
tion of community and zone ZC, false negatives are the number of zone nodes outside the
community Z, false positives are the number of community nodes outside the zone C, and
true negatives are the remaining number of nodes outside the zone and the communityO
(see Equation 7). MCC returns a value between −1 and +1; a coefficient of +1 represents
the perfect fit and −1 indicates total disagreement between community and zone (in our
case of overlapping zones and communities, MCC > 0). The results are summarized in
Table 16.

MCC = ZC · O + Z · C√
(ZC + Z) · (ZC + C) · (O + Z) · (O + C))

(7)

For all the networks that were analyzed (except facebook), the maximum and average
community sizes are higher than those for zones. For some networks, even the maximum
community size is at tens of thousands of nodes, compared to zones with a maximum of
dozens to hundreds of nodes. For facebook, this is the opposite, which is probably due to
the construction of this network by merging individual ego-networks.
It can also be seen that the Louvain algorithm provides a relatively small number of

predominantly large communities; this is a consequence of the resolution limit issue of
modularity. To overcome this problem, it is possible to use the ECG approach (Ensem-
ble Clustering for Graphs, Poulin and Théberge (2018)). Moreover, when many small
communities exist in the network, there are approaches working better than the Louvain
algorithm (e.g., InfoMap algorithm, Rosvall and Bergstrom (2008)). In our experiments,
however, the Louvain algorithm is adequate to assess the match between such detected
communities and large zones; we will focus on more communities, including the small
ones, in “Zones and ground-truth communities” section.
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Table 16Match of zones and communities detected by Louvain algorithm

Network Comm.
Comm. size Zone size MCC

Modularity Comm. Zone
Max Avg Max Avg Max Avg embed. embed.

anobii 882 37944 177.971 1084 9.672 1.000 0.879 0.573 0.797 0.651

artist 30 10139 1683.833 73 22.033 1.000 0.479 0.604 0.776 0.328

as-22july06 42 5099 546.738 1991 187.690 1.000 0.512 0.663 0.787 0.222

astro-ph 55 648 269.909 382 65.291 0.974 0.423 0.755 0.695 0.640

Brightkite 457 12119 124.155 375 9.626 1.000 0.856 0.660 0.913 0.828

com-amazon 252 11727 1328.821 451 39.222 1.000 0.354 0.926 0.965 0.755

com-dblp 463 33896 684.838 255 27.633 1.000 0.716 0.810 0.910 0.772

com-youtube 9264 197482 122.476 10538 12.265 1.000 0.904 0.686 0.843 0.641

cond-mat 82 759 169.037 75 27.098 1.000 0.413 0.862 0.835 0.704

cond-mat-2005 79 3266 461.494 271 56.190 0.931 0.366 0.786 0.980 0.966

Email-Enron 308 7550 109.403 1371 27.461 1.000 0.891 0.584 0.968 0.902

facebook 16 548 252.438 1017 257.312 1.000 0.727 0.835 0.946 0.644

ChCh-Miner 8 397 188.750 78 31.875 0.636 0.376 0.392 0.616 0.359

new_sites 65 4964 429.492 177 23.738 1.000 0.550 0.611 0.802 0.640

power 40 233 123.525 24 13.675 0.561 0.339 0.935 0.963 0.723

PP-Decagon 20 5649 953.250 614 56.650 1.000 0.550 0.445 0.710 0.568

PP-Pathways 17 4626 1265.941 652 97.941 1.000 0.475 0.386 0.715 0.446

Yeast 24 258 92.667 32 15.417 1.000 0.482 0.587 0.845 0.729

LFR 20 500 2000 48 1161 208.333 88 41.208 1.000 0.586 0.659 0.764 0.587

LFR 7 60 4000 45 456 222.000 67 37.222 0.534 0.338 0.578 0.614 0.387

The table shows very high agreement between communities and zones for the communications networks (Email-Enron,
Brightkite, anobii) and the video-sharing network (com-youtube), and high agreement for the facebook and com-dblp networks.
In these networks, the zones correspond well to the communities. This means that in these networks, communities, similarly to
zones, form around egos – those nodes on which the nodes in their surroundings are directly or indirectly dependent. However,
it should be noted that many other zones were detected in these networks, predominantly nested in the communities and their
corresponding zones

The smaller size of zones in comparison with communities raises the question of
whether communities are not formed as a union of several zones. However, the question
is not an easy one; to answer it, it would be necessary to find egos whose zones could
form the community (e.g., similarly to multi-ego-centered communities as described in
Danisch et al. (2013)).
An interesting result is that at least one zone that exactly matched one of the com-

munities (MCC = 1) was found for almost all networks. The average match values
range from 0.339 (power network) to over 0.8 (e.g., Email-Enron network). Compared
to the other networks, there is a very high agreement between communities and zones
for three communications networks, including Brightkite network (0.856) and anobii
network (0.879), which will be described below in “Zones and ground-truth communi-
ties” section. Similarly, the facebook network is 0.727 and the com-dblp network is 0.716.
In these networks, therefore, the zones correspond very well to the communities. It can,
therefore, be assumed that in these cases, communities are formed around egos of the
corresponding zones.
In the last two columns of Table 16, the average embeddedness for the detected

communities and the corresponding zones is shown. In general, the average quality of
communities is higher than the quality of the zones. In most cases, however, the differ-
ence in the average embeddedness is not large. The lower quality of the zones can be
attributed to another view on a group of nodes. While communities prefer their density
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and weak interconnections with other neighboring communities, the zones are based
on non-symmetric dependencies between nodes. These dependencies are reflected in a
much more comprehensive view, in which they play a role concerning the inside of the
group (inner-zone) and the dependency outward (outer-zone).

Zones and ground-truth communities

Our approach to detecting groups (zones) presented in this article is based on the
assumption that groups existing for some purpose which is represented by an ego (a cen-
tral node) can be extracted from the structure of a (weighted) network. In our experiments
in “Zones in real-world networks” section, we worked with two networks com-amazon
and com-dblp; the authors of the article (Yang and Leskovec 2015) identified in these net-
works ground-truth communities, otherwise referred to as real functional groups, and
provided lists of the 5000 ground-truth communities with the highest quality. In addition
to these two networks, in the experiment below, we have added two more networks with
identified ground-truth communities. The first one is the com-youtube social network,
with 1134890 nodes, 2987624 edges, and 5000 communities. The second one is a directed
communication network, anobii, which we have transformed into an undirected one so
that an edge between nodes only exists if there are mutually directed edges between
neighbors. After this transformation and the removal of outliers (isolated nodes), the net-
work has 158330 nodes, 785939 edges, and 4797 communities. For details see Appendix B.
We prepared a similar experiment for these networks as with the non-overlapping com-

munities above. The aim was to find out exactly how the ground-truth communities
correspond to the zones and whether we are able to use zones to describe at least part
of these communities existing for some real purpose and thus performing some function.
The experiment is performed in two steps for each network. First, for every ground-truth
community, the zone that best matches this community is found (measured by MCC, see
Equation 7). Note that after this step, multiple communities can match the same zone. In
the second step, the best-matching community is then selected for each zone from the
first step. Theoretically, after the first step, different zones may correspond to different
communities, but it may also be that a single zone corresponds to more communities. If
the reality is close to the first case, then the communities are unique from the perspective
of zones, and vice versa, in the latter case, the communities are very similar (redundant
in terms of the agreement of more communities with the same zone). We also conducted
this experiment with both the LFR networks, for which we know what overlapping com-
munities were generated. The community properties of these networks, together with the
results, are presented in Table 17.
It can be seen that the com-amazon network contains redundant communities from the

perspective of zone detection; more than 71% of the communities have no zones that they
would match better than other communities. This is probably due to the fact that the net-
work is created from products hierarchically organized into categories and co-purchased
together; the categories of products in these hierarchies, which are considered commu-
nities, may not be very different in many cases. For the other networks, there is a unique
zone for almost every community. The two real-world networks (com-amazon and com-
dblp) show a very high matchMCC > 0.9 for more than half of the detected unique zones
corresponding to ground-truth communities. It is worth noting that for the com-dblp
network there is an almost 40% perfect match (MCC = 1) within 4850 out of all the 5000
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Table 17 Zones in networks with ground-truth communities

Network
Communities Matching zones MCC MCC = 1 MCC >0.9

Count Min Max Count Percent Avg size Avg Percent Avg size Percent Avg size

anobii 4797 1 7062 4560 95.06 2.502 0.337 3.49 1.119 3.51 1.150

com-amazon 5000 3 328 1442 28.84 9.549 0.853 44.52 6.467 57.49 7.943

com-dblp 5000 6 7556 4850 97.00 8.721 0.869 39.75 7.487 55.53 7.810

com-
youtube

5000 2 2217 4368 87.36 5.485 0.648 18.10 2.217 18.407 2.281

LFR 20 500 2000 186 7 500 175 94.09 25.514 0.703 5.71 8.000 16.57 9.690

LFR 7 60 4000 1000 3 60 928 92.80 8.179 0.628 3.66 3.147 4.85 3.822

There is a low match of zones and corresponding communities for the anobii network. On the other hand, for the com-amazon
and com-dblp networks, the match is high. For anobii and both the LFR networks, only a low proportion of well-matching zones
exists; the average size of the matching zones is low for anobii and high for the first LFR Network. Table 16 shows, however, that
the match for the com-amazon and LFR networks is much better than for non-overlapping communities detected by the Louvain
algorithm. Conversely, for the anobii and com-youtube networks, the match for non-overlapping communities is higher

identified ground-truth communities. Figure 15 shows the relationships between the size
of the zone and the average match accuracy (MCC) with the corresponding community
for all four real-world networks with ground-truth communities, as well as the frequency
of occurrence of zones for the given match accuracy. The corresponding results for the
LFR networks are shown in Fig. 16.
In the experiments with communities, we showed two key results. The first one is

related to the Observation 1. Even though zones cannot be considered communities, in
some networks (especially communication networks, see Table 16), most zones corre-
spond very accurately to non-overlapping communities. E.g., in the anobii network, the
zones well describe non-overlapping communities detected by Louvain algorithm; how-
ever, they do not well represent the ground-truth communities in this network. The
second result shows that the zones provide high potential in describing ground-truth
communities in some networks. In the com-amazon and com-dblp networks, zones that

Fig. 15 Match of zones and ground-truth communities. In the upper row of plots, it can be seen that in all
cases the average accuracy of the zone and ground-truth community match decreases with zone size. This
trend is most noticeable with the com-dblp network; the best-matching zones have around ten nodes. For
large zones, the average accuracy of the match in this network is low. The plots in the lower row show the
cumulative distributions of the frequencies of zones for a given match accuracy with the best-matching
community. Except for the anobii network, the frequency of the zones is balanced or increases with higher
match accuracy. This is especially true for the com-dblp network, where there is only a very low number of
zones that have a match accuracy below 0.5



Kudelka et al. Applied Network Science            (2019) 4:81 Page 35 of 49

Fig. 16 Match of zones and communities of LFR networks. In LFR networks, there are minimum differences in
average match accuracy for different zone sizes. In LFR 20 500 2000 network, there is a large variation in zone
and community match accuracy. The frequency of zones in LFR networks is increasing for a lower match
accuracy; however, it is decreasing for a very high match. For both networks, most of the zones have a match
accuracy above 0.5

correspond very closely to a considerable number of identified ground-truth communities
were detected. Here it is necessary to remember that each zone is the result of the exact
analysis of the surroundings of a selected ego. Therefore, we may conclude that especially
the smaller ground-truth communities in these networks are grouped around egos; thus,
these egos determine the resulting communities very precisely.
On the other hand, especially for large ground-truth communities, there are often no

zones that match with sufficient accuracy. In this case, communities could be, e.g., formed
as a union of several zones generated by different egos. The analysis of this case was not,
however, the subject of our research.
The results show that our approach cannot be seen as universal from the perspective of

ground-truth communities. However, although zone detection is intended for weighted
networks, it has been applied to unweighted networks in experiments with real-world
networks. The question for further research is what the results of the comparison of zones
and ground-truth communities would be in the case of weighted networks.

Summary
One of the interesting results of our experiments with real-world networks is the charac-
teristics of these networks based on the dependency and properties of the detected zones.
The Table 18 recapitulates selected outputs from experiments.
Key characteristics of our approach can be summarized into seven points that charac-

terize the description and detection of zones.

1 The relationships between pairs of nodes in zones differ and are not symmetric
(non-symmetric similarity).

2 The zone has a clear outer boundary, beyond which nodes are not considered to be
members of this zone.

3 The zone contains nodes in different roles. The role of the node is mainly related to
its linking in-and-out (i.e., beyond the boundary) of this zone.

4 Zones may have different sizes. They can be both large (dozens or hundreds of
nodes and more) and small (triads, dyads and trivial with a single node).

5 Zones may overlap (one node may be in multiple zones), and overlaps may be large
(i.e., overlap size is close to the size of overlapping zones).

6 In most cases, overlaps of zones have a higher density than the zones of the same
size.
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7 Overlaps of larger zones with non-trivial structures (e.g., other than small cliques)
contain in most cases other zones that can also overlap.

Conclusions
As far as we know, we are the first to focus on analyzing the structures of both weighted
and unweighted undirected networks through the non-symmetric similarity between the
nodes, which we call dependency. This dependency allows us to clearly describe groups of
nodes in the network structure which are organized around one of the group nodes – the
ego. To distinguish such groups from communities, we call them ego-zones and examine
them both locally and globally.
The local view extends the possibilities of traditional methods for analyzing ego-

networks or ego-communities, respectively. Our approach contributes to this, in par-
ticular, by preferring weighted networks, exploring the wider surroundings of the ego,
and working with nodes in newly defined roles in the zone. Especially in networks with
social interaction, thanks to the zones detected for each ego, the analyst gets comprehen-
sive information about the internal non-symmetric dependencies in the zones and thus
about the influence of each ego on its surroundings and, vice versa, the influence of its
surroundings on it.
From a global perspective, our approach brings, in particular, a typology of network

nodes that takes into account their importance on the basis of their structural indepen-
dency – prominency. Prominent nodes are either entirely or, at least, partly independent
on their neighbors and have a significant impact on the node dependencies in their sur-
roundings. The way the zones and prominent nodes are defined using non-symmetric
dependencies contributes to understanding why large and dense overlaps of node groups
emerge in networks. We consider this finding to be a significant contribution to the
analysis of community network structures. Our experiments also show that, in terms of
dependencies and overlapping zones, different types of real-world networks have different
properties that distinguish them from each other and from generated networks.
The experimental results that we presented also raise questions for future research.

Above all, it is a question of more in-depth analysis of the relationships between zones
exactly determined by their egos and overlapping or non-overlapping communities in the
traditional concept of many different detection methods. Furthermore, it also involves a
detailed assessment of how zones and their egos correspond to the existence of ground-
truth communities in various types of, in particular, weighted and directed networks.

Appendix A: Zone detectionmethod
The method for detecting all zones in a network with n nodes and m edges consists of
two steps. The first step is to calculate the dependency matrix. The second step is the
detection of inner and outer-zones for each node (ego). It is not easy to precisely define
the time complexity for each step, because the calculations are dependent on the network
representation, its complex structure, density, and dependencies between nodes. For this
reason, we only describe some of the cases and the result of an experiment providing an
estimation of complexity based on the analysis of real-world networks.
To compute the dependency matrix, two dependencies must be calculated for each

pair of network nodes. This calculation is related to the detection of the common neigh-
bors of two nodes. In general, a dense network is the worst case and the time complexity
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of finding the common neighbors of two nodes is O(n2). Thus, the computation of the
dependency matrix has, in the worst-case scenario, the complexity of O(mn2). For sparse
networks, finding common neighbors is related to the average degree of network d, and
the time complexity, in this case, is O(md2). Note, however, that we use the IsDependent
relationship to detect zones which, thanks to the threshold 0.5, needs to take into account
only a sufficient number of common neighbors in the numerator in Eq. 1 to calculate the
dependency. The use of this property also affects the time complexity.
Thanks to the IsDependent relationship, the resulting dependency matrix is a binary

one and, therefore, it is the adjacency matrix representing the original network after its
transformation into its unweighted directed variant (see Fig. 2a for Karate Club network).
Zone detection is described in Algorithm 1 and, as can be seen, consists of inner-zone

and outer-zone detection, and then the zone is a union of both of them.
The time complexity of the inner-zone detection again depends on the network param-

eters, especially on the density and the number of iterations necessary to be performed.
The key is that in each iteration it is necessary to find and test all neighbors of the nodes
added in the previous step into the inner-zone. To simplify, it is possible to work with two
cases to consider complexity. The first and the worst case is a complete network in which
each pair of nodes is two-way dependent. The second case is the sequence of one-way
dependent nodes.
In the case of a complete unweighted network, we need two iterations to find one

inner-zone. In the first iteration, because of mutual dependency with ego, all nodes of the
network (except for the ego) are added into the inner-zone. In the second iteration, for
all the added nodes, it is necessary to test whether their neighbors are outside the inner-
zone. The time complexity of the detection is, therefore,O(n2) and alsoO(m) because the
network is dense.
In the case of the sequence of one-way dependent nodes, the number of iterations cor-

responds to the position of the node in the sequence. However, at most, we need n and
a minimum of 1 iteration always working with only one neighbor. In this case, the time
complexity of the inner-zone detection is O(n).
The time complexity of the outer-zone detection is based on the previously detected

inner-zone for whose nodes it is necessary to find the nodes on which they are dependent
and which are outside the inner-zone (and thus form the outer-zone). In the worst case,
we can assume that the network is dense, and the inner-zone contains half of the nodes
of the network and the remaining nodes of the network form the outer-zone. In this case,
it is necessary for each of n

2 nodes in inner-zone to test n
2 nodes outside the inner-zone;

therefore, the outer-zone detection will have the time complexity O(n2), i.e., not higher
than the worst case for inner-zone detection in dense network (O(m)).
Assuming that we detect each zone separately, the time complexity of detection zones

for all network nodes is, in the worst-case scenario, O(nm) for dense networks. However,
we must also consider cases where many nodes in the network can be, e.g., isolated after
the transformation of the original network into its unweighted directed variant. In this
case, the zone contains only the ego node, and the time complexity of the inner and outer-
zone detection is O(1). Therefore, we can expect that the time complexity will be lower
for real-world networks.
Figure 17 shows the time needed for the computation of the dependency matrix and

the time of detection of zones for each node in the network. Moreover, the green dotted
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Algorithm 1: Zone detection
Input : Network G = (V ,E). Node ego ∈ V
Output: NodeSet zone, innerZone, outerZone

create NodeSet zone
create NodeSet innerZone
create NodeSet outerZone

// detection of inner-zone
create NodeSet nodesLastAdded
create NodeSet nodesOutside
AddNode(ego → innerZone)
AddNode(ego → nodesLastAdded)

while IsNotEmpty(nodesLastAdded) do
foreach Node v ∈ nodesLastAdded do

foreach Node adj ∈ NeighborsOf (v) do
if IsDependent(adj on v) and adj /∈ innerZone then

AddNode(v → nodesOutside)
end if

end foreach
end foreach
AddAllNodes(nodesOutside → innerZone)
Clear(nodesLastAdded)
AddAllNodes(nodesOutside → nodesLastAdded)
Clear(nodesOutside)

end while

// detection of outer-zone
foreach Node v ∈ innerZone do

foreach Node adj ∈ NeighborsOf (v) do
if IsDependent(v on adj) and adj /∈ innerZone then

AddNode(adj → outerZone)
end if

end foreach
end foreach

// composition of zone
AddAllNodes(innerZone → zone)
AddAllNodes(outerZone → zone)

line shows that the estimated time complexity O(m log n) corresponds well to the depen-
dency matrix computation for the real-world networks that were analyzed. Similarly, the
blue dotted line shows the estimated time complexity O(m) for the zones detection in all
of the networks (that is O(mn ) = O(d) to detect one zone). Therefore, both the time com-
plexities of the dependency matrix calculation and the zones detection can be assumed to
be considerably lower for analyzed real-world networks than the above-mentioned worst
cases.
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Fig. 17 Estimated time complexity. The dotted lines represent estimated time complexities approximating
computation time of the dependency matrix calculation (green) and detection of all zones (blue) in the
networks that were analyzed

Appendix B: Publicly archived datasets

Zachary’s karate club Zachary (1977) - network of friendships between the 34members
of a karate club at a US university. Available at http://www-personal.umich.edu/~
mejn/netdata/

Les Misérables Knuth (1993) - coappearance network of characters in the novel Les
Misérables. Available at http://www-personal.umich.edu/~mejn/netdata/

Net Science Newman (2006) - a coauthorship network of scientists working on net-
work theory and experiment. Available at http://www-personal.umich.edu/~mejn/
netdata/

American College football Girvan and Newman (2002) - network of American football
games. Available at http://www-personal.umich.edu/~mejn/netdata/

as-22july06 - a symmetrized snapshot of the structure of the Internet at the level of
autonomous systems, reconstructed from BGP tables posted by the University of
Oregon Route Views Project. Available at http://www-personal.umich.edu/~mejn/
netdata

com-dblp Yang and Leskovec (2015) - a co-authorship network where two authors are
connected if they publish at least one paper together. Publication venue, e.g, journal
or conference, defines an individual ground-truth community. Available at https://
snap.stanford.edu/data/com-DBLP.html

Email-Enron Yang and Klimmt (2004); Leskovec et al. (2009) - communication network
that covers all the email communication within a dataset of around half million
emails. Available at https://snap.stanford.edu/data/email-Enron.html

PP-Decagon_ppi Zitnik et al. (2018) - a protein-protein association network that
includes direct (physical) protein-protein interactions, as well as indirect (func-
tional) associations between human proteins. Available at https://snap.stanford.edu/
biodata/datasets/10008/10008-PP-Decagon.html

http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
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http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata
http://www-personal.umich.edu/~mejn/netdata
https://snap.stanford.edu/data/com-DBLP.html
https://snap.stanford.edu/data/com-DBLP.html
https://snap.stanford.edu/data/email-Enron.html
https://snap.stanford.edu/biodata/datasets/10008/10008-PP-Decagon.html
https://snap.stanford.edu/biodata/datasets/10008/10008-PP-Decagon.html
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artist Rozemberczki et al. (2018) - mutual like networks among verified Facebook pages
– the types of sites included TV shows, politicians, athletes and artists among others.
Available at https://snap.stanford.edu/data/gemsec-Facebook.html

astro-ph Newman (2001) - weighted network of coauthorships between scientists
posting preprints on the Astrophysics E-Print Archive. Available at http://www-
personal.umich.edu/~mejn/netdata/

Brightkite Cho et al. (2011) - undirected friendship network of Brightkite users
(Brightkite was a location-based social networking website). Available at https://
snap.stanford.edu/data/loc-Brightkite.html

com-amazon Yang and Leskovec (2015) - based on “Customers Who Bought This
Item Also Bought” feature of the Amazon website. If a product i is frequently
co-purchased with product j, the graph contains an undirected edge from i to j.
Each product category provided by Amazon defines each ground-truth community.
Available at https://snap.stanford.edu/data/com-Amazon.html

cond-mat Newman (2001) - network of coauthorships between scientists posting
preprints on the Condensed Matter E-Print Archive. Available at http://www-
personal.umich.edu/~mejn/netdata/

cond-mat-2005 Newman (2001) - update network of coauthorships between scientists
posting preprints on the Condensed Matter E-Print Archive. Available at http://
www-personal.umich.edu/~mejn/netdata/

facebook_combined Leskovec et al. (2009) - dataset consists of ’circles’ (or ’friends lists’)
from Facebook,
https://snap.stanford.edu/data/egonets-Facebook.html

ChCh-Miner_drugbank-chem-chem Wishart et al. (2017) - network of interactions
betweeen drugs, https://snap.stanford.edu/biodata/datasets/10001/10001-ChCh-
Miner.html

new_sites Rozemberczki et al. (2018) - datasets represent blue verified Facebook page
networks of different categories. Nodes represent the pages and edges are mutual
likes among them. Available at https://snap.stanford.edu/data/gemsec-Facebook.
html

Power grid Watts and Strogatz (1998) - unweighted network representing the topology
of the Western States Power Grid of the United States. Available at http://www-
personal.umich.edu/~mejn/netdata/

PP-Pathways_ppi Agrawal et al. (2018) - protein-protein interaction network that con-
tains physical interactions between proteins that are experimentally documented
in humans https://snap.stanford.edu/biodata/datasets/10000/10000-PP-Pathways.
html

Yeast Bu et al. (2003) - protein-protein interaction network in budding yeast. Available
at http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm

anobii Aiello et al. (2012) - social network (aNobii.com) of book recommendation. Two
types of networks are available. Network composed by union of friendship and
neighborhood links is the first. The second one is communication network repre-
senting message exchanges. Available (on request) at https://www.icwsm.org/2016/
datasets/datasets/

com-youtube Mislove et al. (2007) - social network representing a video-sharing web
site. Available at http://snap.stanford.edu/data/com-Youtube.html
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Appendix C: Supplementary figures

Fig. 18 Les Misérables network. Strongly-prominent nodes (red) link densely connected groups in the
network. Weakly-prominent nodes (yellow) occur in different situations where they can be mutually
dependent or dependent on some strongly-prominent nodes. However, at least one other node must be
one-way dependent on each of them. On the left, there is a structure composed of predominantly
weakly-prominent nodes; the zone network in Fig. 7b shows that in such a structure, there are several
multi-ego and alternative zones
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Fig. 19 The largest connected component of Net Science network. The researchers represented by
strongly-prominent nodes (red) are independent on the other people in the network. Key researchers can be
recognized by their high degree, e.g., Barabási and Newman. There are also weakly-prominent nodes (yellow)
with a high degree, e.g., Jeong, Oltvai, and Vicsek. However, all of them are one-way dependent on Barabási
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Fig. 20 Net Science zone network. The zone network provides information on the hierarchy of sub-zones,
multi-ego zones, alternative zones, and zones in overlaps. Thus, the nodes represent zones and the directed
edges point from the sub-zone to its closest super-zone (or to more super-zones when the zone is inside
their overlap). The node size corresponds to the number of nodes in the zone; the edge weight corresponds
to the number of nodes in the sub-zone. It can be seen that the Net Science network, from the perspective of
the zones, has partitioned into differently-sized clusters which uncover the structure of ego-centered
cooperating teams and their sub-teams. Two clusters have distinct centers with large zones (Barabási and
Newman). On the contrary, the large cluster in the middle contains rather small zones
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Fig. 21 Node and zone properties in real-world networks

Fig. 22 Dependency properties in real-world networks
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Fig. 23 Embeddedness in real-world networks

Fig. 24 Prominency in real-world networks
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Fig. 25 Density of zones in real-world networks

Fig. 26 Density of zone overlaps in real-world networks
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Abbreviations
BA model: Barabási-Albert model; CC: clustering coefficient; ER model: Erdös-Rényi model; MCC: Matthews correlation
coefficient; NetDep: network dependency; OwDep: one-way dependency; OwIndep: one-way independency; TC:
triadic-closure based model; TwDep: two-way dependency; TwIndep: two-way independency
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