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the modes of transportation. Additionally, we leverage those scores to classify our
locations as being train-centric, bus-centric, or car-centric and to uncover geographic
patterns in these characteristics. We find that business hubs, despite having low
populations, are so conveniently reachable via train and road systems that they
consistently achieve the highest sociability and convenience scores. Suburban regions
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measures.
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Introduction

Because transportation systems are so naturally seen as graphs/networks they are a com-
mon subject for graph theory and network analysis — including the original Konigsberg
bridge problem. Most studies of transportation networks focus on one mode: typically
train (Derrible and Kennedy 2009; Derrible 2012), road (Crucitti et al. 2006), or air
(Guimera et al. 2005) (for a review of how network theory has been applied to transporta-
tion systems see (Derrible and Kennedy 2011)) Although focusing on one mode allows
for simpler analyses of structural patterns and similarities among cities, it is insufficient
for characterizing how people use a transportation system. For example, one mode may
compensate for another and/or using them together may be more effective than any single
mode alone. The current work analyzes the transportation system of the Greater Tokyo
Area (Tokyo, Kanagawa, Chiba, and Saitama prefectures) integrating the train, bus, and
road systems along with a geographical hexagonal grid foundation. As such it includes
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highly urbanized areas, suburban areas, rural areas, desolate mountainous areas, and
everything in between.

Although there exist purely graph theoretic studies of transportation networks in
terms of measures like centrality scores, small world properties, etc., these kinds
of networks are fundamentally geographically embedded. The physical constraints
on the network structure requires the inclusion of continuous distance and time
weights in otherwise discrete network measures. Furthermore, rather than focus
on purely structural features, we perform an analysis that combines demographic
data with geographically modified network methods. This is done at multiple time
and distance scales in order to assess a variety of transportation and sociologi-
cal characteristics such as transportation access limitations, synergies among dis-
tinct modes, transportation mode importance, and heterogeneity in transportation
effectiveness.

For the purpose of utilizing machine learning techniques we perform an analysis of var-
ious transportation subnetworks centered on 500 randomly chosen locations within the
Tokyo area. The individual transportation modes are combined in five different ways for
each of five different distance/time thresholds and 12 networks measures are collected
from each resulting subnetwork. We introduce an additional 114 scores derived from the
300 core measurements to assess higher-order features such as scaling patterns and mode
synergies. We perform a battery of clustering experiments on selected network, spatial,
and sociological measures in order to identify locations with similar characteristics and
identify geographic patterns in those characteristics. In order to evaluate the appropriate-
ness of different clustering techniques for different tasks we apply k-means, hierarchical,

and spectral clustering and compare their results.

Data

Our analysis includes four separate transportation networks (train, bus, road, and hex) as
well as walking links that connect the disparate networks together. In addition to these
networks we utilize fine-grained population data distributed to each hex on the grid. The
population and road network data are publicly available (as described below) while the
train and bus networks come from proprietary third party data sources (Ekitan 2019).

Hexagonal geographic grid

The geographic foundation of our analysis is a 125m inner radius (54,127m?) hexag-
onal grid covering all of Japan. We use GoogleMap’s coordinates of Tokyo Station
(139.7649361E, 35.6812405N) as a fixed reference point and grow the hexes outward from
there. Because at different latitudes, the translation between meters and degrees changes,
we use this method to ensure a true 250m hexagonal grid with minimal lat/lon distortion
around Tokyo.

The 500 locations used in our clustering analysis are chosen from this hexagonal
grid. They are also used as the sources and destinations of our network measures, hold
the demographic data, form the basis for visualizing the data (as in Fig. 5), and act
as the nodes for one of the transportation networks. We restrict the hex creation to
within 1 km of the border/coastline of Tokyo, Kanagawa, Chiba, and Saitama prefectures
using GIS shape data from (GADM 2018) excluding islands not reachable by train, bus,
or road.
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Demographic data

In order to assess practical (versus potential) accessibility we incorporate the population
distribution into our analysis. We use 250m? square grid population data obtained from
(Official Statistics of Japan 2015) combined with mesh coordinates from (Association for
Promotion of Infrastructure Geospatial Information Distribution 2015). However, instead
of using the square grid as our locations, we interpolate the population of hexes H; from
square grid locations S; using their overlap proportions as depicted in Fig. 1 using Eq. 1.

Area(H; N S))

Population(H;) = Zpopulation(sj) Area(S))
- U

]

(1)

This resampling method allows us to convert any geographical data into a common
baseline with attractive geospatial properties; a feature which will be crucial for future
work incorporating additional socioeconomic data. This resampling ability is especially
important for Japan because most data is only available by administrative area (e.g. by city
or some subdivision thereof), and even the available grid datasets utilize grids of differing

resolutions and reference points.

Network data and construction

We utilize four separate networks representing distinct modes of transportation: rail,
bus, road, and hex/local. The four transportation networks are connected to each other
via walking links. All network edges in the current work are modeled as symmetric
(undirected). Here we provide the details of each network and their integration.

Hex network
The hex network is created from the hexagonal grid by connecting each hex to its neigh-
boring hexes. The generated links all have a length of 250 m and a traversal time of 3

D F

Fig. 1 Demonstration of proportional resampling of square grid population data to our hex grid. The hex «
has an interpolated population value calculated from its proportional overlap with the population data grid
spaces A, B, C, and D. The population value for hex 8 is similarly constructed from the square grid spaces C, D,
E, and F
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min based on a 5 kph (walking) speed. This creates a transportation network represent-
ing slow local travel; usually walking, but may also represent driving on small streets to
throughways, cycling, etc. As such, we use “walking links” to refer to the intermodal edges
discussed below and “hex links” to refer to edges among hex nodes.

The hex network serves two main purposes. First, not all grid spaces are accessi-
ble directly via other transportation networks, so this ensures all hexes are reachable.
Second, in many cases using purely transportation links based on the closest sta-
tion/stop/intersection leads to unnatural and inaccurate travel times for locations. For
example, for many suburban locations the closest station is one serviced by only local
trains; however, there may be another station only slightly further away where an
express/commuter train stops. The total travel time from such a location to the city cen-
ter would therefore be shorter by walking to the station with an express train rather than
using the closest station. Connecting the hexagonal grid spaces into a local transport net-
work eliminates this problem while providing an intuitive shared geographic foundation
for all the transportation networks.

Train network

Rail (train, subway, and streetcar) travel is considered the dominant mode of transporta-
tion in Japanese cities (Calimente 2012). The rail system in Tokyo is the densest in the
world with the greatest ridership and frequency of trains (OECD Statistics 2016; Train
Media 2017). Although in terms of sheer numbers of nodes and edges the bus and road
networks are both larger than the train network (Table 1), for most urban areas the train
network handles the greatest traffic in terms of the number of people per kilometer
(Public Purpose 2003).

One natural and common representation of a rail network is to connect nodes repre-
senting each station with edges representing routes/tracks having stops at those stations
(Barthélemy 2011). If distinct routes sharing tracks are captured as distinct edges, then
this creates a multigraph (Goczytla and Cielatkowski 1995). However, for our analysis the
transfer times between trains/lines as well as platform waiting/exit times are crucial to the
total travel times. In order to integrate these transfer and access times into our network
algorithms we decided to include them directly as part of the train network.

Our train data includes all routes of all types (excluding Shinkansen bullet trains) within
the Greater Tokyo Area. To create our network we first create route nodes and route
edges from the stops and links of each route type (e.g., local, rapid, commuter express)
of each line. The route nodes can be thought of as representing the station platforms for

Table 1 Summary of basic network features for the fully integrated network

Transportation mode Node count Edge count
Train stations 1546 —
Train transfer — 17,835
Train access — 5179
Train routes 5179 5268
Bus network 32,901 39,874
Road network 58,012 84,732
Hex network 263,339 786,014
Connecting links — 201,989

Fully integrated network 360,977 1,140,891
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passenger loading and unloading, although they are abstracted so that distinct route types
of the same line have separate nodes even if they share the same physical platform. The
route edges are weighted by the mean weekday traversal time for a route link of that type
on that rail segment.

We next create nodes representing each physical station in the system. Then, for each
station we connect the station node to each platform node at that station via an access
link with a time-weight of 3 min. The access links capture traveling between the station
entrance and the platforms including congestion and waiting. Finally, we directly connect
all platform nodes at the same station with a transfer link having a time-weight of 5 min.
This time approximates walking times between platforms and train waiting times without
overly complicating our intra-station network specification (Hibino et al. 2005).

An example of the resulting train network construction is shown in Fig. 2. There are two
node types (station and platform) and three edge types (route, access, and transfer). Non-
local routes (i.e., ones that skip stations) are represented as links that directly connect the
platform nodes where that route actually stops (e.g., line 2 in Fig. 2). One could consider
our construction of the train network as a multiplex network with station and platform
nodes representing the same object at different layers and the access/transfer edges acting
as inter-layer links (Kiveld et al. 2014; Bianconi 2018). However, there are no advantages
to that formalism for our purposes. We simply consider it as a geographically embedded
network that is abstracted to distinguish train lines that share the same station and/or
platform. This construction allows us to include the walking and waiting times within
each station seamlessly with standard shortest-path algorithms (described below).

For a network constructed in this way, the meanings and/or calculations of many stan-
dard network measures are altered. For example, because station nodes only have access
links connected to them, the degree of the station nodes is the number of line types
with stops at that station (40% of our stations have a single line type, so a degree of
one). The degree of the platform nodes equals (1) the single access link to that platform’s

(3]
| Y
I @

O station node

@ platform node
— express line
local line
------ train access edge
=== train transfer edge

Fig. 2 Diagram of the train network construction scheme. White station nodes «, 8, and y represent the
physical stations and red dashed edges represent access links connecting the station to each of its platforms.
Each type of train on each train line is represented by a separate platform node (black nodes) which are
connected to each other by train lines (gray) at different stations and transfer edges (blue dashed lines) at the
same station. In this example, lines 1+ 2 and 3 run on the same tracks and both use stations « and y, but line
3 represents an express train that doesn't stop at station B. Only the station nodes are connected to nodes of
the other transportation networks
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station node, (2) plus the number of platforms at adjacent stations on that route (usu-
ally two, except at line termini), plus (3) the number of other line types (platforms nodes)
at the same station. The platform node degrees range from 2 to 50, with 190 having a
degree of 40 or more (degree distributions appear in the Additional file 1). To get the
station degree corresponding to the more traditional railway representation (Barthélemy
2011) one needs to sum the number of route links connected to all the platform nodes
connected to each station.

This representation also changes network path lengths because entering and exiting a
station adds two jumps and every transfer adds an additional jump. As discussed later,
this difference is one of a few reasons why many standard network measures, especially
topological ones, were less informative for our analysis and made their values based on
our analysis incommensurable with other analyses. Due to the geographically embedded
nature of our network analyses, we use the sum of time-weighted edge traversals to mea-
sure network distances (i.e., not in terms of the number of edge traversals) and limit our
algorithms to ones that can handle weighted graphs.

Figure 3 shows the result of constructing a rail network in this way. Train lines with only
local stops can seen as sequences of blue dots connected only to the neighboring dots.
A variety of rapid and express trains, sometimes multiple version on the same railway,
appear as darker lines directly connecting more distant points.

Bus network

The bus network is constructed in the more traditional manner as links among bus stops.
We still use direct links for stops of express buses even when they run the same path
as a local bus. Traversal times are set from the bus schedules using the average traversal
time for each link for a given type of bus (e.g., local, express). This time does not include

5 kilometers

Fig. 3 Sample of the Tokyo Area train network showing lines of different types (local, rapid, express, etc.)
connecting stations at different distances. Edges become darker with longer traversal times. Although station
nodes are distinct from platform nodes in our construction, they share identical latitude and longitude
coordinates, so they are co-located on this map view
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fluctuations in road congestion, loading and unloading times, differences in speeds from
skipped stops, or other interference. Unlike the train network, we do not create sepa-
rate physical and route-stop nodes because bus-to-bus transfers play a much smaller role
in Japanese transit. However, we found that as byproduct of this modeling choice we
were unable to include wait and transfer times into the bus network, so future work will
represent the bus network in the same manner as the train system.

Road network

Our road network is constructed from road segments tagged as tertiary or above, or
not specifically labeled and left as ‘road; in OpenStreetMaps data (OpenStreetMap Con-
tributors 2019). OpenStreetMap data is sparse in Japan compared to other developed
countries. Furthermore, in Japans fragmented and heterogeneous infrastructure it is
common for roads to frequently change their thickness and allowable speeds, which com-
plicates road classification efforts. We had to make assumptions based on typical values
to fill in missing road speed limits and typical drive speeds (Japan Traffic Safety Associ-
ation 2017). For approximate drive speeds we adopted a convention of 70kph for major
highways, 30kph for other major roads, and 25kph for minor roads (see the Additional
file 1 for more road details). OpenStreetMap data includes points between intersections
to capture the bending of the road, however we simplify the network by removing all
nodes from the network with a degree of two between nodes of the same road type; leav-
ing only actual intersections. We calculate the edge traversal time based on the Haversine
distance (a measure of the distance that accounts for the curvature of the Earth and the
variable conversion from lat/lon degrees into meters) between intersection node and the
approximated drive speed (which are slower than the respective speed limits and meant
to include considerations for traffic congestion, railway crossings, turning, traffic signals,

etc.).

Excluding the small local roads results in some disconnected segments and a large num-
ber of apparent dead ends as seen in Fig. 4. Although some areas are denser than others,
the included roads in addition to the hexagon grid provides ample coverage of the popu-
lated areas. When we analyze the road network it is fused to the geographic hex network
via connecting links. Travel along the connecting links and across interhex links fills in
the gaps between intersection nodes. Although we use the walking speed of 5kph for con-
necting and interhex links, and 5kph is an underestimated speed even for narrow Japanese
residential roads, this includes travel to and from parking spaces, congestion, waiting,
and various other factors — and typically only for short distances to the nearest included

intersection.

Connecting links

In order to integrate two or more transportation networks we introduce links between
any two nodes of different modes that are within 167m (two minutes walk) of each other.
In this way transportation nodes are connected to nearby hex nodes to provide an intu-
itive geographic foundation for the whole system. Furthermore, when analyzed together,
the nodes of other transportation networks are directly connected to each other to repre-
sent intermode transfers (e.g., from a train station to a bus stop or taxi stand — platform
nodes are excluded). Like the interhex links, the time-weight on the intermode links are
calculated from the Haversine distance and an average walking speed of 5 kph. The 5 kph
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Fig. 4 A sample of the road network superimposed on the map. Although small local roads were excluded
from the road network, connections to the hex network fill in the gaps and provide dense coverage. The
diagram demonstrates both the high frequency of apparent dead-ends (leaf nodes) and our elimination of
non-intersection nodes. Map data ©2019 Google

walking speed is meant to accommodate various common factors for which we do not
have data: congestion, stairs, obstacles, non-direct routes, etc.

The connecting links in our network serve the role of intermodal edges, and in many
cases can be considered as actually walking from one form of transportation to another
because the distances/times are based on the actual longitudes and latitudes of the respec-
tive nodes. That said, the connecting links are intended to be an abstraction rather than
an approximation — although we obviously need some approximation of the intermodal
change times (Ayed et al. 2011; Idri et al. 2017). All of the analyses performed here
combine at least two modes (hex +..., see Table 2), and in the fully integrated net-
work connecting links make up 17.7% of the edges, but different combinations of modes
naturally require the inclusion of different subsets of connecting links.

Table 2 The multimodal transportation networks included in each travel pattern we analyse

Travel pattern Subnetwork Symbol Transportation modes included
Rail Ng hex + train

Bus Ng hex + bus

Driving Np hex + road

Public transportation Np hex + train + bus

All Ny hex + train + bus + road

All combinations further include the relevant intermodal connecting links
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Network summary

Although one could consider the distinct transportation modes as layers and the inter-
mode links as interlayer edges, the nodes in each network represent different locations;
i.e., a bus stop and taxi stand at Tokyo station are distinct from the station itself, which
is again distinct from the many train platforms in that station. We use intermode links to
represent physical travel between the single-mode transportation networks to create an
integrated geographically embedded network. Because nodes are unique across modes,
the network structure is identical for the layered and flat conceptualizations. We perform
our analyses while treating the combined networks as simple (non-multi), non-layered,
undirected graph. The node and edge counts for the components of the fully integrated
network are shown in Table 1.

We use different combinations of the four transportation networks to capture five
distinct travel patterns: rail, bus, driving, public transportation, and all together (see
Table 2).

The hex grid provides the geographic foundation and holds the sociological data, so
it must be included in all our analyses. Each travel pattern also includes the appropriate
connecting links for the included transportation modes; for example, for the rail travel
pattern, only connecting links between train stations and hexes are included.

Methods

Our focal analysis approach is the unsupervised learning of similar locations among 500
randomly selected hexes from the Greater Tokyo Areal. Similarity is determined from
various combinations of measures on five different subnetworks for each of the five travel
patterns in Table 2. The five subnetworks we analyse are: all nodes within 5 km as well as
all nodes reachable within 20, 30, 45, and 60 min. In all cases travel times are calculated
using Dijkstra’s single-source algorithm: the breadth-first summation of traversed edges’
time-weights (Hagberg et al. 2008).

As an example of both the differences among modes and large scale of the subnet-
works, Fig. 5 shows the travel times and extent of travel within 60 min from the hex
including Tokyo Station for the rail (top), bus (middle), and driving (bottom) travel pat-
terns. Rail travel produces a signature dappled pattern of walking times radiating from
stations. Suburban stations with express trains are easily identifiable as clumps of hexes
that are greener and larger than their neighboring stations, while the central region
has a more diffuse pattern due to the high density of stations and tangled collection
of routes. Due to the close proximity of adjacent bus stops, the bus network shows a
smoother radiating pattern from the city center, but also islands of reachable hexes where
express buses make connections. The driving pattern yields the widest extent and the
most even coverage with major highways creating tendrils of higher-speed travel into
the suburbs.

For each of the distance/time and travel pattern subnetworks we compute a battery of
scores based on network and geotemporal measures. These scores are used (1) directly to
sort and characterize the neighborhoods, (2) are combined to produce scores for higher-
order features, and (3) are the fuel for machine learning techniques to cluster and compare

these locations.

Because we extend the hex creation to within 1 km of the border/coastline, a few selected hexes are slightly outside the
relevant region (i.e., over water or in neighboring prefectures) but are still connected via the hex network links.
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Fig. 5 Figure demonstrating the total travel time using rail (top), bus (middle), and driving (bottom) from the
hex including Tokyo station to each hex reachable within 60 min. Zoomed in to show detail. Map data ©2019
Google

Network measures

Our most basic evaluation utilizes the following standard network measures applied to
each subnetwork: number of nodes, number of edges, the eccentricity of the focal loca-
tion node, the closeness centrality of the focal location node, the mean degree centrality,
the mean eigenvector centrality, and the number of nodes on the boundary of the subnet-
work. All of these measures were calculated using the time-weights of the edges where

appropriate.

Network measure descriptions
Because our network is a simple (non-multi), flat (non-layered), undirected weighted net-
work the measures we use are the familiar ones (Newman 2003) included in the NetworkX
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Python package (Hagberg et al. 2008). For each of the travel patterns, the number of nodes
and the number of edges are inclusive of the modes for that pattern. For example, the pub-
lic transportation pattern includes the train, bus, and hex networks as well as connecting
links binding them together; thus the number of edges includes train access, transfer, and
route links, plus the bus links, plus the hex links, plus the connecting links within that
subnetwork. With k; representing the number of neighbors (of any kind) of node i and
N being the number of nodes in subnetwork S, the mean degree centrality of a location

equals

N,
Ly K @
Ns < Ns -1 '

The sole exception to our use of time-weighted measures, the eccentricity of focal loca-

tion node i is the number of edge jumps from i to the furthest node in its subnetwork.
Because the furthest distance in meters/time is set by the subnetwork-creating parameter
(5 km, 20 min, .. .) this becomes a measure of network efficiency that captures the linkage
structure to achieve that distance (especially for the 5k case).

Although we use the Wasserman and Faust version of closeness centrality, because all
subnetwork nodes are reachable from the focal location it is equivalent to the original
Freeman formulation (Hagberg et al. 2008). For focal hex node i the closeness centrality
is the number of hexes in the subnetwork divided by the shortest distance weighted by
traversal time d(i, v) to each reachable hex v.

Ng—1
Y dGy)

This gives higher scores for more compact and densely connected subnetworks with the

3)

idea of comparing locations when subnetworks are made using the same distance/time
parameter.

Eigenvector centrality measures the influence of a node by increasing a node’s score
the more it is connected to by highly connected nodes (Newman 2003; Hagberg et al.
2008). Instead of using the eigenvector centrality of the location hex node, we calculate
the eigenvector centrality of each node in the relevant subnetwork (with a tolerance of
0.001) and use the mean value to characterize the subnetwork.

Boundary nodes are those not in the subnetwork but connected directly to nodes that
are in the subnetwork. This is akin to a measure of the perimeter size or circumference of
the reachable area, but it accommodates irregular shapes. It does not count hexes along
the coastline or boundaries (because there are no hexes further out), so it is biased toward

central, inland areas.

Exclusion of specific network measures

There are several other measures of network structure that are useful for characteriz-
ing and comparing single-mode transportation networks (Guimera et al. 2005; Crucitti
et al. 2006; Derrible and Kennedy 2009; Barthélemy 2011; Derrible 2012; Rodrigue et al.
2016). Initially we intended to use a “kitchen sink” approach including a much larger set
of measures including betweenness, diameter, degree distributions, clustering, Wiener
index, and the number of communities. However, we were forced to exclude these
and other measures due to their prohibitive computational requirements and/or their
inappropriateness for our geographically networks.
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As an example, consider the betweenness centrality of the 5 km subnetwork of any given
location. We could choose either the betweenness centrality of the location’s focal node
or an aggregate (mean/max) of all the nodes in the subnetwork. As for the betweenness
of the focal node, recall that all location nodes are hex nodes, and travel along any trans-
portation edge is faster than the walking-speed hex and connecting links. As a result,
the focal hex will only be on a shortest path when walking is the fastest way to cross
through the center of the region. That case can only occur when there are few to zero
transportation links running through the region. We directly measure the number of
transportation nodes/edges, so this measure is uninformative given the structure of our
integrated network.

The mean or max (or max—mean) betweenness should tell us whether there are
bottlenecks and/or high-throughput corridors for the traffic within the region. High
betweenness scores are expected among highway intersection and train station nodes, but
these make up a small fraction of the nodes in any subnetwork so mean values would fail
to differentiate locations. Furthermore, we would be measuring betweenness only among
points within the subnetwork, not the full transportation network, so there is no clear
useful interpretation of the score. For example, some location may include the world’s
busiest train station (Shinjuku station) at the fringe of its subnetwork, but within that
subnetwork it would still have a low betweenness score.

One alternative is to calculate the betweenness scores (and other measures) for all nodes
in the full network and aggregate them within each subnetwork, but with 360,977 nodes
and more than a million edges the computation was impractical. The other measures
were excluded for similar reasons. Due to the high connectivity of the hex network, the
clustering coefficient is high across the network. Also due to the hex network, graph com-
munities can only form when there are express trains/busses/highways with long edges
(as in Fig. 5 top and middle), but the number of such communities does not correspond
to any intuitive feature of the transportation networks for a region. If we want the pres-
ence/impact of long-range edges we can directly aggregate the edge lengths within a
subnetwork. It should be noted that the interpretation of some of the included measures

is also affected by the hex network, as is discussed in more detail in the results section.

Geotemporal measures

In addition to the measures from network theory we include specifically geographic and
transportation-focused measures. For each subnetwork we determine both the number
of hexes and the number of people within the subnetwork. The number of hexes is nat-
urally similar to the number of nodes above (especially because the hex nodes are always
by far the most numerous), but counting only the hex nodes provides a fairer comparison
of the transportation modes’ ability to access an area. Counting the hexes is equivalent
to measuring the area because each hex covers the same amount of space. Each hex con-
tains the population of its covered area, so the number of people is simply the sum of the
populations of the hexes included in the subnetwork.

Although the numbers of hexes and people are rough measures of accessibility, we also
include time-weighted versions: reachability and sociability respectively. We measure the
reachability of a location i as the time-weighted number of hexes reachable from i within
the constraints of a given subnetwork (5 km, 20 min .. .). Specifically, the reachability of
hex i is calculated by
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Ns 4
reachability; := Z = (4)
j=1""

in which ¢; is the shortest time in minutes from hex i to each hex j in subnetwork Ng (we
use t; = 1 when i = j). Inversely weighting by time produces a measure that discounts
far-off locations so that greater connectivity to transportation networks near the focal
location i is more strongly rewarded. That is, being far from a major station or next to a
minor station may generate similar numbers of hexes within a certain time horizon, but
we can differentiate these cases using the reachability measure.

In a similar vein we use the population data to determine the sociability score of each
location defined as the number of people who can reach each location weighted by the
time it takes to reach it. We simplify and generalize the measure from (Biazzo et al. 2018)
to handle continuous travel time values and averaged edge traversal times. Specifically,
the sociability score for hex grid location i is calculated as

Ns
P;
-
tl‘,‘

(5)

sociability score; :=
j=1

in which P; is the population of hex j and ; is again the shortest time in minutes from hex
i to hexj.

For each subnetwork we also determine the furthest point from the focal location. This
requires a different measure for distance-constrained vs time-constrained subnetworks.
For the 5 km subnetwork it is the longest travel time; i.e., how long it takes to reach the
most remote hex within the area. It is thus a measure of the spatial efficiency of the region.
For the 20, 30, 45, and 60 min subnetworks it is the distance to the furthest hex reachable
in that amount of time. It is often possible to reach additional transportation nodes even
further out, but we only consider hex nodes in this score.

Custom combined measures

Up to this point we have a total of 300 measures for each hex: 12 network measures x5
subnetworks x5 travel patterns. We also combine these core measures across subnet-
works for each hex to reveal higher-order features for comparison and clustering. Here
is where we try to ascertain more sophisticated accessibility features such as the relative
efficiency, interplay, and dominance of modes of transportation.

Network synergies
By subtracting the number of hexes from the number of nodes we recover the number
of transportation nodes, which is useful in discerning a location’s mode-dependencies
and the synergistic effects of multiple transportation modes. We evaluate the degree to
which combining networks amplifies their efficacy by comparing selected measures of
the rail+bus and rail+bus+driving networks compared to the rail, bus, and driving net-
works separately. Figure 6 shows one example of how combining the rail and bus networks
facilitates greater accessibility.

In this case the combined network can reach further and more places within 30 min
than either single network, demonstrating the synergistic effects of multi-modal trans-
portation networks. Some locations exhibit strong synergistic effects, while others are
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Fig. 6 The nodes reachable within 30 min for the rail (top-left), bus (top-right) and public transportation
(bottom) networks for location #2621 shown at the same geographic scale

dominated by one of the transportation modes such that adding another does not expand
the reachable area.

There are three aspects to our measurement of network synergy. First we measure satu-
ration synergy using the number of transportation nodes in the combined network divided
by the sum of transportation nodes in the individual networks. Using the travel pattern
subnetwork symbols from Table 2 focused on hex i and n, 1y, and n, to refer to nodes of
the train, bus, and road modes respectively we have

‘ . |y + np € Npi|
saturation synergyp := |n; € Ngi| + |np € Np;| ©
i 12

saturation synergy, := |ns + np + ny € Nyl -
yRerBYa? |n; € Ngil + |np € Npi| + |n, € Npy|

We measure distance synergy of location i using the ratio of the Haversine distances to the
furthest reachable hex of the combined networks over the max of the individual networks.
Letting dyux(Ns;) = max; d(n;, nj), nj € Ng;; i.e., the furthest point #; from the focal hex
node #; in subnetwork Ng;, we have

distance synergyp := Amax(Npi) ®
max (@max(NRi)» Amax(NB;))
dmax (NAi )

max (dyax(NRi), max(NBi), Amax(Npi)) )

We also evaluate improved connectivity within the region (i.e., gaining heavier weights

)

distance synergy, :=

near the focal location) by calculating reachability synergy and sociability synergy using
similar calculations as distance synergy. Using R (Ny;) for the reachability and S(Ny;) for
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the sociability of subnetwork N; of location hex node i these synergies are calculated as

follows:
. R(Npi)
reachability synergyp = —r R(NR';)I RN (10)
1) 2
0 R(Nai)
habilit = 11
PRIy SYREIEA ™ i (R (Nzo), RWNg:), R(INDi) -
- S(Npi)
sociability synergyp := - (S(NR‘I)JZS(NB‘)) (12)
1) 1
N .
sociability synergy, := S(Na) (13)

max (S(Ngi), S(Np:), S(Np)
For simplicity, in the current work we only perform these synergy measure calculations
for the 30 min subnetworks.

Mode centricity

Because for every location we expect the road network to facilitate the greatest accessi-
bility by all measures we evaluate transportation mode dominance in a relative manner.
Specifically, for each measure M of the 30 min rail subnetworks, we divide it by the cor-
responding measure for the bus, and repeat that for the driving travel pattern. We also
take the bus subnetwork values divided by the driving subnetwork values to complete all
pairwise competitions. In the current paper we use this measure to assess travel mode
dominance, and for this reason we limit its application to the following variables: reach-
able hexes, reachable people, reachability, sociability, and furthest point. As a result, each
location has 5 values for each of three comparisons: Rail|Bus, Rail|Driving, Driving|Bus.

N .
Rail|Bus Mcentricity, := W (14)
Bi30m
N .
Rail|Driving M centricity; := % (15)
Di30m
N .
Driving|Bus M centricity, := W (16)
Bi30m

We can use these scores to directly measure the relative usefulness (and hence domi-
nance) of each location and to cluster the locations by similar relative values.

Summary of measures

The twelve measures in listed in Table 3 applied to the subnetworks generated by each
of the five travel patterns (Rail, Bus, Driving, Public Transportation, All) for the five dis-
tance/time parameters (5 km, 20 m, 30 m, 45 m, 60 m) gives us 300 core measures from
network theory and geotemporal analyses. We further add the combined measures listed
in Table 4 to the core measures as well as additional variations introduced below.

As noted earlier, we initially intended to include more core measures from transporta-
tion analysis, network theory, and geotemporal studies and other combined measures.
These measures were removed from our list either because they were computationally
impractical, could not be given and intuitive/useful interpretation for our network con-
struction, or were not revealing of interesting geospatial patterns. Our inclusion of the
spatially explicit hexagon network, a feature absent from most previous work (c.f. Biazzo
et al. (2018)) but necessary for our purposes, causes most of these issues. Not only does
the hex network greatly increase the number of nodes and edges in the system, its lattice
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Table 3 Table summarizing the collection of core (network plus geotemporal) measures applied to
each travel pattern subnetwork for each location

Core measure name

1 Number of nodes

2 Number of edges

3 Mean degree centrality

4 Focal node eccentricity

5 Focal node closeness centrality
6 Mean eigenvector centrality
7 Boundary size

8 Reachable hexes

9 Reachable people

10 Reachability

11 Sociability

12 Furthest point

structure makes interpreting measures such as degree centrality and clustering coeffi-
cient less straightforward. Although we computed several additional measures that we
could add into the mix (e.g., population centrality, population scaling, 60m|30m measure
scaling), the core measures plus our selected combined measures suffice for enabling our
classification of locations using machine learning.

Machine learning techniques
In addition to providing a profile of the multifaceted transportation system, the network
and geotemporal measures above are also fuel for our clustering and dominance analysis.
Much like our evaluation of network measures used in previous transportation network
analyses, we found that previous work on network similarity and structural profiling
(Soundarajan et al. 2014) became unusable or inappropriate for our model/purposes.
Specifically, previous network similarity measures depend on calculating features of the
network that are either too computationally expensive or that fail to reveal characteristic
features of our networks (again mostly due to the inclusion of the hex network).

For example, measures of whole-network similarity like NetSimile (Berlingerio et al.
2012) and Normalized LBD (Richards and Macindoe 2010) depend on collections of

Table 4 Table summarizing the collection of combined measures generated for each location using
multiple subnetworks

Combined measure name

Saturation synergy public transport
Saturation synergy all

Distance synergy public transport
Distance synergy all

Reachability synergy public transport
Reachability synergy all

Sociability public transport

0 N Oy~ N =

Sociability synergy all

9 Mode centricity 30m Rail|Bus
10 Mode centricity 30m Rail|Driving
1 Mode centricity 30m Driving|Bus
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measures of the micro-structures of the network. Graphlet methods (Przulj et al. 2004))
similarly depend on the frequency of particular motifs within a network to act as a pro-
file or fingerprint to measure similarity. However, structures like cliques and trees among
small numbers of nodes are not predictive of accessibility, speed, and reach of travel. Also,
the geographic nature of these transportation networks implies bounds on the frequency
of certain structures that do not exist for social and other networks. Finally, the inclusion
of the hex grid and connecting links, and even just the inclusion of multiple kinds of links
makes these techniques difficult to apply and/or interpret.

Clustering algorithms

As a result, instead of relying on existing network similarity and profiling methods to act
as a metric for clustering, we rely on standard unsupervised machine learning methods
applied to the core and combined measures for each location. We first standardize each
measure on the [0 1] range using (x; — minx)/(maxx — minx) to improve the perfor-
mance of distance-based clustering methods”. By combining our data in different ways
we create several different experiments (described below) to uncover clusters for a variety
of location characteristics.

In order to more easily compare the results of multiple clustering algorithms and exper-
iments we decided to fix the number of groups to seven. The motivation for clustering
into seven groups derives from the train vs bus vs road tricotomy and our interest in mode
comparisons. With three poles there are 7 possible dominance combinations: train, bus,
road, train+bus, train+road, bus+road, and all three being even. Although not all of our
analyses are about dominance, and we don’t expect all the results to fall neatly into these
particular groups, we needed to choose a number of groups and this is why we chose
seven (in addition to being a nice medium-sized number for our dataset).

For each set of variables we apply three common unsupervised learning techniques:
K-means, hierarchical (agglomerative) clustering, and spectral clustering from Python’s
Scikit-learn package (Pedregosa et al. 2011). Although other clustering methods could
be applied to the data, we limited ourselves to ones that (1) include a parameter for the
number of clusters, (2) output partitions of the data (no outliers), and (3) are sufficiently
performative on our data.

For K-means we used Scikit-learn’s default parameters except for the number of clus-
ters. Because our data is dense, the Elkan algorithm is used, run with 10 seeds for 100
iterations, and with a tolerance of 0.0001 (Pedregosa et al. 2011). For spectral clustering
we used the nearest neighbors affinity parameter and seven clusters, and the default val-
ues for the other parameters (Pedregosa et al. 2011). For hierarchical clustering we used a
bottom-up agglomerative clustering approach with seven clusters and the “average” link-
age parameter; the defaults were used for the remaining parameters (such as Euclidean
affinities and no distance threshold) (Pedregosa et al. 2011). Our primary interest here is
differences in clusters from considering different specific subsets of our data, so we only
briefly investigate the differences in clustering results for these three approaches using
mostly the default parameters. Future work on more specific clustering goals may explore
tuning additional parameters to achieve improved categorization for those narrower

purposes.

2We also processed normalized data, (x; — x)/std(x), but do not include this analysis in the results or discussion because
the results are too similar to merit it.
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Comparing clusterings

We compare the results of different clustering algorithms and the results of the same
algorithm on different datasets using the AMI score (adjusted normalized mutual infor-
mation score, henceforth “mutual information” or “AMI”)(Vinh et al. 2010). Although we
also examine the adjusted Rand index and the percent similarity in the label assignments,
these are largely redundant with mutual information and thus not included in the results
below.

All algorithms are set to find seven clusters, but the sizes of the clusters are heteroge-
neous. Some clusters may have just one or a few members (especially with hierarchical
clustering) and this can be interpreted as the number of clusters found by the algorithm
being fewer than seven. We can evaluate the diversity of the cluster sizes using a measure
of the effective number of groups; and we use the inverse Simpson index following (Laakso
and Taagepera 1979):

1

217:1 Pz’2 )
where p; is the proportion of the locations in group i. If all clusters are of equal size,
then the result is 7. As the heterogeneity in the group member counts increases the value
moves closer to one. Unlike simply measuring variance, this has the additional merit of
providing an intuitive interpretation. For example, if two groups are nearly empty and the
others are roughly even, then it informs us that there are effectively five groups.

To ease the intuition of reading our clustering result diagrams we want to match clus-
ters to the same group number as much as possible, and this requires a measure of
label similarity. To assign label similarity scores we first sorted the labels of the k-means
results of each experiment by the mean of the values of the cluster centers (across all
included dimensions). We then mapped the labels of the other two clustering methods
to the k-means labels using the Python Munkres package version of the Hungarian algo-
rithm (Clapper 2008). In this way, clusters with similar data values will be assigned the
same label number for all three clustering methods. These shared labels are used both to
identify which locations are classified differently and to maintain consistent group colors
for plots. However, this process is not completely consistent in assigning labels because
differences in included points can sufficiently change the centroid values to make label
similarity impossible (and meaningless — if the clusters have widely different members
then they fail to be similar enough to merit similar indices anyway). Because mutual infor-
mation is not sensitive to the labels it is adopted for quantitative cluster comparisons but
is less useful for visualizing the differences in results.

We also want an intuitive way to judge the meaning of the clusters (i.e., which kinds
of locations are grouped together). The large dimensionality of our dataset makes any
simple summarizing inadequate. Ideally we would like to see the #-dimensional space to
evaluate the goodness of fit and understand the meanings behind the discovered clusters.
Because of the large number of experiments performed, in lieu of a highly detailed and
focused investigation into a particular cluster’s features we make use of a simple measure
to characterize each cluster. For each node we calculate the mean value of all the variables
included in an experiment, and then we again standardize those values on the range [0 1]
to make the differences clearer. We use this value as the circle size in plotting results
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to get some idea of the relationship between the values of the features and the cluster
membership of each location.

Results

With a dataset as rich as this, the collection of methods that we could use, and the col-
lection of experiments we could run, is excessively large. As such, many of the analyses
we performed are not covered in this treatment. We narrowed it down to those which
we judged to be most revealing for our substantive questions after broad preliminary
investigations.

Feature correlation

As previously explained, we excluded some network measures because they were com-
putationally too expensive or uninformative for our network construction. It is also
advantageous to exclude measures that provide redundant information. In considera-
tion of space and focus, we omit the details of our feature selection/dimension reduction
analysis. However, we briefly examine the correlation levels among the core measures
because they also reveal important differences between our network construction and
most previous analyses of transportation networks.

We assess the similarity in the core measure correlation matrices using the standardized
Frobenius norm of the difference between two correlation matrices. With twelve vari-
ables ranging from —1 to 1, the maximum difference is 24, so we divide by that number
to get the proportion of possible difference. All pairwise comparisons grouped by travel
pattern and distance/time threshold are available in the Additional file 1 while Table 5
presents the mean values by travel pattern (left) and by distance/time threshold (right).
We find a high level of similarity in the correlation levels across transportation modes;
e.g., the mean difference in the correlations of the core measures across all 500 locations
and across the five distance/time thresholds for the train+hex subnetworks is only 5.6%.
Among the distance/time aggregates it is unsurprising that the 5 km has the highest level
of correlation similarity because the hex grid is indistinguishable and dominant within 5
km (excepting locations along the boundaries). We also find that similarity decreases with
increasing time radius as should be expected.

A similar correlation pattern exists across all the travel patterns and subnetworks, which
reflects the purpose-oriented and physical constrains of transportation networks. How-
ever, the differences that do exist tell us that these 12 core measures do capture a profile
that is distinguishable for each travel pattern and distance/time threshold. There is one
notable difference that we can highlight using the two correlation matrix plot samples in
Fig. 7 (correlation plots for the other subnetworks appear in the Additional file 1): the 5

Table 5 The mean percent difference in the correlation matrices across time-radii subnetworks for
each network (left) and the mean across travel patterns (right) for each subnetwork

Travel pattern Percent difference Distance/Time Percent difference
Rail 56 5km 7.9

Bus 6.7 20min 8.63

Driving 6.32 30min 9.98

Public transport 7.74 45min 12.07

All 701 60min 13.07

The pairwise comparison for each subnetwork appears in the Additional file 1
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Fig. 7 Correlation matrices of the core measures on the fully integrated travel pattern within 5 km (left) and

30 min (right) across locations. Figures for other travel patterns appear in the Additional file 1. For each travel
pattern the correlation pattern is consistent across time threshold, so only the 30 min matrix is shown

km and distance-based subnetworks have specifically distinct correlation patterns. Recall
that the furthest point measures has different definitions for distance-based and time-
based thresholds. The reason for this is clear when we examine the correlation matrices:
the distance to the furthest location for the 5 km case, and the longest travel time for the
time-based cases, are uncorrelated with anything because they are nearly or exactly con-
stant. It is because these measures are useful in mutually exclusive cases that we collapse
the two measures into the single furthest point measure.

The numbers of nodes and edges are nearly perfectly correlated in every case as one
would expect (note that the numbers of nodes and edges are dominated by the hex net-
work). Most of the measures are consistently positively correlated with the number of
nodes across networks and subnetworks, with mean degree centrality and eigenvector
centrality being typically anti-correlated. Eccentricity and the furthest point are nega-
tively correlated for the 5 km subnetworks, but are both positively correlated for the
time-threshold subnetworks. The measure with the most volatility is closeness cen-
trality (which is sometimes positive and sometimes negatively correlated for the same
travel pattern at different time thresholds); however it is also weakly correlated with the
other measures. None of these patterns are surprising when we carefully consider the
construction of the network and features being measured.

For example, it may be at first counter-intuitive that reachability would be anti-
correlated with mean degree centrality; after all, the more transportation connections
there are, the more places one should be able to access. However, most nodes in the hex
network have a degree of 6 (98.6%), which is larger than the degree of 99.9% of road
nodes, 81.7% of station nodes, 42.5% of platform nodes, and 98.3% of bus stops. Thus
the presence of more transportation nodes increases the reachability (as expected) while
decreasing the mean degree because the degree of the transportation nodes is typically

Page 20 of 36
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less than the hex nodes. If we isolate the degree to only among non-hex links, then a
greater mean degree would correlate with larger and further-reaching subnetworks. But
the inclusion of the hex network changes this relationship so that higher values (i.e., closer
to six) indicates fewer transportation nodes, and hence lower reachability.

Eccentricity is nearly always positively correlated with the number of nodes for the time-
threshold subnetworks, but is always negatively correlated for the 5 km subnetworks. This
is because for the 5 km case more nodes/edges always means more transportation nodes
and therefore fewer edge jumps to reach the perimeter: more nodes leads to lower eccen-
tricity. However, for the time-threshold subnetworks more nodes almost always results
from a greater range, and this typically requires more jumps to reach the furthest edge.

Closeness centrality’s correlation is the most volatile across time-threshold subnet-
works and across travel patterns. Recall that closeness is calculated as the number of
nodes in a subnetwork minus one divided by the sum of the time-weighted distances from
the focal hex to each node in the subnetwork. For the 5 km cases, more nodes means
more transportation nodes, hence more connectivity and shorter travel times within the
region, and therefore greater closeness centrality of the focal hex: they are positively cor-
related. As one can see from Fig. 5 (top), train travel is only efficient along the tracks, so
the number of reachable nodes does not increase as fast as the time to reach the further
nodes, making closeness and the number of nodes negatively correlated. Figure 5 (bot-
tom) also shows how the reachable nodes for driving subnetworks expand radially; as a
result the number of nodes and the distance to those nodes increase together. The rate of
increase in the number of nodes (numerator) and distances (denominator) turns out to be
similar, and as a result the closeness centrality for the driving subnetworks is not strongly
nor consistently correlated with anything.

The above analysis of the correlation patterns is meant to highlight differences in the
measure relationships resulting from our geographically embedded network construc-
tion and between distance- and time-constrained subnetworks. The discovered patterns
reveal that each subnetwork has a distinct signature, but that the differences across time-
thresholds for the same travel pattern are small (< 7.74%). We additionally used these
correlation patterns to select measures to include in the experiments described below.

Geospatial patterns in transportation network characteristics

Here we examine the spatial distribution of the groups found by clustering and how they
differ by clustering method and included measures. There is no ground truth regarding
which category a location should be in or which locations should be grouped together. As
such there is no metric for how correctly an algorithm clustered the locations. Instead,
our exploratory analysis aims to uncover relationships between the characteristics of the
hexes, their surrounding area, and their locations on the map.

All core measures

We first present the results of clustering the 500 locations using all 300 core measures (12
measures x5 time-thresholds x5 travel patterns). Because this analysis combines all five
travel patterns and all five subnetworks for each location, it acts as a broad-stroke base-
line characterization of the locations. Figure 8 shows the clusters found via k-means and
hierarchical clustering (spectral clustering omitted for space, available in the Additional
file 1). Figure 9 shows the number of locations per group (left) and the mean value per
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Number of Locations per Group Mean Values per Group by Clustering Method
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Fig. 9 Numbers of locations and mean values across the 300 core measures per group for the three

clustering techniques. Hierarchical clustering more evenly spaces out the values to create groups that vary
more in their characteristics by essentially creating fewer (i.e., empty) groups

group (right) by clustering method. The k-means and spectral algorithms generate sepa-
rate groups among locations with similar characteristics (especially in the outskirts) while
grouping locations with different features together (especially in the city center). Hier-
archical clustering, on the other hand, leaves two groups essentially empty to create five
groups that are more diversified in values.

Due to the differences in group sizes the effective number of groups for k-means
is 5.97, but only 1.75 for hierarchical and 4.05 for spectral clustering. Hierarchical
clustering creates groups with just 6 and 2 members for the greatest two mean val-
ues, and these accurately separate the most central locations into intuitively different
classes (near and not-so-near major stations). Locations near secondary city cen-
ters are among the 14 members of the next category. More than 200 locations are
binned together yet a single location makes up a group with a similar mean value.
This single location truly is an outlier (the blue dot in the southwest corner out
in the water in Fig. 8) so it is reasonably different in its measure values from all
other nodes.

Whether a finer breakdown of suburban and rural areas (k-means and spectral) is
preferred to a finer breakdown of central locations (hierarchical) is a matter of prefer-
ence. Note that although clustering in 300 dimensions could reveal clusters that align in
unimaginable patterns, due to the high correlation of the variables, all clustering methods
generate groups in a roughly concentric ring geographic pattern. The Pearson clustering
coefficient of the mean value of the 300 variables and the location’s distance from Tokyo
Station is -0.6833. By exploring the core measures and various combinations of these core
measures we uncovered many patterns that are useful for better understanding accessi-
bility quality around the Greater Tokyo Area. For now, however, we move on to specific
analyses directly related to accessibility and clustering.

Reachability and sociability

Reachability and sociability are highly related measures: reachability aggregates the time-
weighted area and sociability aggregates the time-weighted population of that area. There
is a key difference, due to the inclusion of the hex network the reachability of a location
is always strictly positive, while sociability can be zero. Figure 10 shows the reachability
and sociability values for each location for each travel pattern using the 5 km and 60 m
subnetworks. The 5 km plots clearly reveal this difference: there is a dense line around a

3Note that because some variables are consistently anti-correlated with others, inverting these measures would result in
a higher correlation of the core measure mean value and the distance to Tokyo.
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Fig. 10 Reachability and sociability scores for each location broken down by travel pattern for the 5 km and
60m subnetworks. The patterns reveal similarities and differences between these geotemporal measures as
well as demonstrate the role of synergy and the overall dominance of the road network discussed in detail
later

reachability of 45 representing regions requiring a lot of walking from the focal location;
lower values indicate locations near a boundary.

For the 5 km subnetworks, rail travel is the weakest for both reachability and sociability,
followed by bus and public transportation (rail+bus), while driving and the fully com-
bined network have the greatest (and roughly equal) distribution of values. Examining
the 60m subnetworks reveals two interesting differences: (1) the best rail values are supe-
rior to the best bus values, and (2) public transportation is notably superior to both the
rail and bus networks that it is composed of. The latter result comes from mode synergy,
which we discuss in detail below. It is also clear that including the road network system-
atically enhances both reachability and sociability, which is discussed below regarding
dominance.

Here we want to reiterate that trains are very fast once you reach the station, but
they only foster travel along the tracks. Bus networks are more dense and pervade more
areas, so on average they provide greater reachability; however, some areas (esp near
the city center) have very high rail connectivity and these areas can out-compete bus
reachability (Fig. 10 bottom-left). Moreover, these central areas with multiple convenient
train lines provide access to many densely populated suburban areas, so within 60m
the train sociability is even more competitive with buses than the reachability (Fig. 10
bottom-right).

We now turn to investigating the groups formed by reachability and sociability. Table 6
summarizes the mutual information of groups averaged across travel patterns for each
clustering method. The key results here are (1) by all clustering methods, sociability sim-
ilarity is much higher than reachability similarity, (2) the 5 km subnetworks are more
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Table 6 Summary of mutual information (AMI) results for sociability and reachability aggregated
across travel patterns (modes)

Clustering
Radii Method min AMI mean AMI max AMI

Reachability 5km k-means 0.168 0.3361 0.77
Reachability 60 m k-means 0.106 0.3004 0.762
Sociability 5km k-means 0616 0.7096 0.967
Sociability 60 m k-means 0.293 0.5225 0.899
Reachability 5km Hierarchical 0.139 0.3236 0.799
Reachability 60 m Hierarchical 0.124 0.2926 0.686
Sociability 5km Hierarchical 0.629 0.7371 0.938
Sociability 60 m Hierarchical 0.232 0.4605 0.747
Reachability 5km Spectral 0.007 0.0405 0.088
Reachability 60 m Spectral 0.067 0.2707 0.726
Sociability 5km Spectral 0.716 0.7656 0.942
Sociability 60 m Spectral 0.398 0.5256 0.795
Full travel mode comparison tables for reachability and sociability for the 5 km and 60 m subnetworks are available in the

Additional file 1

similar than the 60m for sociability, but not consistently so for reachability, and (3) the
particular comparisons giving the min and max values vary greatly among methods and
subnetworks. For point (3) we simply note that the same All vs Driving comparison yields
the lowest sociability similarity for 5 km subnetworks, but the highest similarity for 60 m
subnetworks. A more in-depth analysis is not revealing of general patterns so is left out of
this paper (more comparison details are available in the Additional file 1).

It is surprising to find that sociability similarity is much higher than reachability similar-
ity, especially on the 60m subnetworks, because the two measures are so related. Spectral
clustering in particular produces an anomalous level of dissimilarity for the 5 km reacha-
bility scores (0.0405 on average). We examine this more closely by looking directly at the
relationship between the two variables. Figure 11 shows the correlation and the mutual
information of group members formed by clustering on reachability and sociability val-
ues. From it we can see that k-means produces the most similar pattern to the correlation
levels for both subnetworks, followed closely by hierarchical clustering (which consis-
tently generates more similarity for public transportation), while spectral clustering yields
rather dissimilar results. Although producing similarity levels matching correlation has
an intuitive appeal as a reality check for the accuracy of a clustering method, it is not
a full-fledged benchmark. The correlation between reachability and sociability for the

Skm Reachability vs Sociability 60m Reachability vs Sociability
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Fig. 11 The correlation and group member mutual information between reachability and sociability for
selected subnetworks. Tabular data available in Additional file 1
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60m subnetworks is 0.956, and we are clustering on just one variable here, so the clus-
tering methods only need to find appropriate divisions for both variables to match up
the groups. In consideration of that all the clustering results are lower than expected.
This could be a result of the parameters used for clustering, but more likely it is a feature
of the data: despite being highly correlated, the reachability and sociability variables are
clumped differently, and therefore put different locations in different groups.

Network synergies

One of our custom geospatial measures is the degree of transportation network synergy
among the different modes. In contrast to determining which mode of transportation is
dominant, the network synergies reveal interplay between the modes that reinforce each
other. We are particularly interested in synergies for public transportation access; i.e.,
improvements in accessibility from the joint use of trains and buses. The most obvious
benefit of joint usage is for locations far away from their closest station. Trains, especially
express trains, are excellent methods for reaching distant points. But if a location is far
from the station then the walking time can drastically reduce the usefulness of the train
network. In many such cases there are bus routes dedicated to bringing people to the
station.

Based on our measures of synergy, a location will have a value of zero if no nodes of
one type exist, a value of 1 if there is no synergy (i.e., the joint value is no better than
one of the components), and larger values from there based on the proportion of added
benefit generated. Figure 12 shows locations with similar public transportation synergy
levels according to hierarchical clustering (colors) along with their level of synergy (size).

The Rail4+Bus+Driving synergy values tend to be significantly higher than the Rail4+-Bus
synergies because the road network is the most expansive and dense (excepting the hex
network, of course). If we think of the road network as taxi usage, then this confirms how
much more convenient trains (and even buses) are if we can take a taxi to them from our
homes. We perform two analyses to test the idea that distance from the station or bus
stop plays an important role in the synergy levels. First we examine the correlation of the
distance to each kind of transportation node to each synergy score separately in Table 7.
Negative values for each relationship means that being closer to the nodes creates greater
synergies. We actually expected Rail+Bus synergies to be higher when further from the
station, but this result implies that the combined network reaches more people because
of bus use to spread more diffusely away from each station. We also expected that the
distance to the nearest intersection would have the lowest synergy values because the
furthest distance from a location to its nearest intersection is less than 1750m (compared
to 12 km for the furthest train station).

Instead of looking at the individual correlations, we can examine the combined explana-
tory effects simultaneously using a simple regression model. We computed the R? values
of a linear model of the distances to each of the closest nodes of the relevant types to the
synergy measures. The results in Table 8 tell a similar story to the correlation results, but
with a twist. The distances do not have an appreciable effect on distance synergy (the fur-
thest reachable distance) and only a minor effect on reachability synergy. As expected, the
distances to the transportation nodes produce a weaker effect for the Rail+Bus+Driving
synergy measures than Rail4+Bus because nearly every location is near an intersection
node. Sociability synergy is so much less when including the road network because the



Bramson et al. Applied Network Science (2019) 4:97

®“b 200 ol L
®® g Ku 2 o
o@ w3
o® © &@ @ %

Shimotsuma
TED

Hokota
#ED

ustsm O m‘m “L > ‘ ’duia\ ¢ 3 -
S % cﬁm@ @‘@@O&
@ O‘%

Eulyoshida

@ train-bus synergy

Fig. 12 Public transportation synergy scores (sizes) and groups via hierarchical clustering (colors). Size
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reachability

places one can go via car, but not via train or bus, are places where considerably fewer
people live.

Although these synergy measures and statistical analyses are extremely valuable for our
interests in accessibility, the clustering results are somewhat less useful. Figure 13 shows
(via color) the clusters found by each algorithm. Not only do the synergy values not form
cohesive geographical patterns as seen in Fig. 12, but they are also highly mixed when
viewed as related to distances to the nearest transportation nodes. There are noticeable
clusters in the plot, as we expect from the correlation values, but it is still unclear how
to use the synergy cluster information to gain a better understanding of accessibility. We
may develop a better understanding of the factors leading to high synergy in follow-up
research that analyses every hex instead of selected locations.

Table 7 Correlation of each synergy score with the distance to each relevant node type

Saturation Distance Reachability Sociability
Comparison Synergy Synergy Synergy Synergy
RailBus < Station -0.578 -0.246 -0.309 -0.688
RailBus <> Bus Stop -0.649 -0.251 -0.257 -0.597
RailBusDriving <> Station -0475 -0.129 -0.122 -0.279
RailBusDriving <> Bus Stop -0.51 -0.164 -0.316 -0.304

RailBusDriving <> Intersection -0.53 -0.058 -0.144 -0.28
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Table 8 R? of linear fit models predicting the synergy score from the distances to each relevant

node type

Saturation Distance Reachability Sociability
Comparison Synergy Synergy Synergy Synergy
RailBus Distances 0494 0.08 0.107 0.545
RailBusDriving Distances 0.344 0.04 0.104 0.113

Transportation mode dominance

We utilized multiple approaches to identify regions with similar dominance patterns. The
first approach is to simply group the locations using all the measures we defined for this
purpose: the pairwise mode comparisons of reachable hexes, reachable people, reachabil-
ity, sociability, and furthest point for the 30 m subnetworks (described above). This allows
us to cluster locations by the relative strength of their transportation modes. For example,
clustering on the reachability comparison measures puts together regions without trains
and buses, ones with buses and no trains, areas that are strong in all three, and areas with
particularly strong trains. Figure 14 shows that our experiments using clustering meth-
ods to identify areas with similar transportation mode dominance patterns met with only
partial success.

Locations with similar profiles are scattered throughout the area so they must be bound
by other features of the locations. A hex that happens to be far from its closest station
is going to have a weak train strength, and whether it is dominated by road or bus will
depend on whether any bus lines run nearby, for example. A different hex, maybe just one
kilometer away, could be one kilometer closer to the same station, and that difference may
make the train network extremely useful. That local difference in the relative usefulness
of each transportation mode drowns out any large-scale geographic pattern.

To test this hypothesis we also investigate the relationship of the comparison measure
values to the local mode-dependent accessibility. First we calculate the distance from
every hex to its closest train, bus, and road network node. We use these distances to
perform both a correlation analysis and a clustering comparison, so we also group the
resulting distances into 7 groups using the same three clustering methods. Next we intro-
duce three new measures to explicitly measure dominance based on the non-standardized
core measures. Letting £ be the list of measures we use to assess dominance (reachable
hexes, reachable people, reachability, sociability, and furthest point) we have
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We eliminate rows with a 0 or 1 value for any of the comparison measures to ensure real
values, leaving 355 of the 500 locations. Using these dominance measures we revisit the
relationship between distance to the nearest node and mode dominance.

The Pearson’s correlation between the rail dominance measure and the distance to the
nearest station is —0.168; indicating that being near a station contributes only slightly to
rail travel being important for that location. Similarly, the correlation of bus dominance to
the nearest bus stop distance is only —0.199. However, road dominance has a much lower
correlation (—0.073) with the nearest intersection. The level of mode dominance likely
depends on many nuanced features of a location’s transportation network, but access to
transportation systems must be important.

As an alternative to correlation, we examine the similarity between groups created by
clustering on the dominance measures and clustering on distance to the nearest trans-
portation node of the relevant type. Table 9 summarizes the mutual information between
these groups. Note that the values are low (AMI ranges from roughly 0 for independent
clustering and 1 for identical clustering), perhaps indicating that similarity of discovered
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Table 9 The mutual information (AMI) between the groups created from the dominance scores and
the groups created from the distances to the nearest node of the appropriate type

k-means Hierarchical Spectral
Rail dominance 0.018 0.0 0.048
Bus dominance 0.052 -0.011 0.043
Driving dominance 0.14 0.03 0.129

In each case the dominance and distance groups were created using the same algorithm

groups may not be an effective method for evaluating the relationship between two vari-
ables (at least with the current set of parameters). Actually, this only confirms that the
two features are not as connected as our intuition would have us believe. The dominance
measures include the relative strengths of five sophisticated geotemporal measures that
depend on many complex and idiosyncratic features of the integrated transportation net-
works. It is thus not surprising that no single variable, however intuitively linked, would
provide strong explanatory support on its own.

Figure 15 shows the geographic distribution of the rail dominance score groups
according to hierarchical clustering for the 355 remaining locations. There is a partial
geographical pattern that is revealed in the correlation of the dominance scores to the
distance from Tokyo Station: rail dominance is 0.287, bus dominance is —0.067, and driv-
ing dominance is —0.227 (a scatterplot of these relationships is available in the Additional
file 1). These results reverse the pattern we see from other analyses and our expectations:
rail is most powerful far from the city center, driving is most powerful in the center and
suburbs, and buses are widely dispersed and evenly spread out. We find the largest rail
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Fig. 15 Remaining locations grouped by their rail dominance scores with sizes representing the score and
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dominance in remote areas like valleys serviced by trains where there are no buses and
only slow winding roads that run parallel with the tracks. For our purposes of scoring
locations and evaluating their reliance on particular modes of transportation, the spe-
cific dominance scores (i.e., the values within groups) are valuable information while the
clustering of locations by their dominance is underwhelming. In particular, clustering by
all the dominance scores together, the analysis that motivated our choice of 7 groups for
clustering, puts nearly all the nodes in the same category, leaving remaining groups filled

with one or two exemplars.

Clustering method comparison

In total we perform k-means, spectral, and hierarchical clustering on 61 different subsets
of our core, combined, and extended measures (our experiments). For each experiment
we calculate the mutual information for each pair of methods. A table with the full list of
comparisons appears in the Additional file 1; here we highlight some points. Our project
is to apply these methods to reveal substantive features of our data rather than to evaluate
methods, and as such we have no ground truth nor any other yardstick by which to judge
the accuracy of these methods. Furthermore, we did not perform sensitivity analyses nor
parameter sweeps to optimize the application of these techniques to some independent
desiderata. That is simply not our project here. However, we do evaluate the differences
among the methods because understanding how and where they differ is important for
interpreting the results and choosing methods for future work.

Table 10 summarizes the pairwise comparisons of the clustering methods. As one
should expect, k-Means and spectral clustering produce similar groups on average, and
they are more similar when a large number of variables are included. The high average
similarity between hierarchical and k-means clustering is initially a bit surprising; how-
ever, 28 of the experiments involve only one variable for one network and one subnetwork
and the results are similar in those cases. We also did not expect spectral clustering to be
more dissimilar to hierarchical clustering than k-means. Because our locations were cho-
sen randomly, there is no reason to think that the values of our measures would be tightly
grouped (and they are not). We expected that spectral clustering would find oddly-shaped
groupings in high dimensions more similar to those of hierarchical clustering, but this
is not the case. Spectral clustering mismatches hierarchical clustering more, rather than
less, when few variables are used and this likely explains the unexpected cluster matching.

Correlation provides an intuitive guide to similarity that we can use to evaluate the sim-
ilarity in groups generated by the different clustering methods. For example, we find that
spectral clustering produces anomalous and inconsistent results on the comparison of
reachability and sociability. Correlation and regression analyses can be used to augment

Table 10 Summary of the adjusted mutual information between all pairs of clustering methods
presented for each experiment

Experiment k-Means vs k-Means vs Spectral vs
Experiment Hierarchical Spectral Hierarchical
Minimum 0.059 0.21 0.01

Mean 0.482 0.551 0311
Maximum 0.872 0.773 0.715

Full table in the Additional file 1
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or replace the use of clusters for our broader applications. Despite this, a more detailed
investigation into which clustering methods (and parameters) are appropriate for which
datasets is intended for future work because it holds the potential to categorize loca-
tions across multidimensional data without requiring us to develop sophisticated scoring
equations.

We found that using seven clusters provided intuitively reasonable breakdowns of areas
in many analyses, especially for hierarchical clustering (which will leave a group essen-
tially empty if a good division with fewer groups is found). However, we also found
that more distinctions could be made in some cases. For example, in Fig. 8 the k-means
method distinguished inner and outer suburbs that hierarchical clustering did not, but
then it grouped noticeably distinct city center locations together. Both methods gener-
ated useful clusterings, and so we are considering an ensemble approach for future studies
that both combines these three methods and also includes a sensitivity analyses for the
number of groups. Because we do not have a basis for what is the correct categorization
beyond intuition and cross-checking, identifying locations with consistent vs inconsis-
tent classifications across methods and parameters can be used as a kind of bootstrapped
confidence in the clustering results.

Conclusions

The fusion of network and geographic metrics offers the opportunity to augment net-
work similarity measures as well as fill crucial data gaps about transportation efficiency;,
accessibility, connectivity, and policies. While most applications of machine learning to
transportation networks aim at traffic prediction, flow efficiency, rerouting and robust-
ness, we are particularly interested in public transportation accessibility. Identifying
under- and over-serviced areas can help in policy decisions, including infrastructure plan-
ning and housing development. Additionally we hope that the fusion of geographic and
network measures to score areas by the convenience of, and their reliance on, varying
modes of transportation can inform decisions for location services (such as apartment
hunting, ride sharing, and new store positioning).

We found that the standard measures of network structure do not provide particularly
useful insight into the accessibility characteristics of transportation networks. Although
the train, bus, and road networks do exhibit some consistent differences across loca-
tions, those structural differences do not translate into differences in the usefulness of
the modes of transportation. That is to say, how far one can go in a certain amount of
time, how many locations can be reached, and how many people can be serviced are obvi-
ous measures of usefulness, but these measures (and the clusters they produce) do not
match well with any structural features of those networks. Rather, the speed, variety, and
destinations of the links provide the greatest impact. With this in consideration we will
reconsider the network measures included in our future analyses and hopefully find novel
ways to incorporation them to reveal more useful characteristics.

We also acknowledge the possibility of examining the train, bus, and road networks
without the hex grid so that measures from previous analyses could potentially be applied.
We could then mix in these single-mode-only measures for region clustering and com-
parison. Although this is reasonable for the train network if we concentrate on the giant
component (that includes a vast majority of stations), the bus and road networks are too
fragmentary for their isolated analyses to be robust. And although this would facilitate
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comparisons with previous research on transportation networks that focus on single
modes of transportation, we believe that moving in the direction of being more inclusive
of modes of transportation and of geographic data to be more fruitful.

Overall, what we find is that within cities there is a familiar pattern of easily accessible
central regions with low populations and regions of higher population density further out,
with populations again tapering down even further out. These suburban regions often
have convenient public transport to the city centers, but locally require buses and/or cars
for transportation in any other direction. We were surprised by the power of the road
network for transportation throughout the Tokyo area, including the central area. While
buses play a large role in suburban area, their usefulness is largely uniform through most
of our area of study.

We find that business hubs, despite having low populations, are so conveniently reach-
able via train and road systems that they consistently achieve the highest sociability
and convenience scores. Suburban regions have more serviceable bus systems, but lower
connectivity overall resulting in lower reachable populations despite greater local popu-
lations. Despite having the largest and densest public transportation system in the world
we find that the road network consistently dominates the train and bus networks for all
accessibility measures.

In our analysis of reachability and sociability, we find a high variability in groupings by
transportation mode (especially for reachability), implying (as expected) that the trans-
portation networks produce distinct accessibility characteristics. However, we also find
that even when the correlation of two variables is high, the clustering methods do not
consistently create similar groups from those same variables. Recall the scatterplots of
reachability and sociability in Fig. 10. It shows that these two variables, and actually all
the core variables, present a rather smooth gradient with occasional lumps of points for
cases near borders, with zero values, or without certain modes present. The smoothness
of our data helps explain the surprisingly high differences in clusterings. In the absence
of clear and distinct clusters of data (and without a known ground truth) it is difficult to
evaluate the accuracy of the clustering methods; however, the groups discovered (espe-
cially by hierarchical clustering) do pass several intuitive reality checks as well as provide
useful information on geographic patterns in several accessibility characteristics.

Because the synergy scores are measures of how additionally accessible a location is by
using the modes together, the result that being closer to stations, bus stops, and inter-
section improves the combinatorical effects of the modes is surprising. Certainly being
near a station makes the rail network more useful, but why would it make the bus net-
work more useful too? The reason is that in the train-centric city planning of Japan, most
bus routes connect to stations and most expressways run parallel to train tracks. Note the
white space in the upper left of each plot in Fig. 13; there are no locations close to a train
station and far from a bus stop. However, buses and cars can also travel away from sta-
tions in directions that trains can’t go. So while being able to take the bus to the nearest
station can enhance the usefulness of that station, on average being near a transportation
node of any kind gives you more accessibility for the entire integrated network.

Our analysis of transportation mode dominance revealed several interesting results. For
one, driving is dominant everywhere. Naturally buses and cars use the same roads, and
cars are faster than buses, so it is not surprising that driving beats buses. For some loca-
tions trains can reach further than driving in a given amount of time, but when including
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the walking time to the station the road system is better on average. Roads also foster a
more diffuse spread across the area than rail travel, and this contributes to their supe-
rior accessibility. With this in mind we assessed relative dominance: locations where the
train or bus network is relatively strong compared to other areas. While this informs us of
whether any particular mode has advantages over the others, through this effort we con-
cluded that travel mode convenience is a more useful measure for our practical purposes
than dominance.

Our use of clustering to gain additional insight into the transportation mode dominance
informed us of the highly localized nature of this characteristic. Some geographic patterns
exist where they are strongly correlated with, for example, an absence of train lines. How-
ever nearby locations can vary drastically in the relative mode strengths based solely on
the distance to the nearest station. So for this characteristic the individual location scores
are much more informative than the clusters of such scores.

Future work

Because the dataset is so rich, and there as so many questions it can be used to address,
there are naturally many directions planned for future work. By including additional
socioeconomic data we will examine the relationship between accessibility and factors
such as unemployment, income, home-ownership, household structure, age profile, and
crime. We are interested in identifying differences in community structure by transporta-
tion mode (Bohlin et al. 2014); that is, which geographic regions are considered to be
parts of which neighborhoods when considering different modes of transportation. We
obviously wish to pursue questions of robustness and efficiency via knockout and detour
analyses. This can address response to accidents/failures, and to identify required struc-
tural and throughput changes required to adapt to short-term passenger changes (e.g. the
Olympics) and long-term demographic changes (e.g., the aging population, urbanization).

In addition to deepening our analyses, we wish to expand and refine our dataset. For
example, we are strongly interested in the impact of bicycle ride-sharing programs on
transportation flow (Pucher and Buehler 2012). Although these programs have long been
popular in Europe and China, and bicycles usage is high across Japan, there is very little
data or analysis on bicycle usage and its interaction with other transportation modes.
Although all our networks are abstractions, more realistic assessments of bus transfer and
wait times, line-specific train transfer times, practical vehicle speeds, etc. would provide
more accurate measures of travel times and distances. The approximations made here
suffice for our categorization purposes in this paper, but other purposes may be more
sensitive to differences of even a few minutes.

Our multi-faceted scoring of locations by their transportation and demographic fea-
tures across multimodal transportation has led to insights into which characteristics do
and do not form geographic patterns. We found that by clustering the data in different
ways we could uncover useful breakdowns of different features, such as cross-mode syn-
ergies and relative efficiencies. Our current effort aimed to summarize and visualize the
clusters in an intuitive and interactive way that will lead to greater insights and deeper
questions. Some of those deeper question involve the role of traditional network analy-
ses techniques in evaluating multimodal transportation networks. Perhaps this research
into characterizing and classifying multimodal transportation networks will lead to new
metrics that can be applied to other kinds of networks.
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The current paper use random locations, and this has pros and cons. We also consid-
ered using a Poisson Disk Sampling method (Bridson 2007) to have a more regular and
even coverage of the area, but we found that having some points very close together was
useful in uncovering the sensitivity of some measures to small differences in location.
Going forward we will calculate all the measures on every hex, thus allowing us to discern
microvariations in the properties based on location differences as small as 250m across
the whole Tokyo Area. Although there is certainly a great deal more work to do towards
the goal of understanding accessibility in its many forms, our preliminary exploratory
analyses have pointed the way to many fruitful options and opportunities.

Additional file

Additional file 1: Supplementary materials. Additional data summary tables, plots, and details not required to
understand the analyses performed in this work, but perhaps of interest to other transportation network researchers
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