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Abstract

The friendship paradox is the observation that friends of individuals tend to have more
friends or be more popular than the individuals themselves. In this work, we first study
local metrics to capture the strength of the paradox and the direction of the paradox
from the perspective of individual nodes, i.e., an indication of whether the individual is
more or less popular than its friends. These local metrics are aggregated, and global
metrics are proposed to express the phenomenon on a network-wide level. Theoretical
results show that the defined metrics are well-behaved enough to capture the
friendship paradox. We also theoretically analyze the behavior of the friendship
paradox for popular network models in order to understand regimes where friendship
paradox occurs. These theoretical findings are complemented by experimental results
on both network models and real-world networks. By conducting a correlation study
between the proposed metrics and degree assortativity, we experimentally
demonstrate that the phenomenon of the friendship paradox is related to the
well-known phenomenon of assortative mixing.

Keywords: Friendship paradox, Assortativity, Assortative mixing, Network analysis,
Network models, Homophily

Introduction
Topologies of complex networks have been known to exhibit non-trivial heterogenous
properties such as heavy-tailed degree distributions (Barabási and Albert 1999) and assor-
tative mixing (Newman 2002), to name a few. A similar non-trivial network heterogeneity
is captured by the phenomenon of the friendship paradox. The friendship paradox was
first studied by Scott Feld in the context of social networks (Feld 1991). It states that the
average number of friends of the collection of friends of individuals in a social network
will be higher than the average number of friends of the collection of the individu-
als themselves. The phenomenon results from a sampling bias that causes nodes to be
counted in proportion to their degree, and it extends beyond popularity to other indi-
vidual traits such as amount of content in social networks (Hodas et al. 2013), number
of coauthors, citations and publications in scientific collaboration networks (Eom and Jo
2014), etc. This is known as the generalized friendship paradox and has been attributed
to a correlation between these desirable traits and degree (Eom and Jo 2014; Fotouhi et al.
2014) although it has been proven to exist in absence of a significant correlation as well
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(Momeni and Rabbat 2016). The phenomenon has a measurable impact on people’s psy-
ches because people tend to evaluate success in regard to a given trait through comparison
to the social network around them (Bollen et al. 2017; Jackson 2016); an overshadowing
effect of a collection of nodes on another is significant. The friendship paradox has been
studied in the context of both online (Bagrow et al. 2017; Bollen et al. 2017; Hodas et al.
2013) and offline social networks (Feld 1991). The phenomenon is described as a global,
network-wide characteristic. It is natural to ask if the friendship paradox holds at a more
local level, e.g., at the level of individual nodes in a network (Hodas et al. 2013; Momeni
and Rabbat 2016). In this work, we mathematically quantify the friendship paradox so as
to understand its strength both locally and globally in the network.
Inspired by the friendship paradox, we first study a local network metric for a node,

which we call the “friendship index” (FI). For a vertex v, it is defined as FI(v) =
∑

(v,u)∈E du
d2v

,
which is the ratio of the average degree of the neighbors of the vertex to its own degree. FI
captures two significant characteristics related to the friendship paradox. First, it captures
the ‘direction of influence’, i.e., it indicates whether, in accordance with the friendship
paradox, the vertex is outperformed by its neighbors in popularity, or if it is one of the
vertices for which the paradox does not hold because it is more popular than its neigh-
bors. Second, it quantifies the ‘discrepancy’ compared to a scenario where the friendship
paradox does not exist; FI values further from 1 indicate an extreme manifestation of the
paradox whereas FI values closer to 1 would indicate the vertex experiences the paradox
less severely. Notice that this measure is truly local. The node’s FI value is determined
entirely by its own degree and the degrees of its neighbors, the structure of network
as a whole does not influence a node’s FI. This distinguishes FI from local assortativity
(Thedchanamoorthy et al. 2014; Piraveenan et al. 2010), a node metric that captures a
relative value normalized by other such values in the network. Having defined the local
metric, we propose aggregating the indices over all vertices in order to quantify the
strength of the overall network-wide phenomenon of friendship paradox by taking an
arithmetic mean, the log of the geometric mean, and the harmonic mean. We explore
these measures theoretically and experimentally, noting their ability to capture network
characteristics.We compare and contrast them and ultimately find value in the arithmetic
mean and the log of the geometric mean, while discarding the harmonic mean because
drastically different graphs have equivalent harmonic means. Consistent with the nature
of the friendship paradox, we prove a significant lower bound on these means that indi-
cates the average FI is always greater than or equal to 1, meaning nodes feel outperformed
by their neighbors on average. Because of this bound, we can say the aggregates indicate a
stronger occurrence of the friendship paradox as they increase. Unlike FI, where the dis-
tance from 1 can be in either the positive or negative direction, the aggregate measures
only increase with the strength of the paradox. We explore real-world networks that are
categorized by their type, and find some consistencies in our aggregate measures within
the individual categories.
A number of existing works have analysed the friendship paradox from different per-

spectives. The comparison between a node’s degree to both the mean and median of
neighbors’ degrees has been used in the literature, primarily as a binary measure of
whether a node is more or less popular compared to its neighbors (Jo and Eom 2014;
Momeni and Rabbat 2016; Momeni and Rabbat 2018; Lee et al. 2019), while some
(Hodas et al. 2013; Jackson 2016) have also used its absolute value to indicate severity of
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the paradox. Hodas et al. (2013) uses the binary measure obtained through the mean of
neighbor’s degrees to investigate the friendship paradox in Twitter network. Jo and Eom
(2014) characterized the paradox holding probability of individual nodes, and studied its
behavior for network models with tunable degree-degree and degree-attribute correla-
tions. A significant finding was that the paradox holding probability may depend on the
assortativity of the network, which acts as a strong motivation for our work. Momeni
and Rabbat (2016) used both the mean and median based binary measures to investigate
the prevalence of friendship paradox in Twitter network. Lee et al. (2019) studied three
perception models of the friendship paradox - mean-based, median-based and fraction-
based binary measures for the friendship paradox aggregated across the entire network.
These measures were analysed in configuration models with tunable assortativity, and
the impact of the perception model was studied on opinion formation. Our contribution
has been to investigate the measure based on the mean of neighbors’ degrees as a net-
work metric by studying its properties in popular network models, and illustrating its
relationship with local and global measures of assortativity.
The phenomenon of assortativity, or assortative mixing captures the preference for a

network’s nodes to attach to others that are similar in some way. In this work, we focus
on degree assortativity (Newman 2002) where the measure of similarity is in terms of
the nodes’ degrees. Although assortativity was proposed as a global measure, local ver-
sions have also been proposed more recently (Piraveenan et al. 2010; Thedchanamoorthy
et al. 2014). It is worth mentioning that these local assortativity measures are exam-
ples of node measures that are not truly local, because they are influenced by the global
assortativity of the graph. Jo and Eom (2014), Lee et al. (2019), and Momeni and Rabbat
(2018) conduct studies on networks that vary in assortativity and explore its impact on
the friendship paradox. In this work, we further investigate the relationship between
the friendship paradox and assortative mixing, by analysing the relationship between
the FIs of nodes and their local assortativity measures. We observe that FI values close
to 1.0 indicate strong local assortativity, while FI values further from 1.0 indicate weak
assortativity. We also explore the relationship between our network-wide aggregate mea-
sures and network assortativity. Similar to the results of the local measures, when the
aggregate values are extreme they indicate disassortativity and when they are moder-
ate they indicate assortativity. These consistencies between the measures are revealed
through theoretical arguments and experimental results. We conclude that the friendship
index captures some information about assortative mixing in the network. We consider
canonical graphs and common graph models and find our aggregate measures produce
well behaved functions that smoothly reflect small adjustments in the graphs where
the function of network assortativity has a far less smooth curve. The present work
is an extension of our previous work (Pal et al. 2018); here we present complete and
detailed proofs of results partially proven in Pal et al. (2018) along with new theoretical
findings on the proposed metrics in networks models, such as Erdos-Renyi and Barabasi-
Albert graphs. Additionally, a more thorough simulation study on network models is
presented here.
The paper is organized as follows. In “Preliminary” section we define the local and

global notions of friendship index and assortativity. These metrics are then studied for
various canonical graphs such as regular graphs, star graphs and complete bipartite
graphs. In “Theoretical results on friendship index” section, we highlight some theoretical
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results of the friendship index, followed by experimental results on network models and
real networks in “Experimental results” section.

Preliminary
Friendship index

Consider a graph G = (V ,E), with V and E ⊆ V × V being the set of nodes and edges
respectively. For each node i ∈ V , let di denote the degree of node i and Si denote the sum
of i’s neighbors’ degrees. Therefore, we have

Si =
∑

v∈Ni

dv,

where Ni denotes the set of neighbors of node i. The friendship index (FI) of node i is
defined as

FI(i) = Si
d2i
, if di > 0

= 1, if di = 0. (1)

The friendship index of a node is the average degree of its neighbors normalized by its
own degree. Therefore, the FI of a node will be less than 1 if its own degree is larger in
comparison to its neighbors’ degrees, and greater than 1 otherwise.
Another way to understand the friendship index is through the uniform and neighbor-

hood node sampler (Leskovec and Faloutsos 2006; Momeni and Rabbat 2018). For a graph
G = (V ,E), we define the following node sampling techniques:
a) Uniform sampler ρ - A uniformly sampled node is chosen uniformly at random

among the nodes in the graph. Therefore, ρ ∼ U(V ).
b) Edge sampler σ - An edge is sampled uniformly at random, then one of its endpoints

are chosen uniformly at random. For an uniformly chosen edge (σ1, σ2) ∼ U(E), σ ∼
U(σ1, σ2).
c) Neighborhood sampler μ - First define μ(i) ∼ U(Ni) to be a node sampled uniformly

at random among the neighbors of node i. If node i has no neighbors then setμ = i. Next,
we define μ(ρ) to be a node that is sampled randomly from the neighbors of an uniformly
sampled node ρ. Operationally, first sample ρ ∼ U(V ) and μ ∼ U(Nρ); However if
Nρ = ∅, then set μ = ρ.
We can equivalently define the friendship index as follows,

FI(i) = E[ dμ(i)]
di

, if di > 0

= 1, if di = 0. (2)

It is easy to see that the friendship index for regular graphs will always be 1 because
all degrees are the same. This is a local network metric concerning a particular node. We
could either aggregate the local measure to obtain a global measure or directly work with
the local FIs {FI(i), i ∈ V }.
The local measures of the friendship paradox can be extended to the entire network in

different ways. The following global notions of FI can be defined for a given graph G:
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1 Arithmetic FI (AFI) - We define AFI as the average, or arithmetic mean, of all the
local FIs

AFI(G) = 1
|V |

∑

i∈V
FI(i) (3)

Observe that

AFI(G) = 1
|V |

∑

i∈V

E[ dμ(i)]
di

= E
dμ(ρ)

dρ

(4)

with the caveat that Edi
di is set to 1 if di = 0. Therefore, AFI is the expected ratio

between the degrees of a neighborhood sampled node μ(ρ) and that of the
uniformly sampled node ρ.

2 Geometric FI (GFI) - This metric is defined as the logarithm of the geometric mean
of all the local FIs

GFI(G) = 1
|V |

∑

v∈V
log FI(v)

While the linearity of expectation allows the alternative representation for AFI
through the notion of sampling, we do not have an equivalent expression for GFI.
This leads to greater mathematical tractability in analysing AFI of network models
compared to GFI or other binary measures based on individual nodes involving
Heaviside step functions. However, GFI has other benefits over AFI that will
become apparent later.

3 Harmonic FI (HFI) - This metric is defined as the harmonic mean of all the local FIs

HFI(G) = 1
1

|V |
∑

v∈V 1
FI(v)

Again for HFI, we do not have an alternative representation like (4).

We will give theoretical results on AFI and experimental results on both AFI and GFI. In
what follows we explain the relative advantages of considering AFI and GFI.

Global and local assortativity

Newman (2002) defines assortativity as a measure of the similarity of degree in adjacent
vertices.1 Newman formally quantifies assortativity as a Pearson correlation coefficient of
the degrees of the two vertices attached to every edge. This can be expressed as

r = E[ dσ1dσ2 ]−E[ dσ ]2

E[ dσ ]2 − E[ dσ ]2
(5)

where (σ1, σ2) is an uniformly sampled edge and σ is a node sampled according to the
random edge sampling. This difference in sampling nodes introduces inherent differences
between the friendship index and assortativity.
The assortativity can also be defined in terms of the network degree distribution p,

excess or remaining degree distribution q and the link distribution ej,k . Note that the
distribution p is the degree distribution of an uniformly sampled node ρ. The distribution
q is related to the excess degree of a node arrived through the random edge sampling
procedure, given by

1This is a specific type of homophily, using degree as a trait.
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q(k) = (k + 1)p(k + 1)
∑|V |

j=1 jp(j)
. (6)

We also define the joint probability distribution of the remaining degrees of the two
nodes on either end of a randomly chosen link as ej,k . We can equivalently define
assortativity as

r = 1
σ 2
q

⎡

⎣
∑

jk
jk
(
ej,k − q(j)q(k)

)
⎤

⎦ (7)

where σq is the standard deviation of the distribution q.
While this definition of assortativity is at the global level, several efforts have been

made to quantify the assortativity of the network at a local level (Piraveenan et al. 2010;
Thedchanamoorthy et al. 2014). Specifically, we first consider the definition of local assor-
tativity presented by Piraveenan et al. (2010). This definition of local assortativity, which
we call the p-local assortativity is defined as

rP(i) =
di
(
(di − 1)k̄ − μ2

q

)

2|E|σ 2
q

, i ∈ V (8)

where, k̄ is the average remaining degree of the node’s neighbors, μq and σq are the mean
and standard deviation of the distribution q. It also follows that the p-local assortativities
of all the nodes sum up to the network assortativity r.
Note that rp(i) is positive and large if (di − 1)k̄ >> μ2

q. This happens when a high
degree node is connected to other nodes which have relatively high degree or if a node
with degree in a medium range has neighbors with large degrees. And, rp(i) is large in
magnitude and negative if (di − 1)k̄ << μ2

q, which can happen when a node with low
degree is connected to low degree nodes.While in such cases the local assortativity should
be positive, the p-local assortativity will have a negative value.
We define another notion of local assortativity due to Thedchanamoorthy et al. (2014),

which has been argued to be closer to the fundamental notion of assortativity compared
to that proposed by Piraveenan et al. (2010). This concurs with our analysis in the previous
paragraph that the p-local assortativity does not always capture what a local measure of
assortativity should. For these reasons, we only show results for the local assortativity due
to Thedchanamoorthy et al.
The local assortativity measure calculates the ‘average neighbor difference’, a direct

indicator of a node’s dissortativity, given by

δi = 1
di

∑

v∈Ni

|di − dv|, (9)

which is then scaled by the sum of the neighbor differences across all the nodes, to obtain
the normalized neighbor differences δ̄i. We therefore have,

δ̄i = δi
∑

j∈V δj
.

The final assortativity of a node, which we call the T-local assortativity (TLA) is
obtained by
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rT (i) = λ − δ̄i (10)

where λ = r+1
|V | , such that the sum of all the local assortativities yield the global

assortativity r.
Observe that if δi is small, then the degrees of node i and its neighbors are very close.

Therefore, the local measure FI(i) should be close to 1. However, if δi is large then
at least one neighbor of i has degree very different from i. Therefore, it is expected
that the FI(i) would be far from 1. If it is much less than 1, then the degree of i
is more than its neighbors’ on average; while if it its greater than 1, then the degree
of i is less than its neighbors’ on average. Therefore FI captures ‘direction of influ-
ence’ in scenarios of local disassortativity. If the TLA at node i is close to 1, i.e.,
degree of node i is similar to its neighbors, then FI(i) would be close to 1; and if
TLA is small and close to 0, i.e., the degree of node i is significantly different from
its neighbors, then FI(i) is expected to be away from 1. Therefore, |FI(i) − 1| is
expected to be anticorrelated with TLA, i.e., as |FI(i) − 1| increases, TLA is expected to
reduce.

Results for special graphs

1 d-regular graphs - Since all nodes have the same degree d, FI = 1 for all nodes.
Therefore AFI = 1, GFI = 0 and HFI = 1. A clique of n nodes is a n − 1-regular
graph. Thus, the result also holds for cliques. Therefore, for d-regular graphs
where the friendship paradox does not occur, we get the minimum values for AFI
and GFI (see Theorems 1 and 2). Also, the assortativity r = 1 for regular graphs,
and all local assortativity values will be positive and equal

(
rT = 2

n
)
.

2 Star graphs - Consider a star graph with n nodes. The FI for the center of the star
will be 1

n−1 , and n − 1 for all leaves. One can show that the FI values for the center
and the leaves of a star are the maximum and minimum possible values for a graph
with the given number of nodes. Thus the friendship paradox is rather severe for a
star graph. We calculate, AFI = n − 2 + 1

n−1 , GFI = n−2
n log n and HFI = 1. An

advantage of considering GFI is that the maximum and minimum possible values
of FIs have the same absolute value in the logarithmic scale. Surprisingly, HFI for a
star is the same as that of a d-regular graph. The assortativity r = −1, while all the
local assortativities rT will be the minimum value of −1.

3 Complete bipartite graphs - Consider a bipartite graph with x nodes on one side
and y nodes on the other. This is a generalization of the star graph (x = 1, y = n).
Let us denote this as Bipartite(x, y), with the set of x nodes on one side being
denoted as X, and the set of y nodes on the other side denoted as Y. For vertex
v ∈ X, FI(v) = x

y and for v ∈ Y , FI(v) = y
x . Therefore, if x > y then nodes in X will

have FI > 1 and nodes in Y will have FI < 1. The AFI = 1 + (x−y)2
xy which is

always greater than 1 as long as x �= y. Furthermore, ∂AFI
∂y = (y2−x2)

xy2 implying that
∂AFI
∂y > 0 for y > x and ∂AFI

∂y < 0 for y < x. Therefore, with x kept constant, the AFI

increases when y is varied away from x. We also have GFI = 1
x+y log

(
xxyy
xyyx

)
> 1 for

x �= y. We calculate, ∂GFI
∂y = 2xy log( y

x )+(y2−x2)
(y+x)2y , which again implies that the GFI

will increase as y is varied away from x. Therefore, both AFI and GFI are
well-behaved for the class of complete bipartite graphs in that both of the measures
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increase as y is varied away from x indicating more prominence of the friendship
paradox. Interestingly, for x �= y, assortativity r = −1, while for x = y assortativity
r = 1 by definition, indicating that the variation in assortativity is rather sharp. We
also compute HFI = 1 for all positive values of x and y.
We find HFI to be equal to 1 for widely different classes of graphs ranging from
d-regular graphs to star graphs. Therefore in later sections, we will only continue
investigation into AFI and GFI owing to their more well-behaved nature. Also
from the star graph, we observed that in the logarithmic scale, the maximum and
minimum values of the FI are equidistant from 0, the log FI value where friendship
paradox is not observed. Therefore in the “Experimental results” section, we study
the correlation between | log FI| and TLA, because | log FI| better captures the
deviation from the scenario where friendship paradox does not occur.

Theoretical results on friendship index
A lower bound on global measures of fI

We first state a simple result that will be used in this section.

Lemma 1 For any positive number x, y and monotonically increasing functions f , g :
R → R such that f (x), g(x) ≥ 0 for x ≥ 1, we have

f (x)
g(y)

+ f (y)
g(x)

≥ f (x)
g(x)

+ f (y)
g(y)

(11)

Proof For x, y ≥ 1, we have
(
f (x)
g(y)

+ f (y)
g(x)

)

−
(
f (x)
g(x)

+ f (y)
g(y)

)

=
(
f (x) − f (y)

) (
g(x) − g(y)

)

g(x)g(y)
≥ 0. (12)

With f (x) = x, and g(x) = x2, the above lemma leads to the following corollary.

Corollary 1 For any edge e(i, j), we have di
d2j

+ dj
d2i

≥ 1
di + 1

dj

Theorem 1 For all graphs G, AFI(G) ≥ 1. AFI(G) = 1 only for the class of graphs where
each connected component is a regular graph.

Proof For a graph G, we have

AFI(G) = 1
n
∑

i∈V

Si
d2i

= 1
n
∑

i∈V

∑

j∈Ni

dj
d2i

(13)

Observe that for each edge (i, j), the term dj
d2i

appears when summing over i and di
d2j

appears

when summing over j. Therefore, rather than the double sum in (13), we can have
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AFI(G) = 1
n
∑

(i,j)∈E

(
dj
d2i

+ di
d2j

)

≥ 1
n
∑

(i,j)∈E

(
1
di

+ 1
dj

)

(Using Corollary 1) (14)

= 1
n
∑

i∈V

di
di

= 1 (15)

where the last step follows by noticing that for each node i, the term 1
di appears for exactly

di edges. Also, equality in (14) occurs if and only if all the nodes on either side of an edge
have the same degree, i.e., all nodes in a connected component have the same degree.

With f (x) = log x, and g(x) = x, Lemma 1 leads to the following corollary.

Corollary 2 For any edge e(i, j), we have log di
dj + log dj

di ≥ log di
di + log dj

dj

Theorem 2 For all graphs G, GFI(G) ≥ 0. GFI(G) = 0 only for the class of graphs where
each connected component is a regular graph.

Proof Using the expression for GFI, we obtain for a graph G

GFI(G) = 1
n
∑

i∈V
log

Si
d2i

= 1
n
∑

i∈V
log

1
di

+ 1
n
∑

i∈V
log

Si
di

= 1
n
∑

i∈V
log

1
di

+ 1
n
∑

i∈V
log

⎛

⎝ 1
di

∑

j∈Ni

dj

⎞

⎠ . (16)

Applying Jensen’s inequality in (16), we obtain

GFI(G) ≥ 1
n
∑

i∈V
log

1
di

+ 1
n
∑

i∈V

∑

j∈Ni

1
di

log dj

= 1
n
∑

i∈V
log

1
di

+
∑

(i,j)∈E

(
1
di

log dj + 1
dj

log di
)

≥ 1
n
∑

i∈V
log

1
di

+
∑

(i,j)∈E

(
1
di

log di + 1
dj

log dj
)

(Using Corollary 2)

= 1
n
∑

i∈V
log

1
di

+ 1
n
∑

i∈V
log di = 0 (17)

where the last step is obtained by noticing that for each node i, the term 1
di log di appears

for exactly di edges. Again, equality occurs if and only if both nodes on either side of an
edge have the same degree.

Theorem 1 has been proven by Jackson (2016)(Lemma 1), while Theorem 2 is a new
result. Theorems 1 & 2 show that both the AFI and GFI will be at their minimum val-
ues for the class of regular graphs, where the friendship paradox does not occur. For any
other graph, the AFI and GFI will be strictly greater than their minimum values, thereby
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suggesting the occurrence of the friendship paradox due to an imbalance between neigh-
bor degrees. This is in agreement with the observation due to Feld (1991), where he noted
that the mean number of friends of friends is always greater than the mean number of
friends, i.e.,

∑
i d2i∑
i di

≥ 1
n

(
∑

i
di

)

(18)

with equality taking place in (18) only for regular graphs where the empirical degree dis-
tribution has zero variance. This demonstrates a well-behaved property for both of the
proposed global metrics.

Erdos-Renyi graphs

We study the behavior of the friendship index for the class of Erdos-Renyi (ER)
graphs (Erdos and Rényi 1960), a basic graph model for capturing random connections in
networks. Consider a sequence of ER graphs {G1,G2, . . .}, such that Gn = (Vn,En) with
Vn being the vertex set {1, 2, . . . , n}, and En being the random edge set with every edge
occuring with probability p. We define the following notation: For nodes i and j, let {i ∼ j}
denote the event of i being connected to j. Let Dn,i andNn,i denote the degree and the set
of neighbors of node i in Gn. In a random graph setting, the expected friendship index of
node i in Gn can be expressed as

E[ FIn(i)]= E

[
Sn,i
D2
n,i
1[Dn,i > 0]+1[Dn,i = 0]

]

. (19)

Although we will primarily focus on the expected behavior of the FI of a node, it is
worth noting that the AFI will exhibit similar behavior, because

E[AFIn]= E

[
1
n
∑

v∈V
FIn(v)

]

= E[ FIn(i)] , i ∈ V . (20)

with, AFIn being the AFI of graph Gn.

Case 1: np constant

Considering the first term in (19), we have

E

[
Sn,i
D2
n,i
1[Dn,i > 0]

]

= E

⎡

⎣1[Dn,i > 0]
1

D2
n,i

∑

j∈Nn,i

Dn,j

⎤

⎦

= E

⎡

⎣1[Dn,i > 0]
1

D2
n,i
E

⎡

⎣
∑

j∈Nn,i

Dn,j

∣
∣
∣
∣ Dn,i = di

⎤

⎦

⎤

⎦

= E

⎡

⎣1[Dn,i > 0]
1

D2
n,i

∑

j∈Nn,i

E

⎡

⎣1 +
∑

k∈V\{i,j}
1[ j ∼ k]

∣
∣
∣
∣Dn,i = di

⎤

⎦

⎤

⎦

= E

⎡

⎣1
[
Dn,i > 0

] 1
D2
n,i

∑

j∈Nn,i

E

⎡

⎣1 +
∑

k∈V\{i,j}
1[ j ∼ k]

⎤

⎦

⎤

⎦

= (1 + (n − 2)p)E
[

1
Dn,i

1[Di > 0]
]

. (21)
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As n → ∞, Dn,i ⇒d �(c) under the regime np → c. We know that if Xn ⇒d X, then
E[ f (Xn)]→ E[ f (X)] for bounded Lipshitz functions f. The mapping f : x → 1

x , x ∈ N is
bounded by 1, and Lipschitz because |f (x) − f (y)| =

∣
∣
∣ 1x − 1

y

∣
∣
∣ ≤ |x − y|. Using this result

in (21), we obtain

E[ FIn(i)]→ (1 + c)E
[

1
�(c)

1[�(c) > 0]
]

+ P[�(c) = 0] (22)

under the regime np → c, with c > 0. We set the limit as

β(c) = (1 + c)E
[

1
�(c)

1[�(c) > 0]
]

+ P[�(c) = 0]

= (1 + c)
∞∑

d=1

1
d
e−c cd

d!
+ e−c. (23)

Simple bounds on Friendship Index: Using (22), we first try bounding the FI, since the
expression cannot be exactly computed.

Lemma 2 For sequence of Erdos-Renyi graphs {Gn, n = 1, 2, . . .}

max
(

1, e−c
[

1 + (1 + c)
(

c + c2

4

)])

≤ lim
n→∞E[FIn(i)] ≤ 1 + c − ce−c (24)

under the regime np → c.

Proof Using the limiting expression of FI, we obtain for c > 0

(1 + c)E
[

1
�(c)

1[�(c) > 0]
]

+ P[�(c) = 0]= (1 + c)
∞∑

d=1

1
d
e−c cd

d!
+ e−c

≤ (1 + c)
∞∑

d=1
e−c cd

d!
+ e−c = 1 + c − ce−c. (25)

For obtaining the lower bound we only use the first term from the infinite sum

(1 + c)E
[

1
�(c)

1[�(c) > 0]
]

+ P[�(c) = 0] ≥ (1 + c)
(

ce−c + c2

4
e−c
)

+ e−c,

(26)

and also note that E[ FIn(i)]≥ 1 since E[ FIn(i)]= E[AFIn]≥ 1 using Theorem 1.

Theorem 3 For a sequence of Erdos-Renyi graphs {Gn, n = 1, 2, . . .} under the regime
np → c, and node i, we have (a) limn→∞ E[ FIn(i)]→ 1 as c→ 0; (b) limn→∞ E[ FIn(i)]→
1 as c→ ∞; (c) there exists δ > 0 such that for all c ∈ (0, δ), limn→∞ E[ FIn(i)]> 1.

Proof Part (a) of Theorem 3 can be proved using the upper bound of Lemma 2 and also
by using the lower bound E[ FIn(i)]= E[AFIn]≥ 1.
Lemma 2 does not help in determining the behavior of β for c large, because the upper

and lower bounds diverge as c increases. Therefore, we study the behavior of β : R → R
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over the range of c analytically. For c ∈ (0,C), with C > 0, the infinite sum β(c) converges
uniformly on the specified range. Thus, differentiating β(c) w.r.t. c yields

β ′(c) = −c
∞∑

d=1

1
d
e−c cd

d!
+ 1 + c

c
(
ec − 1

)
e−c − e−c

= − c
1 + c

β(c) +
(

1 + 1
c

)

(1 − e−c) − e−c (27)

For c large and β(c) > 1, we have β ′(c) < 0. Furthermore for c large, β ′(c) ≈ −β(c) + 1
implying that limc→∞ β(c) = 1. This to Theorem 3(b).
Part(c) follows from the lower bound in Lemma 2 and observing that the lower bound

is greater than 1 for c ∈ (0, δ) (for some δ > 0).

Therefore, the result indicates that for c small, the effect of the friendship paradox is
weak when measured in terms of AFI. This is probably because the graph is so sparse
that there are a lot of isolated nodes and edges, and the paradox does not occur for the
two entities. This is true for c large as well because the graph becomes very dense. Also,
from Theorem 3(c), we prove that the AFI is strictly greater than 1 for a certain range of
parameter c suggesting that the friendship paradox is observed even in large Erdos-Renyi
graphs.
Note that the average degree of the ER graph in this regime is (n− 1)p which converges

to c. Theorem 3 can also be thought to imply that in random ER graphs, as the average
degree of the graph becomes small or gets large, the friendship paradox becomes weaker.
For c large, the growth in every node’s degree and their neighbors’ degrees are such that
the friendship paradox is not observed at any chosen node. This is rather intuitive, by
recalling that FI is defined as the ratio between the degree of a node’s random neighbor
and its own degree. If the degrees get large in an ER graph where the degree rvs are
uncorrelated, then the sampling bias is expected to be small, which is exactly what we
observe.

Case 2: p constant

We also address the question whether the friendship paradox is observed when the prob-
ability of connection p is kept constant as n goes to infinity. We return to the expression
of the friendship index

FIn(i) =
⎛

⎝ 1
D2
n,i

∑

j∈Nn,i

Dn,j

⎞

⎠ 1[Dn,i > 0]+1[Dn,i = 0] (28)

As n gets large, the second term in (28) behaves as

1[Dn,i = 0]−→n 0 a.s. (29)

We define the edge rvs as χi,j, where χi,j = 1 if the edge exists between nodes i and j, 0
otherwise. We write the first expression in (28) as follows
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⎛

⎝ 1
D2
n,i

∑

j∈Nn,i

Dn,j

⎞

⎠ 1[Dn,i > 0]

= 1
D2
n,i

∑

j∈Nn,i

⎡

⎣1 +
∑


∈V\{i,j}
χ
,j

⎤

⎦ 1[Dn,i > 0]

= 1
Dn,i

1[Dn,i > 0]+
⎡

⎣ 1
D2
n,i

∑

j∈Nn,i

∑


∈V\{i,j}
χ
,j

⎤

⎦ 1[Dn,i > 0]

= 1
Dn,i

1[Dn,i > 0]+
⎡

⎣ n
Dn,i

· 1
nDn,i

∑

j∈Nn,i

�i,j

⎤

⎦ 1[Dn,i > 0] , (30)

where we have defined,

�i,j =
∑


∈V\{i,j}
χ
,j,

as the excess degree of node j with respect to the edge (i, j).

Lemma 3
∑

j∈Nn,i �i,j

(n − 2)Dn,i
1
[
Dn,i > 0

] −→n p a.s. (31)

Proof We use the Borel-Cantelli lemma to show the a.s. convergence result. For ease of
exposition the detailed proof is shown in Appendix “Proof of lemma 3”.

Furthermore, we have

n
Dn,i

1[Dn,i > 0]−→n
1
p
a.s. (32)

and

1
Dn,i

1[Dn,i > 0]−→n 0 a.s. (33)

The convergence results (31)-(33) when applied to (30) yields

⎛

⎝ 1
D2
n,i

∑

j∈Nn,i

Dn,j

⎞

⎠ 1[Dn,i > 0]−→n 1 a.s. (34)

which together with (29) leads to Theorem 4.

Theorem 4 For sequence of Erdos-Renyi graphs {Gn, n = 1, 2, . . .}

FIn(i) −→n 1 a.s. (35)

under the regime p constant.
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Also, using the dominated convergence theorem we can also prove convergence in
expectation. Details provided in Appendix “Proof of theorem 5”.

Theorem 5 For sequence of Erdos-Renyi graphs {Gn, n = 1, 2, . . .}
E[ FIn(i)]−→n 1 (36)

under the regime p constant. Therefore,

E[AFIn]−→n 1.

Theorems 4 & 5 together imply that the friendship paradox is not observed for large
ER graphs when p is kept constant. This suggests that the degree imbalances in every
node’s neighborhood vanish for large graphs under the mentioned regime. One can show
that with p held constant, degree of individual nodes diverge in the large graph limit. The
intuition for this result is similar to that for the np constant regime with c large, although
the two regimes are very different mathematically.

Barabasi-Albert graphs

We analyze the behavior of the AFI in Barabasi-Albert graphs (1999), a well known
model for understanding power-law behavior in networks. The sequence of BA graphs
{G0,G1, . . .} are such that G0 is the initial graph, and the graph grows from Gt to Gt+1
by adding a node labelled t + 1 and an edge preferentially between t + 1 and a node Qt
chosen from the graph Gt preferentially on the basis of degree.
The joint degree distribution pT (k, 
) is defined as the joint probability of having an

edge between two nodes with degrees k and 
 in graph GT . This can be written as

pT (k, 
) = 1
T

T∑

t=1
P[DT ,Qt = k,DT ,t = 
] (37)

where DT ,t and DT ,Qt are the degrees of nodes t and Qt in graph GT respectively.
The limiting joint degree distribution exists and is defined as (Fotouhi and Rabbat 2013),

lim
T→∞

pT (k, 
) = p(k, 
) = 4
k(k + 1)
(
 + 1)

[

1 − 6
(k+l−2

l−1
)

(k+l+2
l+1

)

]

. (38)

Let AFI for the graphGT be defined as AFIT . We actually prove that AFIT diverges with
respect to T.

Theorem 6 For sequence of Barabasi-Albert graphs GT ,T = 1, 2, . . ., the expected
values of AFIs, E[AFIT ] diverges.

Proof The following proof uses the fact that the sum of FIs for all the nodes is greater
than the sum of the FIs of nodes with degree 1. Using this insight we have

E[AFIT ] ≥ 1
T

T∑

t=1
E[DT ,Qt1[DT ,t = 1] ]

= 1
T

T∑

t=1

T∑

d=1
d · P[DT ,Qt = d,DT ,t = 1] (39)



Pal et al. Applied Network Science            (2019) 4:71 Page 15 of 26

We continue by exchanging the order of the finite double sum and only summing for
degrees d ≤ M for some fixed positive integerM

E[AFIT ] ≥
T∑

d=1

1
T

T∑

t=1
d · P[DT ,Qt = d,DT ,t = 1]

≥
M∑

d=1
d
1
T

T∑

t=1
P[DT ,Qt = d,DT ,t = 1]

=
M∑

d=1
dpT (d, 1) (40)

Using (38) with k = d and 
 = 1, we obtain on letting T go to infinity

lim
T→∞

E [AFIT ] ≥
M∑

d=1
d · 2

d(d + 1)

[

1 − 12
(d + 2)(d + 3)

]

=
M∑

d=1

2
d + 1

[

1 − 12
(d + 2)(d + 3)

]

(41)

Observe that the sum in (41) diverges as M is taken to infinity, and therefore the result
follows.

The above result suggests that the friendship paradox keeps growing as the size of the
graph grows. This is potentially due to the increasing influence of hubs as the size of the
network grows. This is in stark contrast to the behavior of assortativity, which is known
to converge to 0 as the size of the BA graph grows (Newman 2002).

Experimental results
Network models

We study three network models - Erdos-Renyi (ER) graphs for modeling random connec-
tions; Barabasi-Albert (BA) graphs for modeling power-law behavior; andWatts-Strogatz
(WS) graphs known for capturing small-world networks. We study how the global met-
rics like AFI, GFI, and assortativity behave as the parameters of the models are varied;
and connect the experimental results with our theoretical findings on ER and BA graphs
obtained in the previous section. We also study the correlation between the local FI
metrics and local assortativity (TLA). Specifically, we compute the Pearson, Spearman,
and Kendall-Tau correlation coefficients between | log FI| and TLA because the intuition
developed in “Theoretical results on friendship index” section suggests that | log FI| and
TLA must be negatively correlated – Any deviation from the scenario where the friend-
ship paradox does not occur is best captured by | log FI|, and this measure is expected to
increase as the local assortativity (TLA) reduces.

Erdos-Renyi graphs (1960). In Fig. 1, we show the AFI, GFI and assortativity plots for
n = 100, 200, 300, 400, 500 and varying 0 ≤ p ≤ 1. We observe that the phenomenon of
the friendship paradox is minimal for both small and large values of p, with the global FI
indices reaching a maximum somewhere in between. The intuition behind this finding
is that as the probability of connection, p, is varied keeping n fixed, three regimes occur
– (a) for small values of p, the graph mostly consists of isolated nodes and edges, which
leads to a low value of AFI and GFI; (b) for large values of p, the graph is very close to a
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Fig. 1 Results on AFI, GFI and assortativity of Erdos-Renyi graphs shown for varying values of 0 < p < 0.1 and
n = 100, 200, 300, 400, 500. Local FI distribution shown through a heatplot for varying 0 < p < 0.1 along the
y-axis

clique, which again exhibits low friendship paradox, and therefore low values of global FI
metrics; (c) the global FI metrics reaches the maxima for intermediate values of p. From
Theorems 3 & 4 we know that friendship paradox occurs in the regime np constant and
does not occur for p constant. And from our experiments we infer that the friendship
paradox is observed in the intermediate range of p, which shrinks and gets closer to 0
as the size of the graph grows. This corresponds to the np constant regime, where the
friendship paradox is known to occur. Furthermore, we observe that for any fixed value
of sufficiently large p such that the realized graphs are dense enough (p > 0.04 in Fig. 1),
increasing the size of the graph n, reduces the AFI. This validates the theoretical result
Theorem 4, which states that the AFI should converge to 1 as n grows large keeping p
fixed.
On the other hand, assortativity is observed to be very close to 0 for almost all values of

n and p. Thus even for the class of ER graphs, the global FIs exhibit behavior somewhat
different from assortativity. We also observe from the heatplot that the local FI distribu-
tion peaks at 1 for all values of p, with the peak being very prominent for low values of p,
less prominent as p increases, and again becomes prominent as p increases even further.
This agrees with the plots on the global metrics of AFI and GFI. In Fig. 4, we show the
correlation coefficient between the | log FI| values and the T-local assortativities of indi-
vidual nodes. We observe that as p increases, the correlation coefficients start from high
negative values close to −1, then reduce in magnitude, and then again approach −1 as
p is further increased. This implies that for sparse and dense ER graphs (p < 0.8), the
| log FI| is strongly anticorrelated to TLA. This can be explained by our previous plots
which show that the friendship paradox is strong only for a range of values of p, while it
is weak for small and large values of p. Our interpretation is that for this particular range
of p values where the friendship paradox exists, the anticorrelation between | log FI| and
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TLA reaches a minima. However, when p is further increased beyond 0.8, the correlation
coefficients become unstable because both the | log FI| and the TLA values approach 0.

Barabasi-Albert graphs (Barabási and Albert 1999). In Fig. 2, we observe that the AFI
and GFI increase with number of nodes n, keeping number of edgesm fixed, which agrees
with the theoretical result Theorem 6, and decrease with increasing m for fixed values
of n. The intuition behind this is that with fixed m, higher values of n lead to greater
occurrence of the friendship paradox, because the disparity in the degrees of the hubs
and leaves or low degree nodes become greater. This is evident by looking at star graphs
and how the global FIs increase with graph size. Increasing m and keeping n fixed leads
to lower global FIs, because the low degree nodes now have larger degrees to begin with.
The assortativity approaches 0 with increasing m for reasons similar to that of the FIs.
However, assortativity approaches 0 with increasing n, because of the limiting behavior of
BA graphs. The heatplot of the local FI distribution indicate a peak at 1, thereby agreeing
with the plots of AFI and GFI.
We also show the correlation coefficient plot in Fig. 4 between | log FI| and TLA for BA

graphs with n = 1000 and varyingm. We observe the two measures to be anticorrelated,
with small and larger values ofm leading to stronger anticorrelation.
Watts-Strogatz graphs (1998). In Fig. 3 we show the behavior of AFI and assortativ-
ity as the parameters of the network models such as the size of the graph n, probability
of rewiring p or average degree k are changed. We observe that with graph size fixed
at n = 200 nodes, increasing p increases the AFI; and, increasing k for fixed p reduces
the AFI. The reason for this behavior is that with increasing p, the graphs become more
heterogeneous and hence the friendship paradox strengthens. Also, fixing p and increas-
ing k reduces the AFI because larger average degree weakens the effect of the friendship

Fig. 2 Results on friendship indices and assortativity of Barabasi-Albert graphs for varying values of n andm.
Results on AFI, GFI and assortativity of Barabasi-Albert graphs shown for varying values of 0 < n < 10000 and
m = 1, 2, 3, 4, 5. Local FI distribution shown through a heatplot for varying 0 < n < 10000 along the y-axis



Pal et al. Applied Network Science            (2019) 4:71 Page 18 of 26

Fig. 3 Results on friendship indices and assortativity of Watts-Strogatz graphs for varying values of mean
degree k and rewiring probability p. Result on AFI of Watts-Strogatz graphs for fixed n = 200 varying values
of 0 < p < 0.4 and k = 2, 4, 6, 8, 10; and for fixed p = 0.3, 0.6 k = 21 varying graph size 22 < n < 200. Result
on assortativity of Watts-Strogatz graphs for two different fixed graph size n = 100, 400 varying 0 < p < 0.1
and k = 2, 4, 6, 8, 10

paradox. We also observe that increasing n keeping p and k fixed increases the AFI which
saturates beyond a certain point.
From Fig. 3, we also observe that increasing p reduces the assortativity;While for a fixed

p, increasing k gets the assortativity to be closer to 0. The reason for this observation is
similar to that stated in the previous paragraph, in that increasing pmakes the graphmore
heterogeneous and leads to the formation of hubs, while fixing p and increasing k reduces
the influence of hubs. We also observe that for a larger value of n, the graphs become
dissassortative for smaller values of p, the reason being that hubs form for smaller values
of p in larger graphs. Also Fig. 4 show strong anti-correlation between | log FI| and TLA
for the different parametric settings being considered.

Fig. 4 Correlation coefficients between | log FI| and T-local assortativity for Erdos-Renyi graphs with varying
probability of connection 0 < p < 1; Barabasi-Albert graphs with varying edge density 2 ≤ m ≤ 50; and
Watts-Strogatz with varying rewiring probability 0 ≤ p ≤ 1 and average degree k = 2, 4, 6, 8, 10
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While we study the behavior of local and global metrics on network models, we also
observe that the FI is related to assortativity in that | log FI| is anti-correlated to TLA for
most regimes in the three network models being studied. This strengthens the argument
that the phenomenon of friendship paradox and assortative mixing are related.

Real world networks

Description of networks. We consider Social(S) networks like the Hamsterster,
Brightkite, Douban, Gowalla and Hyves datasets; Human Social(HS) networks of Jazz
musicians and the Zachary karate club; Human contact(HC) network at the ACMHyper-
text conference held in Turin and the INFECTIOUS:STAY AWAY exhibit at Dublin,
both in 2009; Computer(C) networks formed by Route views and the Internet topology;
and, Infrastructure(I) networks like the Power grid and the Euroroad datasets. All of the
network datasets were taken from the Koblenz network collection (Kunegis 2013).
Study on the local metrics. In Figs. 5 and 6, we show the scatter plot between the local
FI values and the T-local assortativities for the Hamsterster and the EuroRoad networks
respectively. We observe that when T-local assortativity is positive the log FI is close to 0,
while for negative local assortativity the log FI could be either more negative or positive.
This gives rise to a bell-shaped curve between local assortativity and log FI, and negative
correlation between local assortativity and | log FI| as observed in the scatter plots. There-
fore, if the local assortativity is positive then the friendship paradox would be low, leading
to log FI being close to 0. However, if the local assortativity is negative, then there would
be a significant occurrence of the friendship paradox, thereby leading to either more neg-
ative or positive values of log FI, and hence higher | log FI|. This justifies the significant
negative correlation between TLA and | log FI| as observed in Table 1.
Study on the global metrics.We consider 13 real networks of different types. We report
basic network parameters such as number of nodes and edges, global metrics such as
assortativity r and the proposed metrics AFI and GFI. We also report the Pearson corre-
lation coefficient ρP and Spearman’s rank correlation coefficeint ρs between the local FI
measure in absolute value, | log FI|, and local assortativity rT .
We observe that while most of the social networks have negative assortativity, all of

them exhibit the friendship paradox very strongly. On the other hand, the human social
and contact networks exhibit the friendship paradox very weakly partly due to the small
size of the network. Computer networks like the Route views and Internet topology show
negative assortativity and a strong friendship paradox while infrastructure networks show
positive assortativity and a weak friendship paradox. Experimental results from Momeni

Fig. 5 Scatter plot between T-local assortativity and local FI for the Hamsterster network
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Fig. 6 Scatter plot between T-local assortativity and local FI for the Euro Road network

and Rabbat (2018) also show that networks with high assortativity (Collaboration in
Figure 2 of the paper) have many nodes that do not exhibit friendship paradox while most
nodes exhibit the paradox for networks with negative asssortativity (Friendster). Lee et
al. (2019) also observed that the median-based and the fraction-based perception mod-
els correlate negatively with assortativity, which does not quite hold for the mean-based
model. Note that the aggregate measures used by Lee et al. (2019) are based on binary
measures corresponding to each node, which is substantially different from our setting.
As argued previously, we also observe that local assortativity is negatively correlated to
| log FI| very strongly for most considered networks.

Concluding remarks
We first propose ametric called the friendship index that captures the phenomenon of the
friendship paradox, locally, from the perspective of an individual node.We then aggregate
these metrics to globally capture the network-level friendship paradox. The arithmetic
mean of the FI values, AFI, is found to have operational significance in sampling, and is
also found to bemathematically suited for analysis of networkmodels. On the other hand,
the geometric mean, GFI, is found to better adjust the range of FI values about the FI
value for which the friendship paradox does not occur. We lower bound the global met-
rics, AFI and GFI, and show that the lower bound is achieved only for the class of regular

Table 1 Assortativity and FIs on real networks and the correlations between their local measures

Metric Level Network Parameter Global Metric Local Metric

Network nodes edges r AFI GFI ρp ρs

Hamsterster (S) 2426 16631 -0.0847 12.6416 1.6430 -0.6360 -0.5942

Brightkite (S) 58228 214078 0.0108 24.6750 1.9888 -0.6046 -0.6464

Douban (S) 154908 327162 -0.1803 39.1273 3.3163 -0.5003 -0.7024

Gowalla (S) 196591 950327 -0.0293 235.496 2.4101 -0.7440 -0.7661

Hyves (S) 1402673 2777419 -0.0234 786.311 3.6955 -0.6591 -0.8775

Jazz musicians (HS) 198 2742 0.0202 2.7522 0.5199 -0.6578 -0.6745

Zachary (HS) 34 78 -0.4756 3.6701 0.8985 -0.9098 -0.8803

Hypertext (HC) 113 2196 -0.1226 2.4755 0.3643 -0.9319 -0.9339

Infectious (HC) 410 2765 0.2258 2.1345 0.4262 -0.6997 -0.6204

Route views (C) 6474 13895 -0.1818 176.460 3.7155 -0.8304 -0.9279

Internet topology (C) 34761 107720 -0.2149 303.464 4.3231 -0.7901 -0.8967

Power grid (I) 4941 6594 0.0035 2.1782 0.4792 -0.8315 -0.8030

Euroroad (I) 1174 1417 0.1267 1.4438 0.2289 -0.8256 -0.7721
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graphs where the friendship paradox does not occur, thereby showing that the proposed
aggregate measures are well-behaved. We theoretically demonstrate that large random
(ER) graphs with average degree kept constant exhibit the friendship paradox. However,
if the connection probability is kept constant, then large ER graphs do not exhibit the
paradox anymore. The results indicate that the sampling bias disappears for large random
graphs as the average degree of nodes gets large or very small. We also theoretically show
that the paradox exists for the BA graph and gets stronger as the size of the graph grows.
This behavior is very different from global assortativity which is known to converge to 0
for both the ER and BA graphs. This is because the friendship index measures the sam-
pling bias by choosing a random neighbor instead of a random node, and the assortativity
only compares the degrees of the two endpoints of a random edge. Nevertheless, the two
phenomena are not unrelated.
In fact, the local FI measure can shed light on the local assortativity of the network.

Experimental results on network models and real world networks suggest that the local
FI measures and local assortativity (TLA) are closely related. High values of TLA would
mean that the node is connected to similar nodes and the | log FI| measure would be
close to 0, while small values of TLA would mean that the node is connected to dissimilar
nodes and | log FI|would be greater. More broadly, the FI measure captures the imbalance
between a node and its neighbors’ degrees along with the direction of imbalance, while
assortativity only serves as a measure for indicating imbalance between two nodes con-
nected by a random edge. In conclusion, although the friendship paradox and assortativity
measures have very different functional forms due to their widely different motivations,
they are nonetheless related to each other. Future work could focus on finding theoretical
relationships between the two concepts in general graphs, or in certain classes of graphs
where the analysis is tractable.

Appendix
Proof of lemma 3

To prove Lemma 3, we use the Borel-Cantelli lemma (Billingsley 2008) which we state
below.

Lemma 4 Let E1,E2, . . . be a sequece of events in some probability space. If the sum of
the probabilities of {En} is finite,

∞∑

n=1
P[En]< ∞

then the probability that infinitely many of them occur is 0, i.e.,

P
[

lim sup
n→∞

En
]

= P
[
∩∞
n=1 ∪∞

k≥n Ek
]

= 0

For a fixed ε > 0 and n = 1, 2, . . ., we define the following event,

En,ε =
{∣
∣
∣
∣
∣

∑
j∈Nn,i �i,j

(n − 2)Dn,i
1[Dn,i > 0]−p

∣
∣
∣
∣
∣
> ε

}

.

We will use bounding argument on these events and apply the Borel-Cantelli lemma to
prove a.s. convergence.
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Using Markov’s inequality, we have the upper bound

P[En,ε] = P
[∣
∣
∣
∣
∣

∑
j∈Nn,i �i,j

(n − 2)Dn,i
1[Dn,i > 0]−p

∣
∣
∣
∣
∣
> ε

]

≤ 1
ε4

E

⎡

⎣

(∑
j∈Nn,i �i,j

(n − 2)Dn,i
1[Dn,i > 0]−p

)4
⎤

⎦

= 1
ε4

E

⎡

⎣

(∑
j∈Nn,i �i,j

(n − 2)Dn,i
− p

)4

1[Dn,i > 0]

⎤

⎦+ p4

ε4
P[Dn,i = 0]

= 1
ε4

E

⎡

⎢
⎣

1
n4D4

n,i

⎛

⎝
∑

j∈Nn,i

�i,j − (n − 2)Dn,ip

⎞

⎠

4

1[Dn,i > 0]

⎤

⎥
⎦+ p4

ε4
(1 − p)n−1

(42)

The second term in (42) goes to 0 exponentially fast. The first term can be written as

1
ε4

E

⎡

⎢
⎣

1
n4D4

n,i

⎛

⎝
∑

j∈Nn,i

�i,j − (n − 2)Dn,ip

⎞

⎠

4

1[Dn,i > 0]

⎤

⎥
⎦

= 1
ε4

E

⎡

⎢
⎣

1
n4D4

n,i

⎛

⎝
∑

j∈Nn,i

[
�i,j − (n − 2)p

]
⎞

⎠

4

1[Dn,i > 0]

⎤

⎥
⎦

= 1
ε4

E

⎡

⎢
⎣

1
n4D4

n,i
E

⎡

⎢
⎣

⎛

⎝
∑

j∈Ni

[
�i,j − (n − 2)p

]
⎞

⎠

4 ∣
∣
∣
∣Nn,i = Ni

⎤

⎥
⎦ 1[Dn,i > 0]

⎤

⎥
⎦ . (43)

We work with the term in the inner expectation,

E

⎡

⎢
⎣

⎛

⎝
∑

j∈Ni

[
�i,j − (n − 2)p

]
⎞

⎠

4 ∣
∣
∣
∣Nn,i = Ni

⎤

⎥
⎦

= E

[∑

q∈Ni

∑

r∈Ni

∑

s∈Ni

∑

t∈Ni

(
�i,q − (n − 2)p

) (
�i,r − (n − 2)p

)

× (
�i,s − (n − 2)p

) (
�i,t − (n − 2)p

)
∣
∣
∣
∣Nn,i = Ni

]

=
∑

q∈Nn,i

∑

r∈Nn,i

∑

s∈Nn,i

∑

t∈Nn,i

E

[
(
�i,q − (n − 2)p

) (
�i,r − (n − 2)p

)

× (
�i,s − (n − 2)p

) (
�i,t − (n − 2)p

)
∣
∣
∣
∣Nn,i = Ni

]

=
∑

q∈Nn,i

∑

r∈Nn,i

∑

s∈Nn,i

∑

t∈Nn,i

E

[
(
�i,q − (n − 2)p

) (
�i,r − (n − 2)p

)

× (
�i,s − (n − 2)p

) (
�i,t − (n − 2)p

)
]

(44)

For a given choice of q, r, s, t, we define

�′
i,z =

∑


 �=i,q,r,s,t
χz,
, for z = q, r, s, t
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The first term in the product can be written as
((

�′
i,q − (n − 5)p

)
+ (

χq,r − p
)+ (

χq,s − p
)+ (

χq,t − p
))

.

Observe that, the terms
(
χq,z − p

)
, z = r, s, t is mutually independent with respect

to terms
(
�′

i,z − (n − 5)p
)
, z = r, s, t. Therefore, such terms will not contribute.

The product between terms of the form
(
χq,z − p

)
, z = q, r, s, t will be finite and

bounded by a constant say c0. Therefore, we can only consider the product of the terms
(
�′

i,z − (n − 5)p
)
, z = q, r, s, t. There are several types of products that have to be con-

sidered separately – (a) For q �= r �= s �= t, the contribution is 0 because all the terms are
mutually independent; (b) For q = r, r �= s �= t, the terms

(
�′

i,z − (n − 5)p
)
for z = s, t

are mutually independent with respect to z = q. Hence, such terms also do not have any
contribution; (c) For q = r �= s = t, the two terms

(
�′

i,z − (n − 5)p
)2 , z = q, s will have a

contribution, which will be discussed later; (d) For q = r = s �= t, term
(
�′

i,t − (n − 5)p
)2

is independent of the other three terms. The expectation of this term is 0, therefore lead-
ing to no contribution. (e) For q = r = s = t, the contribution of such terms need to be
considered.
Using the above insights and continuing from (44), we have

E

⎡

⎢
⎣

⎛

⎝
∑

j∈Ni

[
�i,j − (n − 2)p

]
⎞

⎠

4 ∣
∣
∣
∣Nn,i = Ni

⎤

⎥
⎦ =

∑

q∈Nn,i

E

[(
�′

i,q − (n − 5)p
)4
]

+
∑

q∈Nn,i

∑

s∈Nn,i

E

[(
�′

i,q − (n − 5)p
)2
]

E

[(
�′

i,s − (n − 5)p
)2
]

(45)

We write

E

[(
�′

i,q − (n − 5)p
)2
]

≈ E

⎡

⎢
⎣

⎛

⎝
∑


 �=i,q,s
χq,
 − p

⎞

⎠

2
⎤

⎥
⎦

=
∑


 �=i,q,s
E

[(
χ1,2 − p

)2
]

= nc0, (46)

and

E

[(
�′

i,q − (n − 5)p
)4
]

≈ E

⎡

⎢
⎣

⎛

⎝
∑


 �=i,q,s
χq,
 − p

⎞

⎠

4
⎤

⎥
⎦

=
∑


 �=q,s

∑


′ �=q,s,

E

[(
χq,
 − p

)2
]
E

[(
χq,
′ − p

)2
]

+
∑


 �=q,s
E

[(
χq,
 − p

)4
]

≈ n2c20 + nc1 (47)

where c0 = E

[(
χ1,2 − p

)2
]
, and c1 = E

[(
χ1,2 − p

)4
]
. Substituting (46) and (47) into

(45), we obtain

E

⎡

⎢
⎣

⎛

⎝
∑

j∈Ni

[
�i,j − (n − 2)p

]
⎞

⎠

4 ∣
∣
∣
∣Nn,i = Ni

⎤

⎥
⎦ = D2

n,in
2c20 + Dn,i

(
n2c20 + nc1

)
(48)
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Substituting (48) to (42), we obtain

P[En,ε] = 1
ε4

E

[
1

n4D4
n,i

· (D2
n,in

2c20 + Dn,i
(
n2c20 + nc1

))
1
[
Dn,i>0

]
]

+ p4

ε4
(1 − p)n−1

≤ 2c20
ε4n2

+ p4

ε4
(1 − p)n−1 (49)

Observe that,
∞∑

n=1
P[En,ε]< ∞ (50)

holds and therefore the result follows using Borel-Cantelli Lemma.

Proof of theorem 5

We will use bounded convergence theorem (Billingsley 2008) to prove convergence in
expectation of the FIs.
Recall that

FIn(i) =
⎛

⎝ 1
D2
n,i

∑

j∈Nn,i

Dn,j

⎞

⎠ 1[Dn,i > 0]+1[Dn,i = 0] (51)

Since 1[Dn,i = 0]≤ 1, we only consider the first term in (51). In order to apply Chernoff-
Hoeffding bound we consider the event {Dn,i < n(p − δ)}, and fix δ > 0. We have the
following decomposition

E

⎡

⎣

⎛

⎝ 1
D2
n,i

∑

j∈Nn,i

Dn,j

⎞

⎠ 1[Dn,i > 0]

⎤

⎦

= E

⎡

⎣

⎛

⎝ 1
D2
n,i

∑

j∈Nn,i

Dn,j

⎞

⎠ 1[Dn,i > 0] 1[Dn,i > n(p − δ)]

⎤

⎦

+ E

⎡

⎣

⎛

⎝ 1
D2
n,i

∑

j∈Nn,i

Dn,j

⎞

⎠ 1
[
Dn,i > 0

]
1[Dn,i < n(p − δ)]

⎤

⎦ (52)

The first term in (52) is upper bounded as

E

⎡

⎣

⎛

⎝ 1
D2
n,i

∑

j∈Nn,i

Dn,j

⎞

⎠ 1[Dn,i > 0] 1[Dn,i > n(p − δ)]

⎤

⎦ ≤ 1
n2(p − δ)2

· n2 = 1
(p − δ)2

,

(53)

where the upper bound follows by noting that the sum of the degree of neighbors of i is
bounded by n2. Furthermore, we also have the upper bound

E

⎡

⎣

⎛

⎝ 1
D2
n,i

∑

j∈Nn,i

Dn,j

⎞

⎠ 1
[
Dn,i > 0

]
1
[
Dn,i < n(p − δ)

]
⎤

⎦ ≤ n2P[Dn,i < n(p − δ)]

≤ n2e−nD(p||p−δ), (54)

whereD(p||p−δ) is the KL divergence between Bernoulli rvs with parameters p and p−δ

and the final step is obtained by Chernoff-Hoeffding bound. Since n2e−nD(p||p−δ) → 0 as
n → ∞, there exists a constant cδ such that

n2e−nD(p||p−δ) ≤ cδ , n = 1, 2, . . . (55)
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Therefore using the upper bounds (53) and (55), we obtain that

E [FIn(i)] ≤ 1 + cδ + 1
(p − δ)2

, n = 1, 2, . . . (56)

Since all the rvs FIn(i) are bounded, the bounded convergence theorem yields the result.
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