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Abstract
Evaluating scientists based on their scientific production is a controversial topic.
Nevertheless, bibliometrics and algorithmic approaches can assist traditional peer
review in numerous tasks, such as attributing research grants, deciding scientific
committees, or choosing faculty promotions. Traditional bibliometrics rank individual
entities (e.g., researchers, journals, faculties) without looking at the whole data (i.e., the
whole network). Network algorithms, such as PageRank, have been used to measure
node importance in a network, and have been applied to author ranking. However,
traditional PageRank only uses network topology and ignores relevant features of
scientific collaborations. Multiple extensions of PageRank have been proposed, more
suited for author ranking. These methods enrich the network with information about
the author’s productivity or the venue and year of the publication/citation. Most
state-of-the-art (STOA) feature-enriched methods either ignore or do not combine
effectively this information. Furthermore, STOA algorithms typically disregard that the
full network is not known for most real-world cases.
Here we describe OTARIOS, an author ranking method recently developed by us, which
combines multiple publication/citation criteria (i.e., features) to evaluate authors.
OTARIOS divides the original network into two subnetworks, insiders and outsiders,
which is an adequate representation of citation networks with missing information. We
evaluate OTARIOS on a set of five real networks, each with publications in distinct areas
of Computer Science, and compare it against STOA methods. When matching
OTARIOS’ produced ranking with a ground-truth ranking (comprised of best paper
award nominations), we observe that OTARIOS is > 30% more accurate than traditional
PageRank (i.e., topology based method) and > 20% more accurate than STOA (i.e.,
competing feature enriched methods). We obtain the best results when OTARIOS
considers (i) the author’s publication volume and publication recency, (ii) how recently
the author’s work is being cited by outsiders, and (iii) how recently the author’s work is
being cited by insiders and how individual he is. Our results showcase (a) the
importance of efficiently combining relevant features and (b) how to adequately
perform author ranking in incomplete networks.
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Introduction
The scientific impact of a researcher measures how much a person has contributed to a
scientific field. Due to the nature of scientific development, more impactful researchers
tend to have access to more funding which supports the creation of more quality work. As
a result estimating the scientific impact of researchers has a direct impact on science. For
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more important decisions such as allocating scientific committees, attributing research
grants, or choosing faculty promotions, the process is mostly done via peer review.
More recently, bibliometrics (i.e., measures to determine scientific impact without human
intervention) have been proposed to assist the peer review process (Vieira et al. 2014).
Bibliometrics typically take into account the author’s productivity (i.e., statistics of
author’s papers) and the author’s impact (i.e., statistics of author’s citations) (BV 2018).
The h-index (Hirsch 2005) is one of the most widely used bibliometrics; it measures the
impact of an author as the number of citations of his most cited papers (e.g., an author
has h-index = 3 if he has 3 papers with at least 3 citations).
Traditional bibliometrics have, however, the drawback of assigning impact to direct

citations only, thus ignoring indirect citations. For example, if A cites B, and B cites
C, traditional bibliometrics give no additional credit to C from A’s indirect citation. To
address this limitation, graph algorithms have been developed for citation networks (Ding
2009; Radicchi et al. 2009; Dunaiski and Visser 2012; West et al. 2013; Sidiropoulos and
Manolopoulos 2006). These algorithms are modifications of PageRank applied to cita-
tion networks (Page et al. 1998). One of PageRank’s major algorithmic ideas is that not
all nodes are equal, i.e., in the context of hyperlinks, it is good to be referenced by any
webpage but it is better to be referenced by important webpages. This idea extends natu-
rally to citation networks, i.e., it is good to be cited by any author but is better to be cited
by important authors. State-of-the-art (STOA) author ranking algorithms (discussed in
“State-of-the-art author ranking methods” section) adapt PageRank and introduce mod-
ifications to favour different types of authors (e.g., authors cited in important venues, or
authors cited more recently). Since these methods introduce features outside of the topol-
ogy of the network, we call them featured enriched methods, in contrast with traditional
PageRank, which is a topology-based method.
We found that STOA methods were lacking in two aspects. First, they do not ade-

quately combine publication features (e.g., author’s productivity, the venues prestige of
where he usually publishes, and how recent his papers are) with citation features (e.g., the
prestige of the venue he is being cited from, how recent his citations are). Second, these
methods assume that the full network is known, thus the algorithm does not distinguish
between fully explored nodes and partially explored nodes. Therefore, these methods are
not capable of adequately dealing with incomplete networks (Kim and Leskovec 2011).
We recently proposed a new feature enriched author ranking algorithm for incom-

plete networks named OTARIOS (OpTimizing Author Ranking with Insiders/Outsiders
Subnetworks) (Silva et al. 2018), and showed that OTARIOS outperformed tradi-
tional PageRank (a topology-based method) and simple bibliometrics. Here we compare
OTARIOS against other feature-enriched author ranking methods.
OTARIOS efficiently combines different publication/citation features in a multi-edge

weighted network (instead of a simple unweighted network used by STOA methods).
OTARIOS is also a flexible algorithm in the sense that publication/citation features can be
personalised to fit what the user wants to rank the researchers by (e.g., take in consider-
ation venue’s prestige and citation’s age for the rankings). OTARIOS handles incomplete
networks by dividing the citation network in two subnetworks, insiders and outsiders.
Then, only insiders are ranked (since we have their full information) while outsiders con-
tribute to the ranks of insiders, not being themselves ranked. Our results on five networks
belonging to different areas of Computer Science show that OTARIOS is > 20% more
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accurate than STOA methods. OTARIOS obtains the best results when considering (i)
the author’s publication volume and recency, (ii) how recently his work is being cited by
outsiders, and (iii) how recently his work is being cited by insiders and how individual he
his (i.e., publishing a paper with few co-authors).
The paper is organised as follows. “Preliminaries” section describes terminology that

is used throughout the work, as well as an overview of STOA methods. “Methodology”
section describes OTARIOS and our methodology. “Results” section presents the per-
formance of OTARIOS against STOA methods on a set of five networks. Finally,
“Conclusions” section presents our main conclusions and gives some directions for future
work.

Preliminaries
Terminology

Recency of a paper

δ(Pj) =
(
max
Pj′ ∈P

y(Pj′)
)

− y(Pj) (1)

Recency of an author

δ(Ai) = min
Pj∈PAi

δ(Pj) (2)

Venue prestige

λ(Vk , y) = c(Vk , y)∑3
x=1 p(Vk , y − x)

(3)

Cited individuality

w(Ai′ → Ai,Pj) = 1
|APj |

,Ai ∈ APj (4)

Citation recency

a(Ai′ → Ai,Pj) = e
−δ(Pj)

τ ,Ai′ ∈ APj (5)

Citation prestige

v(Ai′ → Ai,Pj) = v(Pj),Ai′ ∈ APj (6)

For consistency, we denote sets by calligraphic letters (e.g., S), elements of those sets
(i.e., entities) by capital letters with an index (e.g., Si ∈ S), features of entities (e.g., year,
impact factor) as functions named in lower-case alphabetic or Greek letters (e.g., a(Si)
or α(Si)), and constants as sole Greek letters (e.g., τ ). The cardinality of a given set S is
denoted by |S|. We address the following problem.

Problem 1 Given a set of papers P published in a set of venues V by a set of authors A,
who are the top-n ranked authors?

A paper Pj ∈ P is co-authored by authors APj ⊆ A. Likewise, an author Ai ∈ A is
(one of) the author(s) of papers PAi ⊆ P . In paper-level networks, graph G = {N , E}
comprises a setN of nodes that represent papers and a set E of edges that represent paper
citations, written as Pj′ → Pj. In author-level networks, nodes represent authors and edges
represent citations between authors, written as Ai′ → Ai.
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Regarding node features, papers have publication metadata which we use as features,
namely the year, venue prestige, and the number of references, represented by y

(
Pj

)
, v

(
Pj

)
and rout

(
Pj

)
, respectively. The recency of a paper (Eq. 1), represented by δ(Pj), is the differ-

ence in years between the year of the paper and themost recent paper in the dataset (e.g., a
paper from 2015 in a dataset where the most recent paper is from 2017 has a recency of 2).
Similarly, the recency of an author (Eq. 2), represented by δ(Ai), is simply the recency of
his most recent paper (i.e. the number of years that have passed since his last publica-
tion). The venue prestige of a paper Pj (Eq. 3) depends on the venue Vk ∈ V where it
was published and the year when it was published, represented by v

(
Pj

) = λ
(
Vk , y

(
Pj

))
.

We estimate venue prestige with CiteScore, a widely used metric (BV 2018) (Eq. 3), where
p (Vk , y) is the number of papers published in Vk in year y and c (Vk , y) is the number of
citations that all papers published in Vk in year y received. Thus, we are assuming that
venues with many citations per paper have higher prestige.
Regarding edges, in paper-level networks edges are traditionally unweighted and

simple, i.e., two papers are connected by a single edge with weight equal to 1
(Hwang et al. 2010; Dunaiski and Visser 2012). In author-level networks, edges are
weighted and multiple, i.e., two authors are connected by multiple edges with differ-
ent weights. These multiple edges concern different edge features that depend on the
publication Pj where author Ai′ cites author Ai. The recency of an edge (Eq. 5), repre-
sented by a

(
Ai′ → Ai,Pj

)
, gives more importance to recent citations. As discussed in

the YetRank paper which originally proposes this concept for author ranking algorithms
(Dunaiski and Visser 2012), we set the decay factor τ = 4. This value highly favours
received citations in the last 4 years (e.g., a citation with recency 0 has a maximum link
weight of 1.0, while citations with recency 4 and 8 have links with weights 0.37 and
0.13 respectively). The venue prestige of an edge (Eq. 6), represented by v

(
Ai′ → Ai,Pj

)
,

gives more importance to citations in important venues (e.g. citations coming from
the most prestigious venue in the dataset have a maximum link weight of 1.0,
while citations coming from the least prestigious venues have a value close to 0.0).
Finally, the individuality of an edge (Eq. 4), represented by w

(
Ai′ → Ai,Pj

)
, gives

more importance to citations received in papers that author Ai has few (or no)
co-authors (e.g. if an author has a publication P1 with 2 authors and a publication P2
with 4 authors, the importance of citations coming to P1 is double of the ones coming
to P2 for that author). Thus, w

(
Ai′ → Ai,Pj

)
, unlike a

(
Ai′ → Ai,Pj

)
and v

(
Ai′ → Ai,Pj

)
,

depends on the cited author Ai and not on the citing author Ai′ . The author’s feature
total out-edge weight is obtained by summing all of its out-edges (e.g., for citation
recency, aout (Ai) = ∑

(Ai→Ai′ ,Pj)
a

(
Ai → Ai′ ,Pj

)
.wout and vout are obtained in the sameway).

State-of-the-art author ranking methods

Measuring the scientific impact of institutions, journals, or authors is an important task in
the peer review process. Here we focus on measuring the scientific impact of authors, i.e.,
author ranking. Paper citations are often used by traditional bibliometrics; for instance,
the widely adopted h-index (Hirsch 2005) measures an author’s impact by the number of
citations of his most cited papers. However, h-index and similar bibliometrics fail to cap-
ture the nature of scientific development since they disregard the fact that a new discovery
is not solely due to previous work directly referenced. Graph-based metrics, on the other
hand, spread the credit to previous works that paved the way (Wang et al. 2016).
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There are two groups of author ranking methods: paper-level and author-level (Wang
et al. 2016) (Fig. 1). On one hand, paper-level ranking uses the papers’ citation network
to diffuse scientific credit to cited papers, and then authors credit is derived from the
credit of their papers (Hwang et al. 2010; Dunaiski and Visser 2012). On the other hand,
author-level ranking uses the authors’ citation network to diffuse scientific credit to cited
authors, thus the authors’ credit is directly obtained (Radicchi et al. 2009; Ding 2009;
West et al. 2013). Numerous graph centrality measures exist and can be used to measure
node importance (Valente et al. 2008). PageRank (Page et al. 1998) is one of the most
widely used measures and its rationale is intuitive in author-ranking, i.e., authors cited by
important authors are (themselves) more important than authors cited by less important
authors.
PageRank consists of two main steps: score initialisation and score diffusion. The score

initialisation step creates a vector R that defines an initial score for every node using a
priori information. In the simplest case, every node (i.e., paper or author) is considered
equally important, thus an uniform distribution is used (i.e., R[Ai]= 1

|A| ) (Page et al. 1998;
Ding 2009; Sidiropoulos and Manolopoulos 2006). Approaches based on paper citation
networks typically assign higher initial scores to more recent papers (Dunaiski and Visser
2012) or favour a combination of recent papers and papers published in venues with
higher impact factor (Hwang et al. 2010). Approaches based on author citation networks
typically assign higher initial scores to authors that publish many papers (West et al. 2013)
or favour authors that publish many papers but with few co-authors (Radicchi et al. 2009).
The score diffusion step updates the node scores taking into consideration network

dynamics. Score diffusion is an iterative process which computes three addends: random
restart, dangling nodes, and score term. Random restart (RR) evaluates how likely it is to
reach a certain node by moving randomly in the network. PageRank defines a value q as
the random restart probability, and q is multiplied by the node’s initial score R (thus, nodes
with higher initialisation receive higher random restart score). Dangling nodes (DN) is
a process where the score of nodes that do not have any out-links is split by all other
nodes. This is performed to avoid having nodes that do not disseminate their credit. Like
random restart, this division takes into consideration the initialisation vector R (thus,
nodes initialised with higher values receive higher dangling nodes score). Score term (ST)
updates the score of a node Ai, according to the score of his in-links (i.e., nodes citing Ai).
In the simplest case, scores are evenly split by co-authors of the cited publication, e.g., if
the paper has two authors, the score is divided by the two authors, if it has three authors,

Fig. 1 Comparison of paper-level and author-level networks
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the score is divided by the three authors, thus, in the case of three authors, each author
receives less credit than in the case with just two authors (Radicchi et al. 2009; Ding 2009;
West et al. 2013). SCEAS (Sidiropoulos and Manolopoulos 2006) adds a constant value
b to the every score received by nodes and divides the total score received by another
constant a in order to make the algorithm converge faster. YetRank (Hwang et al. 2010)
and NewRank (Dunaiski and Visser 2012) take into consideration the vector R in the score
distribution (i.e., if a paper cites a paper Pj from 2015 and another paper P′

j from 2010, Pj
receives a bigger chunk of the score). In case of the YetRank, the distribution of score also
takes into consideration the impact factor of the venues where Pj and P′

j where published,
favouring papers published in venues with higher prestige. Table 1 summarises STOA
methods and their differences.
These approaches have two drawbacks. One is that none combines all possible features

of the publications and citations. Another drawback is that they assume that the complete
citation network is known. However, in real-world cases, it is not possible to obtain a
complete network. Let’s assume that we want to rank a set of authors A. First, we need
to expand the network by obtaining all authors Bi ∈ B that cite any Ai ∈ A such that
Bi �∈ A. Then, we need to also extract all authors Ci ∈ C that cite any Bi ∈ B such
that Ci �∈ {A ∪ B}, to correctly determine the scores of all Ai ∈ A, i.e., Ci does not cite
Ai directly but Ci cites some Bi which cites Ai, thus Ci cites Ai indirectly. Ideally, this
should be performed recursively until the complete set authors (and their citations) with
seed A is obtained. Due to memory and time constraints, only a sample of the citation
network can be obtained. As a result, current STOA author ranking algorithms estimate
scientific rankings based on incorrect information, i.e., authors in the periphery are not
being adequately taken into account since their citations are not in the network. Although
there is no ideal solution for this problem, one can be more careful in estimating the rank
of nodes in the periphery.
Table 2 summarises current STOA methods and contrasts them with OTARIOS, our

proposed method (Silva et al. 2018). OTARIOS is the only method that efficiently com-
bines multiple features (of the publications and citations) and deals with incomplete
networks.

Table 1 Comparison of state of the art methods

Author-level

Method Initialisation: R(Ni) Score term: ST(Ni)

RLPR (Ding 2009) 1
|A|

(1 − q)
∑

(Ai′ →Ai ,Pj)

S(Ai′ )×w(Ai′ →Ai ,Pj)
wout(Ai′ )SARA (Radicchi et al. 2009)

∑
(Pj∈PAi )

1
|APj

|
∑

(Ai′ ∈A)

∑
(Pj∈PAi′ )

1
|APj

|

ALEF (West et al. 2013)
|PAi ||P |

SCEAS (Sidiropoulos and
Manolopoulos 2006)

1
|A|

(1−q)
a

∑
(Ai′ →Ai ,Pj)

(S(Ai′ )+b)×w(Ai′ →Ai ,Pj)
wout(Ai′ )

Paper-level YetRank (Hwang et al.
2010)

v(Pi) × e
−δ(Pi )

τ

τ
(1 − q)

∑
(Pi′ →Pi)

S(Pi′ )×R(Pi)
rout(Pi′ )

NewRank (Dunaiski and
Visser 2012)

e
−δ(Pi )

τ

Ni represents a node in the network, i.e., Ni = Ai in author-level networks, and Ni = Pi in paper-level networks. Score diffusion
S(Ni) is equal to ST(Ni) + RR(Ni) + DN(Ni). For all methods, RR(Ni) = q × R(Ni) and DN(Ni) = (1 − q) × R(Ni), thus we omit
them from the table
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Table 2 Comparison of state of the art methods with OTARIOS

Publications Citations Incomplete Networks

Method Volume Recency Venues Individuality Recency Venues

RLPR ✓

SARA ✓ ✓

ALEF ✓* ✓

SCEAS ✓

YetRank ✓ ✓ ✓

NewRank ✓ ✓

OTARIOS ✓ ✓ ✓ ✓ ✓ ✓ ✓

OTARIOS tries to combine all features efficiently and is also the only method that adequately deals with incomplete networks by
using insiders/outsiders subnetworks
*ALEF gives higher score to authors with many publications but ignores the number of authors in the publications

Methodology
Problem description

We formalize the problem of author ranking as the task of receiving a set of authors I and
ranking them according to their scientific impact based on a set of user-defined criteria.
First, we obtain all citations between all authors Ii, Ii′ ∈ I (i.e., a complete citation network
for I). Second, for each author Ii, we obtain all of his received citations coming from
authors Oi �∈ I . The process stops here, i.e., we do not obtain all received citations for
authors Oi ∈ O. Doing so iteratively is unfeasible in practice because the number of
authors added at each step grows very rapidly. Thus, we divide the citation network into
two groups of nodes: insiders (I) and outsiders (O), i.e.,A = {I ,O} (Fig. 2). Note that no
outsider can also be an insider, and vice-versa. Edges connect insiders (EI ) or outsiders
to insiders (EO), but no edges exist from insiders to outsiders nor between outsiders, i.e.,
E = {EI , EO}.
The outsiders are authors that were not in the initial set of authors I , thus they are

not ranked. Instead they are used to mitigate the problem of incomplete networks and
improve the insiders’ ranks. Before calculating the ranks of the insiders we estimate out-
siders’ prestige (λ). We use the outsider’s history of publications and give higher prestige
to authors with more citations (c(Ai)) in fewer publications (p(Ai)) (Eq. 7). The outsiders’

Fig. 2 Example of insiders and outsiders subnetworks. Insiders are nodes/authors coloured in black and
outsiders are coloured in blue. Note that no links between outsiders exists (dashed red lines). Furthermore,
no information exists of outsiders that do not cite any insiders (coloured in red)
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prestige is then used along the links between outsiders and insiders to improve the initial
rankings of the insiders.

Outsider prestige λ(Ai) = c(Ai)

p(Ai)
(7)

OTARIOS

OTARIOS is a graph-based algorithm for author-level citation networks. Its aim is to
rank authors based on their publication and citation history. OTARIOS uses the notion
of insider/outsider subnetworks to adequately estimate authors scores in a network with
limited information. Furthermore, OTARIOS is a flexible algorithm that analyses which
set of publication/citation attributes lead to better rankings.
As a first step, OTARIOS computes an initial score for each author, represented by

R(Ai). OTARIOS calculates R(Ai) by taking into account multiple features that favour
different author characteristics (Table 3). We divide the features into two categories: pro-
ductivity and outsiders influence. Productivity measures the value of the author’s publica-
tions, while outsider influence measures the value of the author’s citations coming from
outsiders. Regarding productivity, OTARIOS takes three factors into account: volume,
recency and venues. Regarding outsiders influence, OTARIOS takes another three fac-
tors into account: individuality, recency and venues.We compute the author’s initial score
R(Ai) as the sum of the two products of the factors in each group (i.e., productivity
(volume × recency × venues) + outsiders influence (individuality × recency × venues)).
Then, on the second step, OTARIOS improves author scores in an iterative process.

Outsiders are removed from the network since their presence degrades the score diffusion
step. In each iteration, OTARIOS updates an author’s score S(Ai) as ST(Ai) + RR(Ai) +
DN(Ai). We compute RR(Ai) and DN(Ai) as a function of the initial rank of each author
(discussed in Table 3), and compute ST(Ai) as a function of the author’s citations com-
ing from other insiders. OTARIOS considers three different features to assess score term
ST(Ai): individuality, recency and venues (Table 4). The ST(Ai) at each iteration is the

Table 3 List of features used for OTARIOS’ author rank initialisation: R(Ai)

Feature Initialisation: R(Ai) Description

Productivity

Volume (P)

∑
(Pj∈PAi )

1
|APj

|
∑

(Ai′ ∈A)

∑
(Pj∈PAi′ )

1
|APj

|
Favours publishing many
papers with few co-authors.

Recency (A) e
−δ(Ai )

τ Favours publishing recently.

Venues (V)
( ∑

(Pj∈PAi )

v(Pj)
)

×

|PAi |−1

Favours publishing in
prestigious venues.

Outsiders Influence

Individuality (W)
∑

(Ai′ →Ai ,Pj)

λ(Ai′ )×w(Ai′ →Ai ,Pj)
wout(Ai′ )

, Ai′ ∈
O

Favours being cited by
outsiders that cite few
authors.

Recency (A)
∑

(Ai′ →Ai ,Pj)

λ(Ai′ )×a(Ai′ →Ai ,Pj)
aout(Ai′ )

, Ai′ ∈
O

Favours being cited by
outsiders more recently.

Venues (V)
∑

(Ai′ →Ai ,Pj)

λ(Ai′ )×v(Ai′ →Ai ,Pj)
vout(Ai′ )

, Ai′ ∈
O

Favours being cited by
outsiders in prestigious
venues.

OTARIOS considers both the authors’ productivity and the direct influence of outsiders on the authors. We create different
variants of these criteria, e.g., PV + V uses volume (P) and venue prestige (V) to measure author productivity, and uses venue
prestige (V) to measure the direct influence of outsiders
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Table 4 List of features used for OTARIOS’ author score term calculation: ST(Ai)

Feature Score term: ST(Ai) Description

Individuality (W)
∑

(Ai′ →Ai ,Pj)

S(Ai′ )×w(Ai′ →Ai ,Pj)
wout(Ai′ )

, Ai′ ∈ I Favours being cited
by insiders that cite
few authors.

Recency (A)
∑

(Ai′ →Ai ,Pj)

S(Ai′ )×a(Ai′ →Ai ,Pj)
aout(Ai′ )

, Ai′ ∈ I Favours being
cited by insiders
more recently.

Venues (V)
∑

(Ai′ →Ai ,Pj)

S(Ai′ )×v(Ai′ →Ai ,Pj)
vout(Ai′ )

, Ai′ ∈ I Favours being
cited by insiders in
prestigious venues.

Combined with author initialisation (Table 3), we create different variants, e.g., PV+V+A combines initialisation PV+V with score
term A, i.e., using citation recency. All variants use RR(Ni) = q× R(Ni) and DN(Ni) = (1− q) × R(Ni), thus we omit them from the
table

product of every feature (i.e., score term (individuality × recency × venues)). Like PageR-
ank, OTARIOS stops when it reaches low variation in the node scores. Figure 3 illustrates
the three feature categories used in the OTARIOS algorithm.
Here we do not assume that every feature should be used for author ranking. The fea-

tures’ importance depends greatly on the dataset. For instance, venue prestige might be
very important to rank some communities (i.e., top authors publish in top conferences
of that scientific area, e.g., machine learning) but irrelevant in some other community
because we are studying a specific conference (i.e., all authors publish in the same venue,
e.g., KDD). OTARIOS is parameterisable, i.e., users can define by which features authors
are ranked. For example, for a certain application, we may want to rank authors taking
into account recent publications and the venue prestige of citations coming from both
insiders and outsiders1.

Results
In this section we compare OTARIOS against STOA methods. We create a test scenario
using a snapshot from December of 2017 of the DBLP dataset (a bibliographic database
for computer science). This dataset contains over 3 million publications and for each one
we have: title, authors, abstract, venue, year, number of citations and references. Using the
publications’ references we obtain the author-citation network of 26 top-tier computer
science venues. In order to prevent the impact of citation manipulation in the rankings
we do not consider self-citations in the networks (Ioannidis 2015). Furthermore, for each
conference we create a ground. We counted each paper award as a unit of prestige which
is equally divided by its authors. Thus, we are assuming that authors that have won more
awards with fewer co-authors should be ranked higher. We use the ACM taxonomy2

in order to group the conferences into five networks (see Table 5), each representing a
different computer science area.
In truth ranking using the best paper award information3 our experiments, we evalu-

ate a predicted rank (i.e., one produced by OTARIOS or any STOA method) against a
ground truth rank (i.e., the ranking based on conferences best paper awards). Methods
that produce rankings more similar to the ground truth (obtained by human judgement)

1Note that we define variants using notation APV+AVW+AVW, where the addends define the features used at each
group. The first for productivity, the second for outsiders influence and the last for score term. For the example in the
text, the variant nomenclature is A+V+V.
2https://www.acm.org/about-acm/class
3Awards information obtained from: https://jeffhuang.com/best_paper_awards.html

https://www.acm.org/about-acm/class
https://jeffhuang.com/best_paper_awards.html
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Fig. 3 Illustration of the three different feature categories used in OTARIOS to rank authors

are considered better. In order to compare two ranks we use two ranking quality mea-
sures: Normalized Discounted Cumulative Gain (NDCG) (Järvelin and Kekäläinen 2002)
and Mean Reciprocal Rank (MRR) (Voorhees and et al. 1999). NDCG is a Discounted
Cumulative Gain(DCG) based metric which divides the DCG of the predicted rank by the
DCG of the ground truth (i.e., the perfect ranking). The idea of DCG is that highly rel-
evant authors (from the ground truth) appearing lower in the predicted rank should be
penalized using a logarithmic function (base 2) proportional to the position of the result.
For example, placing an author with 0 relevance at the 2nd position presents an higher
penalty than placing him in the 10th position. The NDCG value ranges from 0 to 1, where
1 represents the perfect ranking (i.e., the predicted rank is the same as the ground truth
one). MRR is the mean ground truth ranking position of a set of the top authors of a
predicted rank. Thus, lower MRRs indicate better rankings since the top authors of the
ground truth are, on average, ranked more highly by the method. For example, a method
that places the 1st, 5th and 6th highest ranked authors from the ground truth in its top-3
authors is better than one that places the 2nd, 6th and 7th highest ranked authors from the
ground-truth in its top-3 authors. Usually, both measures are calculated considering only
the top-n authors. For a detailed analysis, we calculate NDCG and MRR for the top-5, 10,
20, 50, 100 authors.

Finding the best oTARIOS variants

OTARIOS does not define a strict set of rules to rank authors, since the criteria (i.e., fea-
tures) used depends onmany factors (e.g., scientific area, preferences of the entity ranking

Table 5 Set of networks used for experimental evaluation

Network Conferences # AA Nodes Edges

|I | |O| |EI | |EO |
CM AAAI, IJCAI, ICML, ACL, ICCV, CVPR 380 35.6k 224.9k 4.6M 4.9M

TC FOCS, SODA, STOC 440 5.0k 82.4k 0.5M 0.8M

NET INFOCOM, NSDI, SIGCOMM, MOBICOM, SIGMETRICS 95 15.2k 138.8k 2.1M 3.7M

IS KDD, CIKM, PODS, SIGMOD, VLDB, WWW, SIGIR 752 282.7k 190.9k 4.0M 5.1M

SE PLDI, FSE, ICSE, OSDI, SOSP 349 10.8k 99.9k 1.0M 2.1M

Data was taken from (Tang et al. 2017; 2008). The full DBLP dataset contains over 3M publications from 1936 to 2018. Each
network contains publications from only a set of conferences, e.g., networks TC contains publications from FOCS, SODA and
STOC. For each network we show the number of: awarded authors (AA), insider and outsider nodes (|I | and |O| respectively),
and insider and outsider edges (|EI | and |EO | respectively)
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authors). Instead, OTARIOS gives the freedom to personalise the features used to rank
authors. In the particular case of our test scenario, we did not know a priori which features
would be the most important, so we did an exploratory analysis to find the best OTAR-
IOS variants. However, there are more than 500 variants that we can create by combining
different features. In order to estimate the best variant without testing a large number of
variants, we performed a greedy search for each network.
We start with simple variants (with a single feature) and progressively addmore features

to themore promising variants.We illustrate this process for the network NET on Table 6.
We begin by comparing OTARIOS variants that only contain outsiders influence (e.g., ∅ +
A + ∅). For the best ones, we added the productivity (e.g., AP + A + ∅). In general, we see
that results improve when merging outsiders influence with productivity. Finally, we add
the score term calculation to the best variants (e.g., AP + A +A). Again, we see that overall
the results improve when we add this feature to the score term. For the NET network, we
see that AP + A + AW is the best variantwith ameanNDCGof 0.330 and ameanMRRof 606.
This variant uses recency and volume to measure author productivity, uses recency to
calculate outsiders influence, and uses recency and individuality on the score diffusion step.
Figure 4 presents the features used by the 20 best OTARIOS variants according to

the average NDCG across the five networks created. We observe that the top-9 variants
always use a mix of productivity, outsiders influence and score term, thus revealing the
importance of considering multiple aspects of publications and citations information. Of
the top 20 variants, only 6 do not use productivity features and only 1 does not use the
outsiders influence; score term features are present in all top-20 variants. Regarding spe-
cific features, we observe that recency (A) seems to be the most important feature for
all three categories: productivity, outsider influence and score term. In fact, recency is
used in the score term of all top-20 variants. This indicates that most of awarded authors
are still actively publishing and/or being cited. Individuality (W) and volume (P) seem to be
more important to measure productivity and score term than to measure outsiders influence.
This indicates that awarded authors publish more papers and also that publish with fewer
co-authors. Venue prestige (V) seems to be more relevant when measuring outsiders
influence than productivity and insiders score term. This is expected because, due to the
nature of the two subnetworks, insiders tend to publish in the same venues, while outsiders
cite insiders in any venues, thus the venue prestige of outsiders citations varies greatly.

Table 6 Comparison of OTARIOS variants on network NET (from Table 5)

For each OTARIOS variant, we measure its ranking’s NDCG and MRR for the top-5, top-10, top-20, top-50 and top-100 authors, as
well as themetric’s mean value. In bold we highlight the highest score for eachmetric. The best OTARIOS variant is coloured in blue
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Fig. 4 Features considered on the top 20 OTARIOS variants on the NDCG metric. The rows represent
different features and the columns the variants that ranked at position n. The blue colour in a column
indicates that the feature is considered on the variant, while the red colour indicates its absence

Comparison against sTOA

We compare OTARIOS against STOA methods discussed in “State-of-the-art author
ranking methods” section and a baseline method named CountRank (CR) which counts
the citations received by each author. We create three CR variants: uniform, individual-
ity, and position. For each citation received, uniform assigns the same merit to all of the
authors in publication (i.e., merit = 1), individuality equally divides the merit for all the
authors (i.e., merit = 1

|A| ), and position gives more credit to authors whose name appears
first in the publication (first author: merit = 1, second author: merit = 1

2 , third author:
merit = 1

3 , . . .). Table 7 shows the results obtained for all STOAmethods and 5 OTARIOS
variants over all networks. For each network, we calculate NDCG and MRR for the top-
5, 10, 20, 50 and 100 authors, and compute their mean values. Furthermore, we compute
the mean NDCG and MRR across all networks.
In our experiments, SCEAS is the best STOA method, obtaining the highest mean

NDCG (0.208) and the lowest mean MRR (691). The CRposition method obtained the
lowest NDCG mean (0.154), while NewRank obtained the highest mean MRR by a con-
siderable margin (4091). An important aspect to highlight is that CRindividuality, despite
being a baseline strategy, obtained the second highest NDCG and MRR across the five
networks, among the STOA methods.
With respect to OTARIOS variants, we tested 53 variants and 21 of them obtained

higher meanMRR andmean NDCG than the best STOAmethod, SCEAS. The best mean
NDCG andmeanMRR that OTARIOS variants obtained were 0.246 and 567, respectively.
Assuming that both NDCG and MRR measures have the same weight (i.e., are equally
important), the best OTARIOS variant is (AP+A+AW ), which uses (a) recency and vol-
ume to measure productivity, (b) recency to measure outsiders influence, and (c) recency

Table 7 Comparison of state of the art (STOA) methods against OTARIOS over all networks

The value of each cell is the metric’s mean value for that network (e.g., the mean NDCG and MRR of AP+A+AW for network NET is
highlighted in Table 6). In bold we highlight the highest score for each metric. The best STOA method (i.e., SCEAS) is colored in
red and the best OTARIOS variant is colored in blue. Inside parentheses we show the gain of OTARIOS versus SCEAS, i.e., GNDGC
and GMRR , respectively
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and individuality tomeasure the score term. This variant obtained ameanNDCG of 0.245
and a mean MRR of 570. We compared the gain of this variant with respect to STOA
methods, using Eqs. 8 and 9. Compared to RLPR, a topology-based author ranking algo-
rithm, we achieved a gain of 28% in terms of NDCG and 27% in terms of MRR. With
respect to the best feature-enriched author ranking method (SCEAS), we achieved a gain
of 18% in terms of NDCG and 21% in terms of MRR.

GNDGC = OTARIOS<NDGC> − STOA<NDGC>

min(OTARIOS<NDGC>, STOA<NDGC>)
(8)

GMRR = STOA<MRR> − OTARIOS<MRR>

min(OTARIOS<MRR>, STOA<MRR>)
(9)

STOA performance on outsider and insiders network

In our previous experiments, STOA methods only used the author citation network of
the insider authors (i.e., outsiders were not part of the network). However, for the OTAR-
IOS variants, since we require outsiders to calculate outsider influence features, we used
a network consisting of insiders and outsiders. In order to demonstrate that we were
not unfairly comparing our variants with other methods with less information, we tested
STOA algorithms using the complete network (i.e., outsiders + insiders) and compared
those results with the ones obtained using only the insiders network. Table 8 shows the
results of this comparison 4. The results indicate that, on average, the STOA methods
obtained a negative gain of −17% for NDCG and −25% for MRR when using the full
network. The NewRank and SCEAS methods were the ones that presented the highest
losses (−54% and −30% on NDCG, and −63% and −37% on MRR). These methods were
among the top STOA methods when considering only the insiders network, as a result
the complete network had a higher negative impact when compared to other methods
that obtained worse results when considering only the insiders (e.g., NewRank). The only
method that presented an overall positive gain was YetRank in terms of NDCG. This test
demonstrated that adding more authors to the citation network decreases the overall per-
formance of STOAmethods when there is incomplete information about the new authors
(i.e., their received citations are unknown) and they are treated equally as those authors
whose full citation network is known. Thus, this further corroborates our hyphotesis that
incomplete networks should be carefully divided into fully known nodes and partially
known nodes.

Conclusions
In this paper, we described OTARIOS, a new feature-enriched author ranking algorithm,
and compared it against (a) biliometrics, (b) topology-based author ranking algorithms,
and (c) feature enriched author ranking algorihtms. Previous author ranking methods
did not combine relevant information effectively, such as the author’s productivity and
the citations’ relevance. Furthermore, previous methods assume that the full network is
known, which is not true for most real cases. We thus divided the network into insiders
(i.e., the authors that we want to rank) and outsiders (i.e., the authors that cite insiders but
we do not rank). In our experiments, we analysed which publication/citation information
is more relevant and how it can be efficiently combined.

4Gains estimated using Eqs. 8 and 9
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Table 8 Gain of using outsiders as part of the network in the score diffusion step

The fullnet versions incorporate outsiders in the network, i.e., they convert outsiders in insiders. Note that OTARIOS does not use
outsiders as part of the network in the score diffusion step, only in the initialisation step. The mean of both NDCG and MRR is
highlighted, showing that, overall, STOA methods’ performance degrades when they use outsiders as insiders

We obtained the best results when OTARIOS considers (i) the author’s publication
volume and publication recency, (ii) how recently his work is being cited by outsiders,
and (iii) how recently his work is being cited by insiders and how individual his work
is (i.e., publishing with few authors is better). This evaluation was performed on a set
of five networks where the ground-truth was the number of best awards in the confer-
ences belonging to the specific network. Our tests showed that OTARIOS is > 30% more
efficient than topology-based author ranking methods, namely PageRank, and is > 20%
more efficient than other feature-enriched author ranking methods. We demonstrated
that OTARIOS efficiently uses outsiders (i.e., authors whose received citations are not
fully known) on the score initialisation process. Furthermore, we showed that adding
outsiders to the score diffusion process decreases the performance of STOA algorithms.
These results indicate that current methods have poor results on networks where some
nodes have missing information (which is true for most real cases), while OTARIOS is
able to use nodes with limited information adequately.
Finally, regarding future work, we plan to test OTARIOS on paper-level citations and

verify that we are also capable of improving that approach from the STOA.We also plan to
develop a method to automatically identify outsiders (e.g., insiders with low density in the
citation network, or insiders with low co-authorship ratio to other insiders) and analyse
if this strategy improves author-ranking. Furthermore we intend to tackle the problem of
the impact of citation manipulation on the rankings (Ioannidis 2015) not only by remov-
ing self-citations (our current strategy) but also by decreasing the credit given by citations
between colleagues and collaborators. For the purpose we plan to use a multi-layered
network that augments the author citation network with the co-authorship network.
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