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Abstract

The temporal changes in complex systems of interactions have excited the research
community in recent years as they encompass understandings on their dynamics and
evolution. From the collective dynamics of organizations and online communities to
the spreading of information and fake news, to name a few, temporal dynamics are
fundamental in the understanding of complex systems. In this work, we quantify the
level of engagement in dynamic complex systems of interactions, modeled as
networks. We focus on interaction networks for which the dynamics of the interactions
are coupled with that of the topology, such as online messaging, forums, and emails.
We define two indices to capture the temporal level of engagement: the Temporal
Network (edge) Intensity index, and the Temporal Dominance Inequality index. Our
surprising results are that these measures are stationary for most measured networks,
regardless of vast fluctuations in the size of the networks in time. Moreover, more than
80% of weekly changes in the indices values are bounded by less than 10%. The indices
are stable between the temporal evolution of a network but are different between
networks, and a classifier can determine the network the temporal indices belong to
with high success. We find an exception in the Enron management email exchange
during the year before its disintegration, in which both indices show high volatility
throughout the inspected period.

Keywords: Engagement indices, Interactions intensity, Dominance, Gini-index
inequality

Introduction

Dynamic complex systems of interactions are often modeled as a sequence of snapshots of
networks in time (Holme and Saramaki 2012). While this is a rather simplistic representa-
tion, it is widely accepted that the structural properties of a network play a significant role
in determining its actors’ behavior (Granovetter 1983; Burt 2000; Haynie 2001; Spencer
2003; Snijders 2005; Kossinets and Watts 2006; Perra et al. 2012). The last decade’s abun-
dance of temporal information paved the path to a further understanding of the dynamics
of networks (Lazer et al. 2009; Artime et al. 2017) and the effect on their actors (Fowler et
al. 2008; Phelps 2010; Hellmann and Staudigl 2014; Ilany et al. 2015).

The intensity of interactions, also referred to as ties’ strength, has long been recognized
as a fundamental property (Barrat et al. 2007). Human contacts are of different dura-
tions (Barabasi 2005; Onnela et al. 2007); Human relationships are of varying strength
(Granovetter 1977); Human flight fluxes differ across routes (Opsahl et al. 2008), and
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more. The heterogeneity in edge intensity, i.e., the duration, strength, or capacity of
the above interactions has been modeled utilizing edge weights and weighted networks
(Barrat et al. 2007; Barrat et al. 2004; Newman 2004; Opsahl et al. 2010). The intensity of
interactions (Opsahl et al. 2008) was used in a variety of applications, such as an aiding
tool in the assessment of the level of conflicts within organizations (Nelson 1989), and the
understanding of human communication patterns (Gilbert and Karahalios 2009; Miritello
etal. 2011).

Here, we utilize weighted networks modeling to research temporal indices of engage-
ment, such as average intensity and participation inequality in online person-to-person
interaction networks, termed connection networks (Holme and Saraméiki 2012). Connec-
tion networks may refer to organizational email networks, online forums and messaging
apps, and online discussions (Eckmann et al. 2004; Sun et al. 2016).

Temporal measures of engagement are of interest as they give a measure of member
participation, interest, influence, dominance, and more. In organizations, where frequent
changes were found to be the norm (Burke 2017), following the temporal intensity and
dominance of the interactions can help in identifying fluctuations in involvement and
engagement prior, during, and after a planned organizational change, as well as assess
the reactions to a shock. These temporal measures are of interest, also in the case of
online social networks engagement, where participation was found to be dominated by a
few (Nielsen 2006). Recent studies, however, found that participants change their active
role in the network and their engagement over time (Sonnenbichler 2010). Currently, it is
unclear whether these changes affect the temporal measures of network activity.

To study the temporal behavior of a network, we define indices of average connection
intensity and nodal dominance inequality in temporal networks and measure these quan-
tities over several real-world networks. Surprisingly, we find a stationary behavior of
networks over time, regardless of massive fluctuations in their size. Our results demon-
strate that networks converge to a steady-state of engagement, irrespective of significant
variations in the number of participants. Deviations from the steady state are rare and do
not correlate with a change in size.

Of specific interest is the case of the Enron managers email network. The dataset was
released in a court order after the company has disintegrated, and has been recently used,
together with the known set of events, for change point detection (CPD) schemes (Peel
and Clauset 2015; Miller and Mokryn 2018). Unlike anomaly detection techniques that
scan for temporal fluctuations from the norm, CPD schemes try to infer the points in
time when networks change their norm and thus are termed points of change. We find
that throughout the period inspected in the Enron managers email network, both indices
cannot be seen as stationary, and the fluctuations in the network’s temporal indices are
significantly higher than the ones we found for all other networks.

Our results determine that networks differ by the engagement indices we defined, and
can be differentiated by them. To further verify this result, we ran a classification experi-
ment over the weekly indices, and find that the classifier can classify the indices tuples to
their corresponding network with high validity.

Our surprising yet robust results have implications to the inference of the behavior of
complex systems over time and the dynamics of networks. Of interest is the understand-
ing of the origin of the different engagement indices between networks, and whether
they can be utilized to characterize networks. The robustness of the result across size
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changes in the networks is of importance for the understanding of stationary properties,
and their implications for dynamic systems and collective behavior.

Related

Complex systems of interacting elements, from human (social and organizational) to
physical and biological ones, can be modeled as interaction networks, with nodes repre-
senting the elements and edges representing their interactions. When the interactions are
dynamic, i.e., human and social interactions, a complete model that captures the longi-
tudinal evolution of the system is comprised of a sequence of networks, each portraying
a snapshot of the system at a single point in time. Other models do exist (Holme and
Saraméki 2012). In this work, we follow the modeling of sequential periods similarly to
(Pan and Saramaki 2011).

Temporal networks are viewed in recent years as a natural way to investigate dynamic
systems (Holme and Saraméki 2012; Artime et al. 2017; Sekara et al. 2016; Li et al. 2017),
where “the system under study should consist of agents that interact pairwise, so that
the interactions have both some degree of randomness and some regularity” (Gautreau
et al. 2009; Holme and Saraméki 2012). Dynamic online interactions have been studied
to model conflicts (Yasseri et al. 2012), temporal ego networks and strength of links over
time (Karsai et al. 2014).

In this work, we model the dynamics of electronic one-to-one communication such
as emails and instant messages. The case of online forums can be considered as a one-
to-many communication (Holme and Saramiki 2012) yet, in this work it was modeled
utilizing the replies and hence also as a form of one-to-one communications.

Temporal networks of electronic messages have been investigated mainly in the con-
text of information spreading and contagious (Rodriguez et al. 2011; Gomez-Rodriguez
et al. 2012; Rosvall et al. 2014; Nadini et al. 2018). Structural dynamics and properties of
temporal networks also receive much attention, such as temporal paths length, centrality,
community and motif measures (Pan and Saraméki 2011; Perra et al. 2012; Kovanen et al.
2011; Taylor et al. 2017).

Complex networks of interactions are dynamic and heterogeneous by nature (Corrado
2019). One of the cornerstones of heterogeneity is the nodal degree, or in weighted net-
works, node intensity. Intensity patterns are heterogeneous with a few nodes having a
significantly higher degree or intensity level, hence more dominant in the network (Barrat
et al. 2004; Barrat et al. 2007; Opsahl et al. 2008; Corrado 2019). Dominance in systems
mostly refers to the dominant role of its members. In social networks of interactions,
groups of roles are inferred by analyzing the structure of networks (Gupte et al. 2017;
Costa and Ortale 2018). Studies found that in online social networks the most prominent
group is that of active influencers, estimated at merely 1% of the members, while account-
ing for almost all the network activity (Nielsen 2006). Role groups differ in size. Nielsen
(2006) found that most online communities have a highly unequal role group sizes, with
90% of members never contributing, 9% that contribute little, and 1% that account for
almost all network activity. Interestingly, roles are temporal and members often transition
between roles (Sonnenbichler 2010).

Hence, we continue to define measures of engagement in networks, and explore their
temporal nature. For a suggested organizational change, for example, such measures can
determine levels of engagement in the change: If communication inequality is low, then
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many participate in discussions. If inequality is high, only a few dominate the conver-
sation and are actively involved. The intensity of the conversations can be identified by
comparing to the intensity in other periods.

Network intensity measures

We are interested in capturing both the average intensity of interactions, regardless of the
number of different interactions, and the interactions variance in a network, which is a
measure of inequality. A measure of average intensity of the edge interactions in a net-
work differs from average nodes’ strength, as the measure should not favor the number
of active connections a node has. Measures of nodal strength favor nodes that have many
active connections. Additionally, we suggest to measuring the inequality of nodal interac-
tion in a network. Figure 1 illustrates two networks, each consists of three nodes and their
interactions. In the examples illustrated, on the left (a) node B interacts intensively with
A and C, while on the right (b), all three nodes communicate with each other at the same
intensity. An estimate of a network average intensity level should account for the number
of active connections in a network. In the case of Network (a) there are only two such
connections, and in the case of Network (b) there are three. We devise indices that would
show that in Network (a) the average intensity is four, while the nodes show high inequal-
ity, and in Network (b) the average edge intensity is two, and the nodes engage equally. To
the best of our knowledge, current measures do not capture the intensity and inequality
of Network (a) as described here.

Average interaction intensity

We describe here a measure for deriving a network average edge intensity level. To com-
pute the average edge intensity in a network, We start with a measure devised for nodes in
a weighted network (Opsahl et al. 2010). This measure allows considering for each node
not only the number of nodes in the network it interacts with but also the intensity level
of these interactions:

Cpe (i) = k79 . 5 1)

1

W=5 W:2

(a) (b)

Fig. 1 Two networks with three nodes and weighted edges. The width of the edges corresponds to their
weights. The panels present two different interaction patterns and edge intensities
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Where alpha €[ 0, 1] is the tuning parameter, k; is the number of nodes the focal node i is
connected to, and s; is its weighted degree, computed by:

N
si= ) wj 2)
j

Where N is the total number of nodes in this network, and w;; is a non-zero value for the
strength of edges that disseminate from the focal node i.

The tuning parameter, o, determines the importance of each of these parts. Wheno = 0
the edge strength is ignored, and only its existence is taken into account, resulting in a
measure that is similar to the one in Freeman (1978). Conversely, when ¢ = 1 only the
edges weights are considered, while the binary structure is not (Opsahl et al. 2010).

Taking a network-wide approach, we continue and define the weighted sum of the node
degrees given the tuning parameter « as follows:

N N
bu=D CR =1 k' s ®)
i=1

i=1

¢ is a metric that depending on the chosen value for the tuning parameter « describes
with a scalar the weighted sum of the network degrees. Specifically, when the tuning
parameter « is set to zero the metric ¢y—o corresponds to the number of edges in the
graph; Alternatively, when the tuning parameter « is set to one the metric ¢,—; corre-
sponds to the sum of all edge weights in the network, that is, the overall intensity of
interactions in a network.

We then propose a level of intensity index for networks that is the ratio between the
overall intensity of edge interactions in the network and the binary number of edges.
We formally propose the following index:

_ Pzt

B ¢Dt =0 (4)

v
¥ > 1 holds for all graphs. In the case where edge weights are based on a ratio scale
(Opsahl and Panzarasa 2009) then ¥ is bounded by that ratio. Otherwise, it is unbounded.
When i ~ 1 the network intensity level is very low, and the vast majority of edges have a
low weight. In social networks of interactions, low intensity corresponds to a low number
of interactions between any two members in the network. Accordingly, when ¢ >> 1,
the network intensity level is high. High intensity, in this case, implies the existence of
edges representing interactions of high volume, also referred to as strong ties.

In this work, we did not take the direction of the interactions into account, yet
clearly, the intensity index can be computed for in-degrees and out-degrees separately.
In organizations, for example, it corresponds to those disseminating information and
those on the receiving side; in online forums to conversation initiators and responders,
correspondingly.

Temporal network intensity index
Intensity level can be computed over the entire timeline of a network. To understand
how the intensity changes with time or in response to events a temporal definition is
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needed. We continue then to propose a temporal index of intensity. Formally, we propose
a measure of Temporal Network Intensity as follows:

 $u1(Go)

= 5
Pa=0(Gr) )

¥ (Go)

Where G, 7 €[ 1..T] is a sequence of graphs representing consecutive network snapshots
in a period T.

Interactions indicate how information flows in a network. Understanding the flow of
information in a network over time is fundamental in the research of social networks
and organizations. The proposed temporal intensity metric enables an additional layer
of knowledge on the flow of information, as it gives a measure of volume. It captures
interactions occurring during a measured period that do not change the structure but
still carry additional information on the complex system behavior. It thus enriches our
understanding of the network’s temporal complexity. For example, today’s organizations
are in a constant state of change (Burke 2017). Following the temporal intensity of the
interactions in an organization can help in identifying fluctuations in the level of intensity

in the organization prior, during, and after a planned organizational change.

Network dominance inequality index

Complex networks are heterogeneous with a few dominant nodes. We explore here the
measure and extent of this inequality. Measuring the disparity in the level of communi-
cation, for example, enables an understanding of the variance in the level of members’
engagement in a network.

We continue to study the inequality in nodal dominance in a graph while considering
the intensity of nodes’ interactions. In organizations, for example, when a change is intro-
duced, high interactions can be found among its supporters and opposers. Members that
have yet to make up their mind would exhibit less intensity in their interactions (Burke
2017). In this case, understanding the level of inequality in the intensity of the partici-
pation can aid in understanding the balance between change-involved members versus
those who are not.

We measure the inequality in nodal interactions dominance utilizing the Gini inequal-
ity index (Gini 1921; Atkinson 1970) for measuring income inequality. The Gini index
is a measure of the mean absolute difference, and in our case, the difference is in nodal
engagement, i.e., weighted degree. To follow the temporal changes of dominance in a net-
work, we use a temporal measure of this index per period, which we term Dominance
Inequality.

Measuring temporal intensity and dominance inequality in real networks

To measure our temporal indices in real networks we collect six different datasets of real
networks of interactions. We concentrate on contact networks, i.e., organizational emails,
online forums, and messaging applications, as detailed in Table 1. To capture the evo-
lutional dynamics of the longitudinal evolution of the system we follow the modeling of
temporal sequential periods similarly to (Pan and Saraméki 2011) and divide the temporal
information to a sequence of networks, each portraying a snapshot of the system during

a week.
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Table 1 Real-World datasets descriptions

Name #Nodes #Edges Duration
min, max min, max (in weeks)

AskUbuntu (Paranjape et al. 2017) 1458, 2832 2108,4325 198
Facebook wall posts (Viswanath et al. 2009) 1566, 11325 1514, 13384 124
Wikipedia conflict (Brandes et al. 2009) 2011, 7250 3749,33623 156
Wikipedia talk (Sun et al. 2016) 15154, 53236 26494, 73356 132
Manufacturing emails (Michalski et al. 2011) 104, 148 587,1335 38

EU Research institutional emails (Paranjape et al. 2017) 52,667 46,3197 74

Enron management emails (Klimt and Yang 2004) 33,107 27,212 78

Robustness of the temporal network intensity

For each of the datasets described in Table 1! we calculate the weekly temporal network
intensity, as defined in Eq. 5. In Fig. 2 the x-axis denotes the timeline, which is different
for each network. The blue dots correspond to the calculated temporal network inten-
sity, and their values are denoted by the y-axis. The network size, as measured by the
number of weekly nodes, is denoted by light grey, and its scale is denoted by the right
y-axis. Surprisingly, the networks exhibit a rather stable temporal behavior in their inten-
sity, regardless of the fluctuations in size. The Facebook network, on the lower left panel,
shows a steady increase in network size from several hundreds up to more than 10000
weekly participants. Still, the average temporal intensity is quite robust. On the upper
left panel we see the temporal intensity of the AskUbuntu forum over time. The average
intensity hardly changes in time, despite large fluctuations in the number of participants
in the discussions over the different periods. Similar results are seen for the Wikipedi-
aConflict dataset, in the left middle panel. Interestingly, in the Wikipedia talk network, on
the upper right panel, we see that weeks that have sparked in the number of participants
are somewhat less intense, on average. It is interesting that despite the spike in general
interest during these weeks, the average intensity of conversation has not increased, and
is even lower. It is also interesting to note that although the Intensity is not bounded in
value, in all these networks the average intensity is low (minimal intensity is calculated
from zero as explained above).

To understand the exact nature of the temporal network intensity in networks we con-
tinue to plot the PDF of the Temporal Network Intensity as described in Eq. 5, i.e., with
a minimal intensity of 1, for each network, as denoted in Fig. 3a. The measured net-
works have a vivid normal distribution of intensity level over the consecutive weeks of
activity. We continue to understand the average temporal change between consecutive
weeks by computing the percentage of change between every two consecutive weeks.
Figure 3b denotes the cumulative distribution of the relative change in the measured
Temporal Network Intensity between every two consecutive weeks for each dataset. For
both AskUbuntu and Facebook less than 0.05 change in the temporal activity accounts
for more than 90% of the consecutive weeks. The network of EU emails is also almost as
stable. In all networks, however, more than 80% of the changes are of less than 15%.

Robustness of temporal dominance inequality
Similarly to the Temporal Network Intensity we plot in Fig. 4 the values for the Temporal
Dominance inequality for the networks. First, it is interesting to note that the measured

IThe Enron Management dataset will be discussed in detail in “A network nearing its end: enron emails” section
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Fig. 2 Temporal average intensity for the six different datasets, denoted by the strong blue line. The values
are denoted by the y-axis to the left. The light grey dashed line denotes the number of participating nodes
during each period, i.e., the temporal size of the network. The size scale (i.e, number of nodes) is given by the
right y-axis

inequality is in the range of [0.4,0.7] for all measured networks. Intuitively, an Erdos-
Rényi (ER) random network (Erdos and Rényi 1960) would yield very low inequality
values, as all nodes have a similar chance for communicating, and a pure Preferential
Attachment (PA) (Barabdsi and Albert 1999) network would give a very high inequality
value. As the measured networks are known to be heterogeneous, we expect the inequal-
ity to be rather high. The somewhat low value of inequality can be attributed to the fact
that we measure the undirected graph. Indeed, when measured over a directed graph
the inequality results were higher. More importantly, though, is that also for this metric,
temporal results are mostly stationary for each network, and differ between the net-
works. Fig. 5(a) denotes the Temporal Network Dominance probability distribution, and
Fig. 5(b) denotes the cumulative distribution of the changes in the measured Temporal
Network Dominance between every two consecutive weeks, for each dataset. Almost in
all datasets the change in the dominance inequality between the weeks is very low. For
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Fig. 3 Aggregated network measures: a The PDF of the weekly Temporal Network Intensity for each dataset.
b The cumulative distribution of the relative change in the measured Temporal Network Intensity between

every two consecutive weeks for each dataset
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both AskUbuntu and Facebook the change is mostly negligible. Wikipedia edits is the

network with the largest weekly change in dominance, yet for 80

A network nearing its end: enron emails

An important question is how would the devised metrics behave for the Enron dataset.
We deviate here for a paragraph, to give the needed background on the once billion-
dollar company known for its Bankruptcy in December of 2001 and its disintegration in
the following year. Enron, originally a gas company, has “created Enron Online (EOL) in
October 1999, an electronic trading website that focused on commodities. Enron was the
counterparty to every transaction on EOL; it was either the buyer or the seller.. When
the recession hit in 2000, Enron had significant exposure to the most volatile parts of the
market. By the fall of 2000, Enron was starting to crumble under its own weight”(Segal

2019). Shortly after its demise, the company’s entire email exchange was released by a

judge order.
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Fig.5 Aggregated network measures: a The PDF of the weekly Temporal Dominance Inequality for each
dataset. b The cumulative distribution of the relative change in the measured Temporal Dominance
Inequality between every two consecutive weeks for each dataset
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Given the known set of events and their timeline, and the availability of the entire man-
agement email corpus, Enron’s emails are used for change point detection algorithms,
who compare their found events with actual ones (Peel and Clauset 2015; Miller and
Mokryn 2018).

We checked our indices over the Enron management emails, on a weekly basis, from
August 2000 to March 2002. Our intriguing results, presented in Fig. 6a show that the
Enron network is different from the other networks examined in terms of the range of
Temporal Network Intensity index and the percentage of changes measured in the index.
The network displays Temporal Network Intensity in the range of 3.0 — 12.0, well above
the index range for the other networks. In addition, the index volatility is very high and
the changes between weekly measurements are big. The Temporal Dominance Inequality,
as presented in Fig. 6b, while is similar in range to that of other networks, also shows high
volatility compared to the other networks.

Overall, during the entire checked period both the Temporal Networks Intensity and
the Dominance Inequality indices exhibit large weekly changes that unlike the rest of the
networks, cannot be defined as stationary.

Predicting a network from its engagement

The networks examined were characterized by stability in two selected indices, the activ-
ity index and the Gini index. This stability comes both in the range of the values measured
for each network over time and in the level of changes within the indices between suc-
cessive periods. In measuring the distribution of the percentage of changes between
successive periods it appears that volatility of up to 0.5 in the Temporal Network Inten-
sity covers over 90% of the network’s operating time. Similar results were obtained for
the Dominance Inequality index. The values measured for the indices between networks,
however, differ by 0.4 to 0.7.

To examine how typical are the Temporal Network Intensity and the Temporal Dom-
inance Inequality indices for each network we perform a classification task over the
temporal indices with the target of classifying the class (dataset) that produced it. We
perform the experiment over all seven datasets as appear in Table 1.

Classification methodology: Our target function is to classify to seven different
classes, each corresponds to a network dataset. Hence, we decided to avoid the binary
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classifiers, like support vector machine, which will enforce additional algorithms like
"one-vs-one" or "one-vs-all" to compare its classification efficiency and calculate the
overall confusion matrix. Also, as our features have only two dimensions (Inequality,
Activity) we skipped classifiers that focus on dimension reduction, such as neural net-
works. We therefore chose three multiclass classifiers. All are well known, robust, yet
simple classifiers. The first is the K-Nearest Neighbors (KNN) classifier. Several well-
known algorithms are implementing KNN such as Brute force, K-D tree, and more. We
utilized (Muja and Lowe 2009) to automate the algorithm configuration. In addition, we
also ran a Decision Tree (Breiman 2017) and Random Forests (Breiman 2001). We ran
the classification using Python Scikit-learn (Pedregosa et al. 2011) with five folds cross-
validation (Kohavi and et al. 1995) and calculated the Precision, Recall, Accuracy, and F1.
We summarize the results in Table 2.

Our classes (datasets) were not equal in size, when considering the number of weeks
(see Table 1). We, therefore, employ two known balancing techniques. The first is multi-
plying the small datasets to balance the scale of each class; the other is Stratified Folds that
preserves the probability distribution of each class for all folds (Kohavi and et al. 1995).

Classification Results: We present the results for each classification algorithm and
each balancing method in Table 2.

All algorithms were able to infer with F1 in the range of [ 0.75, 0.85] and high accuracy
the correct network dataset from its weekly indices over all folds. To test the dependency
of the success per class, we repeatedly re-ran the tests while excluding one class (dataset)
at a time, and compared the overall results. The difference in the results was insignificant
across all experiments, showing that the overall result is robust across the datasets.

Figure 7 visualizes the weekly indices for each dataset while coloring each
dataset differently over a planar space. The visualization indicates a limited cen-
ter of mass for most networks. The Enron dataset again shows a wide variety in
the indices between the weeks, and is typically much more intense than the rest
of the networks.

Discussion and conclusions

In this work, we set to understand how temporal engagement in networks changes
with time. To that end, we defined two indices to capture the temporal network
activity. The first, Temporal Network Intensity, can be roughly described as the
average edge intensity in the network over a period. The second, the Dominance
Inequality, is a measure of the engagement variance. Our surprising results are that
for most emails and forum networks checked, the indices were stationary, implying a

Table 2 Classification results according to the Intensity and Inequality features

Classifier Balancing Accuracy Precision Recall F1
Avg,Std Avg,Std Avg.Std Avg.Std
KNN Stratified fold 0.83,0.04 0.83,0.03 0.85,0.04 0.86,0.01
KNN Data multiplication 0.87,0.01 0.88,0.01 0.87,0.01 0.87,0.01
Decision Tree Stratified fold 0.84,0.03 0.84,0.03 0.85,0.02 0.85,0.01
Decision Tree Data multiplication 0.90, 0.01 0.90, 0.01 0.90, 0.01 0.89,0.01
Random Forest Stratified fold 0.86,0.03 0.86,0.03 0.87,0.03 0.86,0.03

Random Forest Data multiplication 0.95,0.01 0.95,0.01 0.95,0.01 0.95,0.01
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Fig. 7 Planar view of the weekly measured metrics, Activity Intensity (axis x) and Dominance Inequality (axis
y) for all datasets

steady state. For a network known to be nearing a disintegration, Enron, the indices
were volatile.

A similar stationary value was found in Gautreau et al. (2009) for the average degree of
the flux of people from airports. However, airports’ physical limitations may give a plau-
sible explanation for this measure. In the datasets examined in this work these limitations
do not exist. Interestingly, both our indices can be derived utilizing the average degree. We
believe that these findings need to be further researched over a wider variety of networks
exhibiting different dynamics.

The robustness of the indices regardless of significant size changes of the underlying
network in time, is itself intriguing. For example, when the size of the network decreases,
in a process of preferential detachment it is expected that the level of engagement and
hence the indices would be also effected. We intend to further research this counter-
intuitive result.

We focus here on the complex temporal interactions and utilize them to gain an under-
standing on the system’s temporal behavior. By moving from a nodal-centric view to an
interaction-centric view, we suggest a novel understanding on the dynamics of complex
networks. Lastly, our result show that the indices we devised fluctuated significantly in
a network that was dealing with a shaky situation that let to the company’s disintegra-
tion. In a future research, we intend to further understand the behavior of the indices for
different network models and dynamics.

Abbreviations
PDF: Probability Distribution Function; CDF: Cumulative distribution function; CPD: Change point detection
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