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Abstract
This paper describes the implementation of biclustering algorithm BiClusO using
graphical user interface and different parameters to generate overlapping biclusters
from a binary sparse matrix. We compare our algorithm with several other biclustering
algorithms in the context of two different types of biological datasets and four
synthetic datasets with known embedded biclusters. Biclustering technique is widely
used in different fields of studies for analyzing bipartite relationship dataset. Over the
past decade, different biclustering algorithms have been proposed by researchers
which are mainly used for biological data analysis. The performance of these
algorithms differs depending on dataset size, pattern, and property. These issues create
difficulties for a researcher to take the right decision for selecting a good biclustering
algorithm. Two different scoring methods along with Gene Ontology(GO) term
enrichment analysis have been used to measure and compare the performance of our
algorithm. Our algorithm shows the best performance over some other well-known
biclustering algorithms.
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Introduction
The rapid growth of advanced computer-aided technology is creating a huge amount
of high dimensional and heterogeneous data in different fields of study. Sometimes
such data form a complex network which is very difficult to analyze by conventional
database structure. In order to find the gist information from these data of complex
structure, network analysis and graph clustering algorithms have evolved. A bipar-
tite graph is a network of two disjoint sets of nodes where each edge connects a
node from one set to a node from the other set. No edge is allowed within any sin-
gle set. A bicluster is a high density (in terms of connected edges) subgraph of a
bipartite graph. When a bicluster is fully connected by all possible edges then it is
called a biclique. There are various applications of biclustering in different fields of
study. In biology, gene expression under certain conditions forms a bipartite network
which helps to understand the cellular response, disease diagnosis and pathway analy-
sis (Beatriz et al. 2015; Andrew and Halappanavar 2015). Biological network analysis of
the pairwise combinations of protein, miRNA, metabolite, conserved functional subse-
quences, and factor binding sites can predict or understand different cellular mechanisms
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(Gurkan and Yang 2007; Rui and Madeira 2014; Shu et al. 2007). In text mining, content
related document searching is done using biclustering where rows represent different
document types and columns represent frequently used keywords in the documents
(de Castro et al. 2007; Arindam et al. 2007). In a social network, finding a common group
of people with different shared interest are analyzed by biclustering (Dmitry et al. 2012;
Qinghua 2011).
Some biclustering algorithms have been implemented which usually produce the tex-

tual presentation of output and are widely used mainly for analyzing biological data
(Cheng and Church 2000; Lazzeroni and Owen 2002; Preli et al. 2006; Murali and Kasif
2002; Yuval et al. 2003; Guojun et al. 2009; Bergmann et al. 2003; Hochreiter et al. 2010;
Tanay et al. 2002). Most of these implementations do not have overlapping controlling
parameter or technique to separate bicliques from bicluster set. Moreover, only a few
algorithms have been implemented with comprehensive visual presentations of biclusters
(Santamaría et al. 2014; Streit et al. 2014; Heinrich et al. 2011; Gonçalves et al. 2009).
Researchers have compared the performance of these biclustering algorithms by using
artificial data and real biological data (Preli et al. 2006; Eren et al. 2012; Li et al. 2012).
Due to performance variations mentioned in literature, it is very difficult to make the
right decision to select an efficient biclustering algorithm. Optimal parameter selection
for these algorithms is another important issue which needs persistent trial. We imple-
ment our algorithm using GUI and two different overlapping controlling parameters
which allow the user to extract effective biclusters as well as bicliques. We selected five
different biclustering algorithms BiMax, Spectral, CC, Plaid and xMOTIF for comparing
with our algorithm. We selected these algorithms based on three criteria 1) whether the
implementation is available in R 2) whether the algorithm can deal with binary dataset 3)
whether the algorithm can produce some reasonable number of biclusters(at least two).
Implementation of these algorithms is available within R package ‘biclust’ (Kaiser et al.
2018). We perform the comparison using three different types of datasets i.e. species-
VOC (volatile organic compound) relational data, gene-expression data of C. Cerevisiae
and synthetic data. We created synthetic datasets of known embedded biclusters of vary-
ing size and overlapping properties. A partial portion of the current work was published
in the conference of Complex Network 2018 (Karim et al. 2018). In the current work, we
report the extended results of the experiment with another biological dataset and on the
implementation of the algorithm using GUI.

Method of BiClusO
A bipartite graph also called a bigraph is a graph which consists of a finite number of ver-
tices consisting of two disjoint sets. Each pair of vertices in the same set is nonadjacent.
To denote a bipartite graph we use the notation G = (U ,V ,E) where U ,V are two dis-
joint independent sets of nodes and E is the set of edges connecting the elements of U
and V. By definition a bicluster is a subgraph induced by a pair of subsets U ′ ⊆ U and
V ′ ⊆ V such that the size and edge density of the subgraph are maximal. The goal of
the biclustering algorithm is to find a finite number of biclusters in a bipartite graph. If
a node from U or V is included in more than one bicluster then it is called overlapping
biclustering. Figure 1 illustrates the algorithm of BiClusO (Karim et al. 2019). Below we
describe different steps to generate a bicluster set from a bipartite graph in the context of
Fig. 1.
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Fig. 1 Biclustering method. amatrix representation (b)-(e)simple graph construction (row wise data folding);
g-j simple graph construction (column wise data folding); e, j applying DPClusO; f, k second node
attachment; l join cluster set

Matrix representation

A simple bipartite graph can be represented by a binary matrix (Fig. 1a). In a simple bipar-
tite graph, edge weights are confined to 0, 1. For a weighted graph, the edge weights can
be converted to binary values by scaling the weights and defining a threshold limit for 0
and 1. In Fig. 1a, the row and column labels belong to the sets of U and V respectively.
We place 1 to each cell of the matrix if there exists an edge between the corresponding
row label and column label in the original graph.

Simple graph construction

Figure 1a denotes a binary matrix of a simple bipartite graph where |U| = 7, |V | = 7. We
used data folding mechanism to generate two independent simple graphs involving the
elements of U and V separately. In the weighted graph of Fig. 1b, the edge weights are
determined based on common neighbors between corresponding nodes in the original
bipartite graph which we call relation number. For example, node u1 has neighbor set
{v1, v2, v3, v4} and u2 has neighbor set {v2, v3, v4, v5, v6}. So the relation number between
u1 and u2 is |N(u1) ∩ N(u2)| = 3. From Fig. 1b some of the edges are filtered out using
the relation number threshold <3 which generate the graph of Fig. 1c. Then Tanimoto
coefficient is calculated for each edge. For example Tanimoto coefficient between node
u1 and u2 is |N(u1) ∩ N(u2)|/|N(u1) ∪ N(u2)| = 0.5. Figure 1d shows the Tanimoto
coefficients for all the edges. Tanimoto coefficient of an edge measures the robustness of
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the relation between the nodes it connects. From Fig. 1d some of the edges have been
filtered out by setting the Tanimoto coefficient threshold >0.5, which makes the simple
graph of Fig. 1e. By following the same way, the simple graph of Fig. 1j has been created
involving the elements of set V.

Applying DPclusO

After applying both types of filtering the remaining graph shows a significant amount of the
reduction of less important edges. DPClusO (Altaf-Ul-Amin et al. 2012; Karim et al. 2017),
which was developed by extending the concepts of DPClus algorithm (Altaf-Ul-Amin et al.
2006; Altaf-Ul-Amin et al. 2006), can easily separate clusters from such simple graphs. The
overlapping controllingparameter of DPClusO can be used to generate overlapping clusters
to some extent. The dotted line in Fig. 1e and j shows the separable region of the clusters.

Second node attachment

After separating the clusters (u2,u3), (u5,u6,u7), (v5, v6) and (v2, v3, v4) as shown in
Fig. 1e and j, the corresponding neighbor of each element of the clusters are joined
by using their attachment probability. The attachment probability of each neighbor
node in a cluster is calculated by dividing the number of corresponding cluster nodes
attached to it by the total number of nodes in the cluster. After calculating the attach-
ment probability, some of the neighbor nodes are pruned by using attachment probability
threshold. We can extract the bicliques by setting the attachment probability to be 1.
In this above example we consider the attachment probability threshold >0.5. After
attachment we get four biclusters {(u2,u3), (v2, v3, v4, v5, v6)}, {(u5,u6,u7), (v5, v6, v7)},
{(v5, v6), (u2,u3,u5,u6,u7)}, and {(v2, v3, v4), (u1,u2,u3)} as shown in Fig. 1f and k.

Join cluster sets

Finally, four biclusters are listed in Fig. 1l by arranging the nodes fromU andV as first and
second set respectively. Sometimes finding biclusters from both sides create some dupli-
cate biclusters or similar biclusters with big overlapping. This duplicity can be removed
by keeping only one set from each duplicate pair. We also introduced the biclustering
overlapping coefficient which can be used to join or filter out similar biclusters to some
extent.

Implementation of BiClusO software
We implemented our algorithm using JAVA 2d graphics and swing control.We used JAVA
because it helps to run the program independent of any operating system. Users from
any field can easily run the jar file or executable file without any prior knowledge in a
programming language. Users can input matrix data in excel or text format and can inter-
act with the tool using different parameters. GUI implementation allows three different
types of view 1) matrix view and 2) graph view 3) hierarchical relation view. Also, user
can export the tabular format of cluster set arranged in descending order of their size.
Clustering a big graph and rendering it with large canvas is a challenge when additional
facilities like user interaction of rearranging nodes or edges are added. Due to this prob-
lem, we also added additional filtering based on size range and random choice to view the
partial portion of a large graph. Figure 2 shows the BiClusO software with bicluster sets
using tabular format (Fig. 2a), hierarchical view (Fig. 2b) and a single bicluster (Fig. 2c).
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Fig. 2 Implementation of BiClusO a) tabular format of biclusters b) hierarchical view of biclusters c) a single
bicluster

Overlapping parameters

We used here two different overlapping coefficients which are 1) simple graph clus-
ter overlapping coefficient and 2) bicluster overlapping coefficient. The first overlapping
coefficient measures the overlapping between two clusters while applying DPClusO to
the simple graph generated from the bipartite graph. If A,B are two simple clusters and
A ∩ B be the set of common number of nodes between them (Fig. 3a) then the simple
cluster overlapping coefficient is

SCov = (| A ∩ B |)2
| A || B | (1)

Bicluster overlapping coefficient measures the overlapping between two biclusters. This
measurement considers each bicluster as a biclique and finds the common blockmatrix in
terms of total block area occupied by them. If the node sets of two biclusters are denoted
by A1,B1 and A2,B2 (Fig. 3b). The block area which denotes the number of edges in each
bicluster is |A1| × |B1| and |A2| × |B2|. The common block area between two biclusters
is |A1 ∩ A2| × |B1 ∩ B2|. The overlapping coefficient can be expressed by the following
Equation

BCov = | A1 ∩ A2 || B1 ∩ B2 |
| A1 || B1 | + | A2 || B2 | − | A1 ∩ A2 || B1 ∩ B2 | (2)
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Fig. 3 a Simple cluster overlapping coefficient b bicluster overlapping coefficient

These parameters help the user to join and filter some of the biclusters and control
overlapping property of the generated bicluster set.

Computational complexity

A bipartite graph is a graph that consists of two disjoint sets of nodes, U and V, such
that each edge connects a node in U with a node in V, i.e., U and V are independent
sets. Let |U| = n and |V | = m and therefore, the bipartite graph can be represented
by a matrix of size n × m. The detail of the algorithm of BiClusO is available in Karim
et al. (2019). In BiClusO, calculating relation numbers between n(n − 1)/2 pairs of the
nodes of set U requires mn(n − 1)/2 computations (Fig. 1b). Therefore, the complexity
for this calculation is O

(
n2m

)
. Similarly, the complexity for calculating Tanimito coeffi-

cient is O
(
n2m

)
(Fig. 1d). Filtering the edges in the weighted graph and construction of a

simple graph using the threshold values of the Tanimoto coefficient and relation number
need n(n − 1)/2 or O

(
n2

)
computations (Fig. 1c and d. The computational complexity

for DPClusO algorithm is O
(
n3

)
where n is the total number of nodes in a simple graph

(Altaf-Ul-Amin et al. 2012; Altaf-Ul-Amin et al. 2006) (Fig. 1e). If the clusters generated
by DPClusO on the simple graph are of sizes p1, p2...pc, then assigning the second node
set to all the clusters needs p1m, p2m....pcm = (p1 + p2....pc)m computations. The value
of p1 + p2....pc is roughly equal to n. Thus the computational complexity for assigning
the second node by calculating the attachment probability is O(nm). So the total com-
putational complexity of biclustering on the first node set comprises of 1) weight graph
construction using relation number and Tanimoto coefficient 2) filtering and construc-
tion of simple graph 3) simple graph clustering and 4) second node attachment which is
in total O

(
2n2m + n2 + n3 + nm

)
. Similarly, the computational complexity considering

the second node set is O
(
2m2n + m2 + m3 + mn

)
.

Referencemethods and dataset selection
This section illustrates the reference biclustering algorithms, data selection and data
preparation for evaluating the performance of BiClusO.
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Reference BiClustering algorithms

We have chosen five other well-known biclustering algorithms namely BiMax, Plaid,
xMOTIF, Spectral, And CC (Chang and Church) for performance comparison with
BiClusO. These algorithms have been implemented in the R package ’biclust’ which we
utilized for our experiments. BiMax recursively divides the binary data matrix using a
different concentration of regions made by 1 and 0 and generates all maximal biclusters
(Preli et al. 2006). It can only work with binary data matrix. Plaid algorithm models the
data matrices with the sum of different layers and an assumed number of biclusters. It fits
the model by iteratively updating the different parameters (Lazzeroni and Owen 2002).
xMOTIF discretizes the data matrix by searching a set of rows following the same linear
order under a set of columns to find motif (Murali and Kasif 2002). Spectral algorithm
uses the singular value decomposition in eigenvectors to search the coherent value over
row and column where the variance is lower than a given threshold value (Yuval et al.
2003). CC uses the deterministic greedy method based on the mean square residue of a
submatrix where the score is lower than a threshold (Cheng and Church 2000).

Selection of dataset

We used two different types of datasets i.e. biological data and synthetic data. It is easy to
compare the performance of different biclustering algorithms when the properties of the
results are foreknown. Two different biological datasets are species-VOC (volatile organic
compound) data and microarray gene expression data of S. Cerevisiae. We evaluated the
performance of different algorithms by measuring the statistical significance of the gen-
erated biclusters in terms of biological properties. We also created synthetic dataset by
embedding biclusters with different physical properties. These physical properties help
us to measure the quality of the extracted biclusters by different algorithms.

Species-VOC data

The species-VOC bipartite dataset was collected fromKNApSAcK (Nakamura et al. 2014;
Afendi et al. 2011; Afendi et al. 2013; Abdullah et al. 2015) database. This dataset forms
a sparse matrix of dimension 710 species vs. 1760 VOCs emitted by those species under
different biological stress. We categorized these species under five different taxonomic
levels which are kingdom, phylum, class, order, and family. Usually, similar species group
under family level produce many distinct types of VOCs (Karim et al. 2018). However,
there are some common VOCs among such species groups.

Gene expression data

This dataset is the gene expression data of the species S. Cerevisiae (Brown et al. 2000;
Alvaro et al. 2002; Lægreid et al. 2003; Raghava and Han 2005; Altaf-Ul-Amin et al. 2014)
consisting of a matrix with dimension 2644 genes vs. 79 conditions. The data point in
each cell represents the logarithmic ratio of the expression levels of a particular gene
under two different experimental conditions. Each column represents n log-transformed
expression-level ratios of n genes for a single chip. We digitized the data by column-wise
transformation using the following formula.

Dij =
{
1, Mij ≥ avgj + th × sdj orMij ≤ avgj − th × sdj .
0, otherwise.

(3)
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Where avgj and sdj represent average and standard deviation of the jth column. The
threshold th is the value which determines the quantity of 1s to be set in the digital matrix.
After accessing three different threshold values (th = 0.5, 1 and 1.5) we considered the th
to be 1.5 which makes the digitized matrix as a sparse matrix.

Synthetic data

We created synthetic dataset of binary matrices using hypothetical relations between
genes and conditions. We inserted a block of 1s as embedded bicluster to such matrix
where 1 represents the differential expression of a gene under a condition. We changed
the overlapping property and size of the biclusters and constructed four different types of
such dataset: (1) equal size nonoverlapping, (ii) different size nonoverlapping, (iii) equal
size overlapping and (iv) different size overlapping. Each dataset is a matrix of dimen-
sion 100 genes vs. 100 conditions. Each bicluster of equal size nonoverlapping set has 10
genes and 10 conditions (Fig. 4a). Different size nonoverlapping set has a varying number
of genes between 5 to 10 and a varying number of conditions between 8 to 20 (Fig. 4c).
Each bicluster of equal size with overlapping consists of 18 genes and 18 conditions where
9 genes and 9 conditions are overlapped between biclusters (Fig. 4b). Each bicluster of
different size with overlapping consist of maximum 18 genes and 18 conditions with the
overlapping region varying between 1 to 8 for genes and 2 to 10 for conditions (Fig. 4d).
We introduced noise to the non-cluster region of each dataset by randomly inserting ’1’s.
Total 36 datasets were created with four types of variation and nine different noise levels
from 1% to 9%.

Fig. 4 Synthetic dataset with maximum noise rate
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Parameter setting

We used the default parameter setting recommended by different papers and the authors
of the biclustering algorithms (Preli et al. 2006; Eren et al. 2012; Li et al. 2012). In some
cases, we slightly changed the parameters to force the algorithm to generate at least a
minimum number of biclusters. For BiMax we set minimum row = 2, and minimum
column=2. For Spectral we set minimum row =2, minimum column =2, maximumwithin
variation =1, normalization = ’log’ and number of eigenvalue = 1. A high number of
eigenvalue for this algorithm creates a performance issue on calculation time. The recom-
mended value is 1. For xMOTIF we set sd=7, alpha=0.1, ns=10, nd=1000. For CC we set
alpha=1.2, delta = .0000005.We took delta to such small value to create at least two biclus-
ters. We set default parameter for Plaid algorithm of R BiClust package. For our algorithm
we set CD(Cluster density)=0.5, CP=0.5(Cluster property), Tanimoto coefficient = 0.33,
relation number = 5 and attachment probability = 0.5
Cluster density and Cluster property are default parameters for DPClusO algorithm.
From our previous experience on some actual dataset, the optimal setting for both CD and
CP is 0.5 (Eguchi et al. 2018; Hossain et al. 2018) which produced good results. Also user
can change the cluster density between 0.5 to 0.7. Most of the cases, the actual datasets
are sparse by nature. To select the best threshold on sparse matrix user can start with
relation number = 2 or 3 and Tanimoto coefficient = 0.33 (Karim et al. 2019). Tanimoto
coefficient ≥0.33 allows more than 50% similarity between 1s of two binary vectors. Very
high relation number and Tanimoto coefficient might exclude some nodes from the anal-
ysis (Karim et al. 2019). If the data is not sparse then Tanimoto coefficient threshold can
be adjusted between 0.4 to 1.0 depending on whether the required number of nodes are
included in the biclusters.

Results of performance evaluation
We adopted different scoring methods to evaluate the strength of biclustering algo-
rithms. The results of comparison based on different biological data and synthetic data
are summarized in Figs. 5, 6 and 7. In the following we discuss in detail.

Fig. 5 a Number of biclusters generated by different algorithms. b Performance of different algorithm on
Species VOC data set
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Fig. 6 Performance of different algorithm based on gene expression data of S. cerevisiae. a Ranking based on
BP. b Ranking based on CC. c Ranking based on MF

Classification of species based on VOCs

Biclustering can be used to classify species based on the VOCs they emit. We applied the
hypergeometric test to the bicluster set generated from species-VOC relational data. The
richness of same categorical species in a bicluster in terms of family-level taxonomy was
evaluated by using the following formula

Fig. 7 Performance of different algorithms in terms of average module recovery on synthetic data set
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p − value = 1 −
n−1∑

i=0

(G
i
)(N−G

X−i
)

(N
X
) (4)

HereX is the number of species in a bicluster.N is the number of species in the data. n is
the maximum number of same categorical species belong to a specific family in a cluster.
G is the total number of species of that category in the data. After selecting the statisti-
cally significant biclusters where p − value <= 0.05, we combined the results generated
by different algorithms.We created a list of clusters together with the algorithm name and
their corresponding −log(p − value) in each row. We rearranged the list by descending
order of −log(p − value) and therefore the top row on the list indicates the most signif-
icant bicluster and the bottom row indicates the least significant bicluster out of all the
biclusters generated by all the algorithms. In order to compare the performance of differ-
ent algorithms, we selected different sets of rows from the top of the list and counted the
number of rows corresponding to the different algorithms within each set.
The number of biclusters generated by BiClusO, BiMax, and Spectral is more compared
to other algorithms as shown in Fig. 5a. Except some slightly overlapping, the BiClusO
produces almost distinct biclusters. Plaid, CC and xMOTIF produce a very small num-
ber of biclusters which implies that these algorithms are not suitable for finding biclusters
from sparse matrices (Miranda van et al. 2008). One of the limitations of BiMax is that it
requires to specify the number of biclusters beforehand, otherwise produces 100 biclus-
ters by default. Figure 5b shows that BiClusO has the highest share among top ranking
clusters based on statistical significance. Spectral biclustering shows the second best per-
formance. A moderate number of the biclusters generated by Spectral has identical sets
of species over different sets of VOCs.

Richness of similar function genes

Biclustering of gene expression data is expected to accumulate similar function genes
in individual biclusters. In order to find the richness of similar function genes in the
gene side of each bicluster, we calculated hypergeometric p-values corresponding to three
different Gene Ontology (GO) terms i.e. Biological Process(BP), Cellular Component
(CC), Molecular Function(MF). We used the GOstats package from R for calculating the
p − values. The result of this analysis produces a series of p − value related to different
GO terms. The GO term for which the p − value is the smallest is the most significant.
For each bicluster, we selected the lowest p − values for certain term under each type of
ontology. The number of generated biclusters by different algorithms is different. For the
sake of fair comparison, we took up to the best 50 biclusters from each algorithm. For
the algorithms that produced less than 50 clusters, we took all of them. We combined
the selected clusters of all algorithms corresponding to a specific ontology and sorted the
clusters according to their respective −log(p − value).
Scoring results with respect to three different GO terms are summarized in Fig. 6. Five

biclustering algorithms including BiClusO produced somemeaningful biclusters in terms
of biological significance. We tried with the spectral algorithm by changing the reference
parameter to produce some reasonable number of biclusters but failed. Only BiClusO
and BiMax produced a significant number of biclusters with the small number of nodes
in both gene and condition sides. Plaid, xMOTIF, and CC (algorithm) produced a small
number of biclusters with a large number of nodes in both gene and condition sides.
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According to Fig. 6 in all three cases of BP, CC and MF, BiClusO produces most of the
best ranking biclusters among the first 30 top biclusters. In the case of BP andMF (Fig. 6a
and c), BiClusO clearly outperformed the other algorithms. Only in case of CC, BiMax
shows almost similar performance like BiClusO (Fig. 6b). The CC (algorithm) shows
the third position in all three ontology analysis. Plaid produces the smallest number of
biclusters with large sizes compare with other algorithms which fail to produce good
p-value.

Comparison based on synthetic data

We evaluated the degree of similarity of bicluster sets generated by an algorithm from
synthetic databyusingthefollowingmatchingscoreformula (Preli et al. 2006; Eren et al. 2012).

Sg(A1,B1) = 1
| A1 |

∑

(G1,C1)∈A1

max(G2,C2)∈B1
| G1 ∩ G2 |
| G1 ∪ G2 | (5)

Here A1 denotes the actual bicluster set and B1 denotes the bicluster set generated by
an algorithm. An element of the bicluster set A1 is denoted by (G1,C1) where G1 is the
set of genes and C1 is the set of conditions. Similarly (G2,C2) denotes an element of the
bicluster set B1. The Jaccard index formula: | G1 ∩G2 | / | G1 ∪G2 | express the similarity
between two biclusters in terms of gene side. According to the Jaccard index, identical
biclusters produce maximum value 1 whereas disjoint biclusters produce minimum value
0. The above equation finds the average of maximum matching score of each gene set
from A1 to B1. Similarly, the matching score Sc(A1,B1) was calculated considering the
matching of condition sides of biclusters. Finally the formula

S(A1,B1) =
√
Sg(A1,B1) × Sc(A1,B1) (6)

calculates the overall matching score from A1 to B1 considering both genes and con-
ditions. If A1 be the actual bicluster set and B1 be the generated bicluster set by an
algorithm then the matching score S(A1,B1) represents average module recovery whereas
S(B1,A1) represents average cluster relevance (Preli et al. 2006). Average module recovery
reflects the algorithm’s ability to retrieve the actual biclusters. The best case value for this
score is 1 which means that all of the actual biclusters are successfully discovered by the
algorithm. The number of biclusters generated by the algorithm, in this case, must be
greater than or equal to the number of actual biclusters. Average cluster relevance mea-
sures the similarity between generated bicluster and actual bicluster. The best case value
for this score is 1 which means maximum similarity is achieved by the algorithm. The
number of biclusters generated by the algorithm, in this case, must be less than or equal
to the number of actual biclusters. If both scores are 1 then the algorithm successfully
generates actual biclusters.

Performance on averagemodule recovery

Figure 7 shows the performance of average module recovery for all algorithms. BiClusO
outperforms over other biclustering algorithms on the synthetic dataset of equal size
nonoverlapping (Fig. 7a) and variable size nonoverlapping (Fig. 7c). On both dataset
maximum matching score, ’1’ is achieved over different noise level. BiMax and Spectral
achieve the second and third position. BiClusO shows good performance over BiMax and
Spectral in Fig. 7b of equal size overlapping data. From Fig. 7d of variable size overlapping
data, BiMax performs better matching score while the noise level is low but as the noise
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level increases the performance drastically degrades. Most of the cases of four types of
synthetic dataset with a varied level of noises, BiClusO achieves the best results in terms
of average module recovery.

Performance on average cluster relevance

Almost all of the cases of four different synthetic datasets BiClusO shows the best perfor-
mance over other algorithms in terms of average cluster relevance (Fig. 8). Spectral and
Plaid achieve the second highest position alternatively. BiMax, xMOTIF and CC show
poor performance. The Performance of BiMax is deteriorated because it produces a large
number of biclusters where a substantial portion of them are dissimilar to the original
bicluster set. Most of the biclusters produced by BiClusO show maximum similarity to
the original bicluster set.

Conclusion
In this study, we present a GUI based implementation of our algorithm BiClusO and
compare its performance with different biclustering algorithms based on two types of
biological data and four types of synthetic data. Biclusters generated based on biological
dataset are analyzed on the basis of statistical significance determined by Hypergeometric
test in the context of taxonomical classes and different GO terms. The varying properties
of size and overlapping on synthetic datasets simulate a diverse pattern of gene-condition
bipartite dataset which helps to compare different algorithms effectively. The imple-
mentation allows us to control the overlapping between biclusters. Also the attachment
probability parameter helps to extract biclusters as bicliques. The performance of our
algorithm in terms of different scoring methods on real biological datasets expresses the
robustness and effectiveness of BiClusO over other algorithms. The consistency of the

Fig. 8 Performance of different algorithms in terms of average cluster relevance on synthetic data set
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performance of different algorithms to a certain degree in the case of synthetic datasets
implies the correctness and significance of the comparison method we adopted in the
present work. The implementation of our algorithm will be available on http://www.
knapsackfamily.com/BiClusO/.

Abbreviations
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