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Abstract
The stochastic block model (SBM) is a probabilistic model for community structure in
networks. Typically, only the adjacency matrix is used to perform SBM parameter
inference. In this paper, we consider circumstances in which nodes have an associated
vector of continuous attributes that are also used to learn the node-to-community
assignments and corresponding SBM parameters. Our model assumes that the
attributes associated with the nodes in a network’s community can be described by a
common multivariate Gaussian model. In this augmented, attributed SBM, the
objective is to simultaneously learn the SBM connectivity probabilities with the
multivariate Gaussian parameters describing each community. While there are recent
examples in the literature that combine connectivity and attribute information to
inform community detection, our model is the first augmented stochastic block model
to handle multiple continuous attributes. This provides the flexibility in biological data
to, for example, augment connectivity information with continuous measurements
from multiple experimental modalities. Because the lack of labeled network data often
makes community detection results difficult to validate, we highlight the usefulness of
our model for two network prediction tasks: link prediction and collaborative filtering.
As a result of fitting this attributed stochastic block model, one can predict the
attribute vector or connectivity patterns for a new node in the event of the
complementary source of information (connectivity or attributes, respectively). We also
highlight two biological examples where the attributed stochastic block model
provides satisfactory performance in the link prediction and collaborative filtering tasks.
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Introduction
Uncovering patterns in network data is a common pursuit across a range of fields, such as
in biology (Larremore et al. 2013), medicine (Aghaeepour et al. 2017; Guinney et al. 2015)
and computational social science (Greene and Cunningham 2013). Community detec-
tion is a powerful algorithmic way to understand the large-scale structural organization
of a network (Porter et al. 2009; Leskovec et al. 2010; Shai et al. 2017; Fortunato 2010;
Fortunato and Hric 2016). In this pursuit, the objective is to identify cohesive groups of
nodes with relatively high density of within-group connections and fewer between-group
connections. Numerous approaches exist to accomplish this task, but typically only the
adjacency matrix encoding connectivity patterns is taken into account. In various appli-
cations, each node in a network is equipped with additional information (or particular
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attributes) that was not implicitly taken into account in the construction of the net-
work. For example, in a protein interaction network, each protein could contain multiple
experimental measurements or classifications.
Significant attention has been given to the interplay between connectivity-based (or

structural) community organization of the network and the attribute information of
nodes within communities (Bothorel et al. 2015). Importantly, it is often unclear whether
it is valid to assume that a structural community should necessarily correlate with
an attribute-based functional community (Hric et al. 2016; Peel et al. 2017; Yang and
Leskovec 2015). While such studies suggest that extreme caution should be taken in
assuming a correlation between structural and functional communities, we limit our
focus in the present work to the assumption that a node’s connectivity and attribute pat-
terns can be jointly modeled based on its community assignment. In other words, we seek
to develop an approach to assign nodes to communities based jointly on both sources of
information, such that a community is defined as a group of nodes with similar connec-
tivity and attribute patterns. In doing so, our objectives are three-fold: first, we develop
a probabilistic approach to jointly model connectivity and attributes; second, we wish to
ensure that our model can handle multiple, continuous attributes; third, we demonstrate
the utility of the fitted model for link prediction and collaborative filtering applications.
The rest of this paper is organized as follows. This section includes subsections on

related work in attributed networks and stochastic block models, as background. We
then describe our model and associated inference procedure in “Model” section. In
“Synthetic data results” section, we demonstrate the behavior of the model fitting syn-
thetic data. We then apply the model for the tasks of link prediction and collaborative
filtering in “Using the fitted attributed SBM for link prediction and collaborative filtering”
section, followed by applications in biological networks examples in “Applications in
biological networks” section.

Related work in attributed networks

Recently, there have been numerous efforts to incorporate attribute information into the
community detection problem (Yang et al. 2013; Newman and Clauset 2016; Combe et
al. 2015; Hric et al. 2016; Peel et al. 2017). In describing our contribution, we distin-
guish between methods that descriptively obtain communities through optimization of
a quality function and those that generatively capture communities through probabilistic
models. Quality function based methods define a quantity of interest that an ideal parti-
tion would satisfy, while probabilistic methods identify communities through likelihood
optimization and focus on the underlying statistical distribution for the observed net-
work. A recent quality function-based method to handle multiple attributes is I-louvain
(Combe et al. 2015). This method approaches the problem as an extension to the Louvain
algorithm, which is the state-of-the-art scalable modularity quality function community
detection method (Blondel et al. 2008). The modularity-based approach to community
detection defines a null model for community structure under the assumption that there
is not substantial structural organization in the network and seeks to identify a partition
maximally different from this model through optimizing the modularity quality func-
tion. The I-louvain method modifies the standard modularity quality function to what
they label ‘inertia-based modularity’, incorporating a Euclidean distance between nodes
based on their attributes, and demonstrating with multiple examples how incorporating
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connectivity and attributes allows for a partition of nodes to communities that aligns
better with ground truth than that obtained using connectivity or attributes in isolation.
Alternatively, there are a variety of probabilistic approaches for handling attributed net-

work data (Newman and Clauset 2016; Hric et al. 2016; Peel et al. 2017; Yang et al. 2013).
Similar to our work in the sense that community membership is related to node attributes
is CESNA (Yang et al. 2013). The objective in this approach is to learn a set of propen-
sities or affiliations for each node across all possible communities, such that two nodes
with similar propensities towards communities should have more in common in terms of
connectivity and attributes. In this model, each node has a vector with multiple binary
attributes. The affiliation model is useful and flexible because it does not enforce a hard
partitioning of nodes into communities, which is useful in social network applications.
In this inference problem, the connectivity and attribute information are used to infer a
node’s affiliations to communities and then models the probability of an edge between
two nodes as a function of the similarity in their community affiliation propensities.
In contrast to the affiliation model, the stochastic block model (Snijders and Nowicki

1997) (at least the more standard variants of it), seeks to determine a hard partition of
nodes across communities and models edges between a pair of nodes according to their
community assignments. The partition of nodes to communities through a stochastic
block model framework is accomplished through maximum likelihood optimization. A
variant of the stochastic block model explored by Newman and Clauset (Newman and
Clauset 2016) adapts the classic stochastic block model to handle a single (possibly con-
tinuous) attribute with the assumption that attributes (referred to as ‘metadata’) and
communities are correlated. Importantly, the Newman and Clauset approach does not
assume any particular form for the corresponding mixture model, expressing the model
as a series expansion in Bernstein polynomials whose coefficients are inferred as part of
the algorithm. In contrast, in order to most simply simultaneously include multiple con-
tinuous attributes in our model, we make particular assumptions about the underlying
mixture model, demonstrating the utility of our approach by way of the applications con-
sidered below. As the geometry of attribute data in high dimensions can be highly variable
across datasets, having more than one attributed stochastic block model is advantageous.
For example, in a dataset with multiple attributes one could apply principal component
analysis (PCA) to the data to determine how many principal components are needed to
capture a suitable amount of variance in the data. If only a single component is needed,
then the Newman and Clauset approach is a very suitable choice. If more principal com-
ponents are needed to capture sufficient variation in the data, our approach can be very
useful. Further work is needed to define how to best use the geometry of the attribute
space to apply the most appropriate version of the attributed SBM, but this is beyond the
scope of this paper.
Hric et al. (2016) developed an attributed SBM from a multilayer network perspective,

with one layer modeling relational information between attributes and the other model-
ing connectivity, then assigning nodes to communities maximizing the likelihood of the
observed data in each layer. Finally, work by Peel et al. (2017) made important contribu-
tions in 1) establishing a statistical test to determine whether attributes actually correlate
with community structure and 2) developing an SBM with flexibility in how strongly to
couple attributes and community membership in the stochastic block model inference
problem. In contrast to the SBM extension proposed by Newman and Clauset, where
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the attributes are used to build a prior for node-to-community assignments (Newman
and Clauset 2016), the SBM adaptation by Peel et al. learns whether a node’s community
assignment should be chosen through inference or should be fixed as its metadata label.
The model that we seek to develop in this work is distinguished by its ability to fit a

stochastic block model to undirected networks where each node has multiple continu-
ous attributes. We assume that attributes are some complementary source of information
from the data used to specify connectivity between nodes. This model is most appro-
priate for situations where a node’s community membership determines its connectivity
(e.g. traditional SBM) and attribute information. While the model proposed by New-
man et al. can accommodate continuous attributes (Newman and Clauset 2016), we view
our contribution as a method to consider multiple continuous attributes simultaneously
and to learn a generative model that describe the multidimensional attribute vectors
across communities. We model the multidimensional attribute vectors for each non-
overlapping community by a particular multivariate Gaussian model, which allows us to
sample attributes from the model (in the case of missing attributes) or to understand the
consensus mean and covariance for members of a community. We highlight two applica-
tions of our attributed SBM in “Applications in biological networks” section, to a protein
interaction network and amicrobiome subject similarity network. Before discussing these
examples, we first define our attributed SBM and an inference technique for fitting the
model. We test this approach on a synthetic example. Since community detection meth-
ods are often difficult to validate due to the lack of ground truth information on the nodes,
we describe the tasks of link prediction and collaborative filtering to quantify how well
the attributed SBM represents the data. We then consider these tasks on two biological
network examples.

Stochastic block models

Because our model is an extension to the widely-used stochastic block model (Snijders
and Nowicki 1997), we provide a brief introduction here. This model assumes that edges
within a community are connected within and between communities in a characteris-
tic or probabilistic way. To fit this model to network data, the objective is to partition
the nodes into communities such that these assignments maximize the likelihood of the
model according to the observed edges. In this inference problem for a network with
N nodes and K communities, one learns a K × K probability matrix, θ , describes the
probability of connections within and between communities, and an N-length vector of
node-to-community assignments, z. For a network with N nodes, K communities, adja-
cency matrix, A = {aij} and a learned vector z of node-to-community assignments, the
SBMwithout degree correction (degree-corrected versions also exist Karrer andNewman
(2011)) models an edge between nodes i and j with

aij ∼ Bernoulli(θ zizj) (1)

The node-to-community assignments (z) are inferred together with the matrix θ

through likelihood optimization. Effective inference techniques for standard stochas-
tic block model parameters are well explored (Zhang et al. 2012; Peixoto 2014; Daudin
et al. 2008), including algorithms for EM, belief propagation, and MCMC accept-reject
sampling.
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Model
Objective

We seek to incorporate both connectivity (A) and attribute information (X) to infer node-
to-community assignments,Z. Note that for a network withN nodes,K communities and
pmeasured attributes,A = {aij}, X = {xip}, and Z = {Zik} have dimensionsN ×N ,N ×p
and N × K , respectively. In particular, we distinguish Z to be a binary indicator matrix,
where entry Zic is 1 if and only if node i belongs to community c, whereas we also define z
to be the equivalent N-dimensional array labeling node-to-community assignments. We
assume connectivity and attributes are conditionally independent, given the community
membership label. The graphical model for the relationship between node-to-community
labels, connectivity and attribute information is shown in Fig. 1.
To infer the Z that best explains the data, we adopt a likelihoodmaximization approach.

That is, we seek to find the partition of nodes to communities that best describes the
observed connectivity and attribute information. Given the conditional independence
assumption of X and A, we can express the log likelihood of the data, L as the sum of
connectivity and attribute log likelihoods, LA and LX , respectively, as

L = LA + LX . (2)

This likelihood reflects the joint distribution of the adjacency matrix, A, the attribute
matrix, X, and the matrix of node-to-community indicators, Z; formally, we have

L = p(A,X,Z) . (3)

Given that Z is a latent variable that we are trying to infer, we can approach the prob-
lem using the expectation maximization (EM) algorithm (Dempster et al. 1977). By doing
this, we will alternate between estimating the posterior probability that a node i has
community label c, or

p(Zic = 1 | X,A) (4)

and estimates for θ ,� , which specify the adjacency matrix and attribute matrices,
respectively.

Attribute likelihood

For a network with K communities, we assume that each particular community i
has an associated p-dimensional mean μi and p × p covariance matrix, �i. Note

Fig. 1 Modeling community membership in terms of attributes and connectivity. Node-to-community
assignments specified by Z are determined in terms of adjacency matrix information, A and attribute matrix
information, X. A and X are assumed by be generated from a stochastic block model and a mixture of
multivariate Gaussian distributions, parameterized by θ and � , respectively
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that these parameters uniquely identify a p-dimensional multivariate Gaussian distri-
bution. To specify this model for all K communities, we define the parameter � =
{μ1,μ2, . . . μk ,�1,�2, . . . �K }.
The log likelihood for the mixture of Gaussians on the attributes is written as,

log (p(X | �)) =
N∑

i=1
log

{ K∑

c=1
πcN (xi | μc,�c)

}
(5)

Here, N (xi | μc,�c) is the probability density function for the multivariate Gaussian
and πc is the probability that a node is assigned to community c.

Adjacency matrix likelihood

For the adjacency matrix, A and the K × K matrix of stochastic block model parameters,
θ , Daudin et al. showed (Daudin et al. 2008) that the complete data log likelihood can be
expressed as

log (P(A | Z)) = 1
2

∑

i�=j

∑

k,l
ZikZjl[ aij log(θkl)

+ (1 − aij) log(1 − θkl)] .
(6)

Inference

To use EM (Dempster et al. 1977) to maximize the likelihood of the data, we break the
process into the E-step and M-Step, and perform this step sequence iteratively until the
estimates converge.
E-Step. During the E-step, we use the current value of learned model parameters, θ

and � to compute the posterior given in Eq. (4) at each step. The posterior at each step,
γ (Zic), of node i belonging to community c, is given by

γ (Zic) = p(Zic = 1 | xi, ai)
= p(xi | Zic = 1)p(ai | Zic = 1)πc∑K

k=1 p(xi | Zik = 1)p(ai | Zik = 1)πk
.

(7)

Here, xi and ai denote the attribute and connectivity patterns for node i, respectively.
In particular, ai is the ith row of the adjacency matrix, A. Therefore, the jth entry of ai is
1 if nodes i and j are connected and 0 otherwise.

M-Step. In the M-step, we can compute updates for θ and � using this expectation.
Since the attributes follow a Gaussian mixture model, the update for the mean vector

describing community c, μc, can be computed using the EM algorithm (Dempster et al.
1977) as

μc =
∑N

i=1 γ (Zic)xi∑N
i=1 γ (Zic)

. (8)

Similarly, the update for the covariancematrix describing a community,�c, is computed
as

�c =
∑N

i=1 γ (Zic)(xi − μc)(xi − μc)
T

∑N
i=1 γ (Zic)

. (9)
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To update the parameters of θ , we follow the method in Daudin et al. (2008) and update
the probability of an edge existing between community q and l, given by θql as,

θql =
∑

i�=j γ (Ziq)γ (Zjl)aij∑
i�=j γ (Ziq)γ (Zjl)

(10)

The updates shown in Eqs. (8) and (9) and standard mixture of Gaussians updates
(Bilmes and et al 1998). The update in Eq. (10) was shown by Daudin et al. (2008).
We continue the process of iterating between the E-step and M-step until the change

in the data log-likelihood, L, is below a predefined tolerance threshold. Once the log-
likelihood has converged, the value for each Zic can be interpreted as follows. The Zic
corresponding to node i is 1 if c is the community corresponding to the largest posterior
probability (γ (zic) across all c. Moreover Zic = 0 for all communities c, such that c did not
correspond to the highest posterior probability. Similarly,

∑
c Zic = 1.

Initialization

Likelihood optimization approaches are often sensitive to initialization because it is easy
to get stuck in a local optimum. As an initialization strategy for the nodes, we simply
cluster the nodes in the network using the Louvain algorithm (Blondel et al. 2008).

Synthetic data results
We first test the performance of our model and inference procedure on a synthetic exam-
ple.We generated networks with a stochastic blockmodel withN = 200 nodes andK = 4
communities, parameterized as follows:

Aij ∼
⎧
⎨

⎩
Bernoulli(.10), if zi �= zj
Bernoulli(.25), if zi = zj

(11)

Note that z is a 200-dimensional vector, where zi identifies the community label for
node i.
Figure 2a shows the adjacency matrix for an example network generated according to

this parametrization. The blackmarks in the image indicate edges.While this network has
assortative structure with members of a community having more edges on average with
each other than with other communities, there are still many noisy edges going between
communities, making the correct community structure more difficult to discern.
To model attributes, for a community c, we randomly generated an 8-dimensional vec-

tor, μc, where each entry is from a Gaussian with 0-mean and unit variance. Associated
with each c ∈ {1, 2, 3, 4} is an 8×8 diagonal covariance, �c = diag(1.25). Moreover, using
the μc and �c, a sample attribute vector can be generated. That is, the attribute vector xi
for node i is generated as

xi ∼ N (μzi ,�zi) (12)

whereN (·, ·) denotes a multivariate Gaussian.
Figure 2b shows a PCA plot of the attribute vectors associated with each node in

an example synthetic experiment, with each point representing a node. Since the true
dimension of these feature vectors is eight, this plot provides a projection onto the
first two principal components, allowing a visualization of the relatedness between node
attributes. One can observe that members of community two are overall nicely separated
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A B

Fig. 2 Synthetic Example. We generated a synthetic network with N = 200 nodes, K = 4 communities and
an 8-dimensional multivariate Gaussian for each community. a. A visualization of the adjacency matrix for this
network where a black dot indicates an edge. We observe that there is an assortative block structure (blocks
on the diagonal), but there are also many edges between communities making the true community
structure using only connectivity harder to detect. b. We performed PCA on the N × p attribute array and
plotted each of the N nodes in two dimensions. Points are colored by their true community assignments, z.
Clustering the nodes according to only connectivity, only attributes, and with the attributed SBM, we
quantified the partition accuracy with normalized mutual information, yielding
NMI(z, {zconnectivity, zattributes, zattribute sbm}) = {0.65, 0.68, 0.83}

from other communities in the projected attribute space but members of communities
three and four are especially hard to discern here.
To assess how well the attribute SBM approach performed in successfully assigning

nodes to communities, we compared the results obtained from our model to clustering
results obtained clustering based only on connectivity and to clustering based only on
the attribute information. We quantify the correctness of the obtained partitions with
normalized mutual information (NMI) (Danon et al. 2005). Letting z denote the true
node-to-community assignments, then zconnectivity, zattributes, and zattribute sbm denote the
partition of the nodes according to the network connectivity only, attributes only, and
with the attributed SBM. To cluster the network only according to connectivity, we fit a
stochastic block model with four blocks. To cluster nodes with only attributes, we per-
formed k-means clustering on only the attributes. Computing the NMI between z and
each of these three cases, we obtain 0.65, 0.68, and 0.83, respectively. These results show
that by combining both sources of information, there is an improvement in the ability to
correctly identify communities. To further probe this idea, we sought to empirically look
closer at the so-called ’detectability limit’. Generally, detectability refers to the difficulty of
correctly identifying clusters in data; in particular, sharp phase transitions are observed in
fitting stochastic block models, with accurate capture of the correct communities only if
the within-community probability, pin, is sufficiently larger than the between-community
probability, pout (Decelle et al. 2011; Taylor et al. 2016).
Based on the results of the synthetic experiments in Fig. 2 where the attributes

combined with connectivity lead to a more accurate partitioning of the nodes, we
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hypothesized that augmenting the network connectivity with attributes may move this
detectability limit. In Fig. 3, we explored how generating networks from a stochastic block
model with varying ratios between pin and pout combined with the attributes used in
Fig. 2 would affect the accuracy of the node-to-community partition. To do this, we con-
sidered values of pin between 0.05 and 0.3 in increments of 0.05. For each of these pin
values, we found the corresponding value of pout such that the mean degree was 20. Fixing
the mean degree allows for direct comparison of how the within-to-between community
probabilities influence the detection of correct communities. For each of these pin and
pout combinations, we generated 10 different networks using a stochastic block model.
In Fig. 3 we plot the NMI between the true partition, z and the partitions using only the
connectivity with the regular SBM zconnectivity and the attributed SBM zattribute sbm. These
results are plotted in blue and pink, respectively. The shaded region around the points
indicates standard deviation.
We see that while both inference approaches undergo a strong increase in accuracy

at a similar ratio of pin/pout = 3, we notice that the curve for the attribute SBM
results are slightly shifted to the left due to the use of the extra attribute informa-
tion positively impacting the ability to correctly identify communities. Moreover, we
note that the attribute SBM results appear to smooth out the sharp phase transition
that is visible in the results from the SBM without attributes. Future work could focus
on better understanding the impact on such detectability questions in terms of the
parameters for the underlying multivariate Gaussian distributions parametrizing each
community.

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5
Pin/Pout

N
M

I

Attribute SBM
Regular SBM

Fig. 3 Detectability Analysis in Synthetic Example. To understand how attribute information can be
combined with connectivity to assign nodes to communities accurately, we generated synthetic networks
for within-probabilities of pin between 0.05 and 0.3 with corresponding pout or between-community
probabilities such that the mean degree of the network was 20. For each of these synthetic networks, we
used the attributes from the analysis in Fig. 2 to fit the attributed SBM. Here, we plot the correctness of the
node-to-community assignment with normalized mutual information using the partition obtained from
regular SBM (blue) and the partition under the attributed SBM model fit (pink). For each combination of pin
and pout , we generated 10 networks and hence the bands around the points denote standard deviation.
Incorporating attributes with the attributes stochastic block model improves results, particularly near and
below the detectability limit, and appears to smooth out the sharp phase transition
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Using the fitted attributed SBM for link prediction and collaborative filtering
One of the benefits of a generative network model is that it can be applied to pre-
diction tasks. Most notably, in the absence of one source of information about a node
(connectivity or attributes), themodel can be used to predict the complementary informa-
tion source (attributes or connectivity, respectively). We demonstrate here that fitting an
attributed SBM may provide a means to successfully perform two fundamental network
prediction tasks: link prediction and collaborative filtering.
In the link prediction problem, when given two node stubs, the objective is to determine

whether a link exists between them. Since we are modeling connectivity with a stochastic
blockmodel, we can predict links using the learned parameters. In particular, we highlight
how this task can be performed using just the attribute information of the node stubs of
interest. In the experiments to follow, we compare to 3 commonly-used link prediction
methods. In all of these methods, a score is computed for all edge-candidate dyads and
ultimately the top x set of prospective edges with highest weights are kept (where x is
some user-defined parameter). Let i and j be a pair of nodes and �(i) denote the set of
neighbors for a node i. Then, under the following 3 common link prediction methods
(Wang et al. 2014), we can calculate the score of the potential link as Score(i, j).
Jaccard: Score(i, j) = �(i)∩�(j)

�(i)∪�(j)
Adamic Adar: Score(i, j) = ∑

c∈�(i)∩�(j)
1

log |�(c)|
Preferential Attachment: Score(i, j) = |�(i)| × |�(j)|

Stochastic Block Model: We also compare to the plain stochastic block model (SBM)
by using a standard stochastic block model to predict edge probabilities according to the
learned parameters according to connectivity only. To predict the probability that an edge
exists between nodes i and j, we fit a plain SBM based only on connectivity. This results
in a matrix of between-community probability parameters, θ and a vector of node-to-
community assignments z. Then we specify the probability that an edge exists between
nodes i and j as θzi,zj .
Conversely, the collaborative filtering problem seeks to predict a node’s attributes

based on its similarity to its neighbors. For some node of interest, we can use our fitted
attributed SBM model to predict a node’s attributes, given only the information about its
connectivity. Formally, for node i, we seek to predict xi. In the following experiments, we
compare our results to two common collaborative filtering approaches (Shi et al. 2014).
Let N k(i) be the set of k-nearest neighbors in the network for node i. Let x̂i be the pre-
dicted attribute vector for node i and sij be a similarity measure (e.g. correlation) encoded
through the weighted edge between nodes i and j.
Neighborhood Avg: x̂i = 1

|N k(i)|
∑

j∈N k(i) xj
Weighted Neighborhood Avg:

x̂i = 1∑
j∈N k(i) sij

∑

j∈N k(i)

sijxj

Stochastic Block Model (SBM): Similar to our link prediction experiments, we also use
the plain stochastic block model as another baseline prediction method. To do this in
a particular network, we identify its communities and compute an approximation (μ̂c)

of the mean attribute vector (μc) in community c as simply the mean of the attributes
associated with the nodes assigned to community c. For a node i, we identify its nearest
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neighbors again in connectivity space. Then we predict the attribute vector x̂i for node i
as μ̂c, where c is the most common community among nearest neighbors.
We show results for these two tasks in two different biological network examples

in “Applications in biological networks” section. In particular, the experiments were
designed in the following ways.

Link prediction experiments

For the link prediction tasks shown in Figs. 4 and 5, we performed a link prediction task
by sampling pairs of nodes and utilizing the complementary source of attribute informa-
tion. We sampled 10 different sets of 50 pairs of nodes. In each sample, 25 of the node
pairs were those having an edge in the original network and 25 were pairs with no edge.
For each of the 50 edges in each sample, we sought to predict whether an edge existed
between the corresponding node pair in a leave one out manner. To do this, for each edge
we fit the attributed SBM to the network with the pair of nodes (stubs) associated with
the edge removed. We then use the nearest neighbor in attribute space of each stub as
the input to each of the three baseline link prediction methods (Jaccard, Adamic Adar,
and Preferential Attachment). To use our attributed SBM in this link prediction task, we
also consider the most commonly observed community among the 3 nearest neighbors
for the stubs i and j of the edge of interest. We denote the label for the most common
community among the three-nearest neighbors of nodes i and j as zi and zj, respec-
tively. We then define the link prediction score for the edge as θzi,zj , or the probability

Fig. 4 Link Prediction on the microbiome subject similarity network: The results for link prediction on the
microbiome subject similarity network for the attributed SBM, Jaccard, Adamic-Adar, preferential attachment,
and SBM methods. The corresponding AUC values for these methods, respectively are, 0.71, 0.69, 0.69, and
0.62, and 0.71, respectively
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Fig. 5 Link Prediction in the protein interaction network. Performing link prediction using the attributed SBM,
Jaccard, Adamic Adar, preferential attachment, and SBM. The corresponding AUC curves for these methods
were 0.61, 0.58, 0.58, 0.54, and 0.42, respectively

that an edge exists between nodes i and j according to the fitted model. After gener-
ating 10 samples of 50 edge pairs, this results in 500 total edge scores. Since we know
the ground truth of whether or not these edges actually exist from the original network,
we can construct an ROC curve for each method. From these curves we can plot area
under the curve (AUC) to quantify the quality of the link prediction result. Using the
attributed SBM is a way to incorporate community information into the link prediction
problem which has previously shown to be effective (Soundarajan and Hopcroft 2012). In
“Applications in biological networks” section we show that the attributed SBM offers
the highest performance (area under the ROC curve) on two biological datasets, in
comparison to baseline methods.

Collaborative filtering experiments

In collaborative filtering experiments, the objective is to predict the vector of attributes
for each node. In our experiments, we used leave-one-out validation to predict the
attribute vector for each node. That is, for each node in the network, we created a single
node test set. The training set, was then the rest of the network with the node to pre-
dict removed. For this single test set node, we identified neighbors it connects to in only
connectivity space within the training set. For standard collaborative filtering approaches
(Neighborhood average and weighted neighborhood average), the predicted attribute for
the test set node is then the specified averaging of the neighbors. To use our model for
this task, we first fit the attributed SBMmodel to the training set. Similar to the standard
link prediction approaches, we identify the nearest neighbors for our test node in con-
nectivity space within the training set. We then predict the community membership of
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our test node to be the most-frequently observed community among its neighbors. Using
this community assignment, c, we can then predict the attribute vector, xi for a node i
from the fitted attribute SBM model. In particular, the predicted value for xi is a sam-
ple from the learned multivariate Gaussian distribution for community c. This model is
parameterized by mean, μc and covariance �c. These results are shown in Figs. 6 and 7.
For a node i and its associated vector of attributes, xi we quantify the accuracy of the pre-
dicted attribute vector, x̂i with root mean squared error (RMSE). We denote the error for
a particular collaborative filtering approach by E and for a particular node it quantifies
the difference between the true and predicted attribute values (xi and x̂i).
Similar to the success of integrating community information for link prediction, col-

laborative filtering tasks have previously shown success from the integration of network
community structure (Deng et al. 2014). In “Applications in biological networks” section,
we show that using the attributed SBM for collaborative filtering tasks leads to the lowest
error compared to baselines on two biological datasets.

Applications in biological networks
We evaluated the potential to combine similarity or relational information between a set
of entities for application in biological data. For example, one might consider networks of
proteins, genes, or bacterial species with extra experimental data. Our application of this
model to biological problems provides a framework to predict attribute or connectivity
information about a new observation. Note that we do not intend to suggest any new
biological insights here, but rather that we can combine two sources of information for
prediction tasks and alternative definitions of what constitutes a community in the data.
Applying the attributed stochastic block model to integrate connectivity and attribute
data provides a way to find a partition that takes into account two different sources of
information, or a method to predict one source of information (connectivity, attributes)
in the absence of the other (attributes, connectivity).
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Fig. 6 Collaborative Filtering Accuracy in Microbiome Subject Similarity Network: For each of the 121 nodes,
we fit a model to the remaining 120 node network and given the node’s closest neighbors (based on
network connectivity) sought to predict its 5-dimensional attribute vector. The reported error is the root
mean squared error (RMSE) (denoted by E ) between the true attribute vector (xi) and its predicted attribute
vector (x̂i). The mean root squared error in the attributed SBM is 2.3, as opposed to the neighbor average,
weighted neighbor average and SBM having mean errors of 2.06, 2.05, and 2.45, respectively
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Fig. 7 Collaborative filtering in the protein interaction network. For each of the 82 nodes, we fit a model to
the remaining 81 node network and given the node’s closest neighbors (based on network connectivity)
sought to predict its 6-dimensional attribute vector. The reported error is the root mean squared error
(denoted by E ) between the difference between the true attribute vector (xi) and its predicted attribute
vector (x̂i). The mean error in xi using the attributed SBM is 0.74, as opposed to the neighborhood average,
weighted neighborhood average, and SBM, resulting in errors of 0.74, 0.62, 0.62, and 0.94, respectively

Microbiome subject similarity results

Motivation
In the analysis of biological data, it is often useful to cluster subjects based on a set of

their measured biological features and to then determine what makes each of the sub-
groups different. One type of biological data gaining much attention in recent years is
metagenomic sequencing data, used to profile the composition of a microbiome.We refer
to this as the ’metagenomic profile’ and each feature is a count for each bacterial species,
also known as operational taxonomic unit (OTU). Lahti et al. conducted a study among
subjects across a variety of ethnicities, body mass (BMI) classifications, and age groups
to understand differences in the intestinal microbiota (Lahti et al. 2014). Using metage-
nomic sequencing, the counts for 130 OTUs were provided for each subject. Using the
OTU profiles, we created an attributed network between subjects based on their similar-
ities in OTU profiles. In this case, connectivity represents pairwise correlation between
subjects based on their OTU profiles. The attributes for each node are defined as the
coordinates for a lower-dimensional embedding (described in the next section). In this
case, we are overlaying two similar ways to look at the data and examining how this can
enhance results. Our work here is not meant to reveal novel biology, but rather to provide
a computational test for understanding the performance of our attributed SBM approach.
Pre-ProcessingThe data were downloaded from http://datadryad.org/resource/doi:10.

5061/dryad.pk75d. We extracted a subset of the subjects from Eastern Europe, Southern
Europe, Scandinavia, and the United States. Using only these subjects, a between-subject
similarity network was constructed between the 121 individuals who had a BMImeasure-
ment. This resulted in a network of 121 nodes, where each edge is the Pearson correlation
between their microbial compositions. We then removed all edges in the network with
weight (correlation) < 0.7. Note that our attributed SBM does not allow for edge weights,
so we simply ignored the edge weights as input to the model.

http://datadryad.org/resource/doi:10.5061/dryad.pk75d
http://datadryad.org/resource/doi:10.5061/dryad.pk75d
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Constructing Node Attributes Since each node had a 130-dimensional vector of
attributes (counts), we used this information to create a lower-dimensional attribute vec-
tor for each node by performing PCA and then representing each node with the first 5
principal components. Each dimension of this new attribute vector was then centered and
scaled, and we observed an approximately Gaussian distribution.
We first visualized the differences in partitions obtained according to the classic and

attributed stochastic block models in Fig. 8a-b, respectively. In both networks, nodes are
colored by their community assignment. Using the classic stochastic block model and the
model selection criterion described in (Daudin et al. 2008), 7 blocks were identified. With
the attributed stochastic block model, 6 blocks were identified. While we do not have
ground truth labels on the nodes, it is visually apparent that adding the attributes to the
inference problem helps to ‘clean up’ the partition. For example, in Fig. 8a there is mixing
between communities two and three in the network colored by communities identified
with the regular SBM. In Fig. 8b, this mixing was reduced after using the attributed SBM
by assigning all of the nodes in the general region to community three. Similarly, in Fig. 8a,
members of community five are periphery nodes that are connected well to community
seven but not to each other. Because these nodes do not have a lot of internal connectiv-
ity, it is not immediately apparent why they were assigned to be in their own community.
This nuance is corrected in Fig. 8b with the use of the attributed stochastic block model.
Here, the members of communities five and seven from Fig. 8a. are mostly agglomer-
ated into community six. The layout for each of these networks was computed using the
‘layout.nicely’ function in the R igraph library.
Microbiome Link Prediction We performed link prediction on the microbiome

subject similarity network as described in “Link prediction experiments” section. The
associated ROC curves are plotted in Fig. 4. All five methods have satisfactory perfor-
mance with the attributed stochastic block model giving the best results. The AUC values

A B

1 2 3 4 5 6 7 1 2 3 4 5 6

Fig. 8 Microbiome subject similarity network: A visualization of the 121 node microbiome subject similarity
network with nodes colored by the partition using the classic (a.) and attributed (b.) stochastic block model.
a. Fitting the classic stochastic block model to the network, 7 communities were identified. b. Fitting the
attributed stochastic block model to the network with the attributes being the first 5 principle components
of each subject’s OTU count vector (metagenomic profile), 6 communities were identified. Incorporating
attributes in inferring this partition removed some of the noise in the partition on the network, specifically in
community 3 in (a)
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for the attributed SBM, Jaccard, Adamic-Adar, preferential attachment, and SBM are 0.71,
0.69, 0.69, 0.62, and 0.71, respectively.
We note that the performance of the attributed SBM and SBM are very similar in

the microbiome network shown in Fig. 4. This likely arises from the fact that the node
attributes and connectivity are quite similar. Alternatively in Fig. 5 the attributes and
connectivity are more complementary sources of information. Moreover, including the
attribute information greatly helps the link prediction task in this case.
Microbiome Collaborative Filtering We performed the collaborative filtering exper-

iments on the microbiome subject similarity network in the manner described in
“Collaborative filtering experiments” section to predict the 5-dimensional attribute vec-
tor for each node. The box plots in Fig. 6 indicate the distribution of root mean
squared error (RMSE), E , over the 121 nodes for the attribute SBM (turquoise), neigh-
bor average (orange), weighted neighbor average (blue), and SBM (pink). We find
that in general the edge-based collaborative filtering methods (neighbor average and
weighted neighbor average) have better performance than community model-based pre-
dictions (attributed SBM, SBM). This is likely because predicting an attribute vector
based on an average over a collection of nodes likely introduces more noise than pre-
dicting only based on closest neighbors. A similar behavior is also observed in the
collaborative filtering experiments in the protein interaction network shown in Fig. 7.
In general, all four methods have similar error distributions, but the attributed SBM
outperforms the standard SBM. The mean RMSEs for the attributed SBM, neighbor
average, weighted neighbor average, and SBM were 2.3, 2.06, 2.05, and 2.45, respec-
tively. This experiment along with the experiment shown in Fig. 7 show that while not
quite as accurate as the methods based on closest neighbors, the attributed stochas-
tic block model nevertheless can be effectively used for collaborative filtering tasks. A
possibly interesting direction for future work would be to consider combinations of
these methods from different perspectives to attempt to identify greater improvements
in accuracy.

Protein interaction network results

We also apply our attributed SBM approach to the protein interaction network presented
in (Bonacci et al. 2014). This network represents interactions between proteins, predicted
from the literature. Associated with each node (protein), is a classification of one of 6
experimental modifications observed from the exposure of cancer cells to a chemother-
apeutic drug. While communities in this network should reflect functional relatedness
among proteins (e.g. similar biological functions, in general), we also expect that mem-
bers of a community should share similarities in the observed modification type. Also
associated with each of the 6 modification types is whether that particular type of mod-
ification became either more or less prominent after treatment with the drug. Since we
have two types of labels associated with these nodes, we also sought to explore how these
two labeling schemes (6 class vs. 2 class) aligned with the communities returned by the
algorithm.
Data Pre-Processing: We downloaded the unweighted protein interaction network

data and the modification information from the supplement of (Bonacci et al. 2014). We
removed 13 nodes that were not connected to the largest component of the network and
considered only the 82 node largest connected component.
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Constructing Node Attributes: Each node is classified with 1 of 6 possible modifica-
tion types. For each node, we created an attribute vector that captured the modification
types of its neighbors. To do this, we considered the 4th order neighborhood of each node.
That is, for each node, we collected its neighbors who were four hops or less away in the
network. Then to define the value for attribute c of node i, or xic, we counted the num-
ber of 4th order neighbors of node i with label c. After defining these attributes across
all nodes, for each of the 6 classes, we centered and scaled each attribute across all of the
nodes to have mean 0 and unit variance.
Figure 9a-b show the results of fitting a classic SBM and attributed SBM, respectively.

These networks are visualized with the Fruchterman Reingold force directed layout in
the R igraph library. Nodes are colored by their community assignment. The 6 possible
modifications arise from 3 biological processes that can either increase or decrease after
exposure to the drug. The node shape reflects whether the experimental modification
for a node increased (square) or decreased (circle) after treatment with the chemother-
apeutic agent. Again by fitting an SBM with the model selection criterion in (Daudin et
al. 2008), five communities were identified. With our attributed SBM, nine communities
were identified. Note that using the attributed SBM created more communities in that it
split up the purple core community under the classic SBM into more small communities.
The implications of this new partition are explored with an entropy calculation based on
the biological classifications of the protein in Fig. 10.
Using the partition of the nodes under the classic and attributed stochastic block mod-

els, we sought to use the two different prior biological classifications or labeling of the
nodes (proteins) (Bonacci et al. 2014). The first of these classifications includes one of six
modification types. The other classification refers to whether the protein has increased or
decreased levels of expression. Moreover, we could use these two types of labels or classi-
fications of the proteins to compute a label entropy measure within each community. The
expectation is that by incorporating attribute information that is related to the functional

A B

Fig. 9 Protein interaction network. We visualize the 82 node protein interaction network under the classic
stochastic block model (a.) and the attributed stochastic block model (b.) In both networks, nodes are
colored by their community assignment and the node shape indicates whether the modification status
increased (square) or decreased. a. Nodes colored according to the community partition under the stochastic
block model. Nodes are assigned to one of five communities. b. Nodes are colored to the community
partition under the attributed SBM. Nodes are assigned to one of nine communities
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Fig. 10 Community entropies in the protein interaction network. We studied the entropy of the 2 class and 6
class classifications of the nodes in a. and b., respectively under the classic SBM (black) and attributed SBM
(purple) partitions. For A. − B. the horizontal axis denotes the community index for the particular partition.
Nodes belonged to 1 of five communities under the classic SBM and belong to one of nine communities
under the attributed SBM. Incorporating attributes under both classifications succeeds in breaking up a high e
ntropy community (5) from the classic SBM partition to lower entropy communities in the attributed SBM partition

protein information into the community detection problem, we should see a decrease in
the entropy over the biological classification labels in communities. In Fig. 10a-b, we plot
the entropy for the 2 class and 6 class node classifications, respectively. We define Ec, the
entropy for community c as

Ec = −
∑

k
pk log(pk). (13)

Here, k indexes the unique classifications found in community c and pk is the probability
that a node in community c belonged to biological classification k in community c. In these
plots the black and purple curves correspond to the fits of the classic and attribute SBM
fits, respectively. Using both types of node classifications to compute these entropy quan-
tities, we see that the attribute SBM succeeds in breaking up one high entropy community
(5) from the classic SBM partition into lower entropy communities.
Link Prediction in the Protein interaction network We performed link prediction

on the protein interaction network using the procedure described in “Link prediction
experiments” section. Given that this protein network is sparse, none of the link pre-
diction methods performed particularly well. The AUC values for the attributed SBM,
Jaccard, Adamic-Adar, preferential attachment, and SBM were 0.61, 0.58, 0.58, 0.54,
and 0.42, respectively. The associated ROC curves are shown in Fig. 5. In this exam-
ple, the attributed SBM significantly outperforms the regular SBM. This is most likely
due to the complementary and non-overlapping nature of the connectivity and attribute
information.
Collaborative filtering in the protein interaction networkCollaborative filtering was

performed using the method described in “Collaborative filtering experiments” section.
Note that unlike the microbiome sample similarity network, the edges in this network
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are unweighted and hence the neighbor average and weighted neighbor average meth-
ods produce the same result. Similar to the results in the microbiome network in Fig. 6,
we notice that edge-based methods (neighborhood average and weighted neighborhood
average) result in a lower error than community-based methods (attributed SBM, SBM).
Similarly, the attributed SBM has higher performance over the plain SBM. The root mean
squared errors for the attributed SBM, neighborhood average, weighted neighborhood
average and SBM were 0.74, 0.62, 0.62, and 0.94, respectively. Clearly, the attributed SBM
offers several advantages over the original SBM. Similar to Fig. 6, the box plots in Fig. 7
represent the distribution of errors across each of the 82 nodes.

The attributed SBM leads to increased network assortativity

We further quantified the quality of the partition obtained by integrating network con-
nectivity and node attributes with an assortativity measure (Newman 2003). Assortativity
measures the extent of homophily in a network, under some labeling of the nodes. Intu-
itively, this implies that in a network with a high assortativity coefficient, nodes tend to
have the same labels as their neighbors. Moreover, we labeled nodes according to their
community assignments under the classic and attributed stochastic block model and
computed assortativity using the assortativity function in igraph. We found that in both
the microbiome and protein dataset, using the attributed SBM leads to higher assortativ-
ity. In Fig. 11 we show that the assortativities for the regular and attributed SBMs in the
microbiome data were 0.61 and 0.71, respectively. Similarly, in the protein dataset, the
assortativity measures for the regular and attributed SBM were -0.122 and 0.714, respec-
tively. The assortativity computed in the protein-protein interaction network with the
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Fig. 11 Assortativity for class and attributed stochastic block models. We computed assortativity coefficients
for both the microbiome subject similarity and protein-protein interaction networks. The
node-to-community assignments under the regular SBM (purple) and attributed SBM (orange) were used to
define node labels when computing assortativity. In both datasets, the use of the attributed SBM lead to
higher assortativity measures
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regular SBM was negative. This implies that the induced labels are not coherent between
individual nodes and their neighbors.

Conclusions and future work
We defined an attributed stochastic block model, where a node’s community assign-
ment determines its connectivity and its attribute vector. Our model extends previous
work on attributed stochastic block models in its ability to handle multiple continuous
attributes. The continuous attributes are modeled by a Gaussian mixture model, with the
assumption that the attributes for members for each community are parameterized by
a unique multivariate Gaussian. Since community detection results are often difficult to
validate due to the absence of a known ground truth, we quantified the ability of the fitted
attributed stochastic block model to represent a particular network by performing link
prediction and collaborative filtering tasks. Applying link prediction and collaborative fil-
tering to two biological networks, we observed that the attributed SBM is useful for these
applications.
Future work could extend the model to handle a combination of multiple discrete

and continuous attributes. Further, while the inference or understanding of fitting a
stochastic block model to weighted networks is not well understood, figuring out how
to integrate edge weights and attributes in determining community structure could
be useful. Next, we also mentioned the I-Louvain method, which is an extension of
modularity to networks with potentially multiple, continuous attributes (Combe et
al. 2015). It would be useful to characterize under what circumstances one might
choose to use an SBM approach as opposed to a modularity optimization approach.
We briefly discussed observed detectability properties in Fig. 3, noting that it would
be interesting to characterize how the properties of the attributes and connectivity
relate to effective identification of community structure. Next, whereas our specific
attributed SBM model considered here does not include corrections for heterogeneous
degrees, or the effect of partial dependency between attributes and connectivity, further
work could broaden the diversity of networks able to be analyzed with the attributed
SBM. Finally, in this current version of the attributed SBM with multiple continuous
attributes, we have not developed model selection criteria to determine the number
of communities, K, that we expect in the network. This is an important aspect of
future work as it allows a user to apply the attributed SBM in a more automated
manner.
Networks used across fields are becoming increasingly complex, often with multiple

sources of information to integrate in order to make a conclusion for the data. Our
approach to an attributed SBM advances the understanding of how to jointly consider
attribute and connectivity information in a probabilistic framework.

List of Abbreviations
BMI: Body mass index; NMI: Normalized mutual information; OTU: Operational taxonomic unit; PCA: Principal component
analysis; RMSE: Root mean squared error; ROC: Receiver operating characteristic; SBM: Stochastic block model

Acknowledgements
We acknowledge clarifying conversations with Aaron Clauset and Mark Newman.

Authors’ contributions
PJM, MN, and NS conceived the idea of the research. NS implemented the method. PJM, MN, NS, and RK designed the
experiments. TB contributed the protein interaction dataset and ideas for experiments with this data. All authors wrote
and reviewed the manuscript.



Stanley et al. Applied Network Science            (2019) 4:54 Page 21 of 22

Authors’ information
Not applicable.

Funding
The research reported in this publication was supported by the NSF (ECCS-1610762). The content is solely the
responsibility of the authors and does not necessarily represent the official views of the funding agency.

Availability of data andmaterials
Code The code to run the attributed SBM can be found here, https://github.com/stanleyn/AttributedSBM.
Data
Protein Interaction Network: The protein interaction data and its corresponding attribute information can be found in
the supplementary information of this publication, https://pubs.acs.org/doi/abs/10.1021/pr401258d.
Microbiome Subject Similarity Network: The data used to compute the microbiome subject similarity network can
be found here, http://datadryad.org/resource/doi:10.5061/dryad.pk75d.

Competing interests
The authors have no competing interests to declare.

Author details
1Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel hill, USA.
2Present address: Stanford University, Stanford, USA. 3Department of Pharmacology & Lineberger Comprehensive
Cancer Center, University of North Carolina at Chapel Hill, Chapel hill, USA. 4Department of Computer Science, University
of Salzburg, Salzburg, Austria. 5Department of Computer Science & Biomedical Research Imaging Center, University of
North Carolina at Chapel Hill, Chapel hill, USA. 6Carolina Center for Interdisciplinary Applied Mathematics, Department of
Mathematics, University of North Carolina at Chapel Hill, Chapel hill, USA.

Received: 29 January 2019 Accepted: 9 July 2019

References
Aghaeepour N, Ganio EA, Mcilwain D, Tsai AS, Tingle M, Gassen SV, Gaudilliere DK, Baca Q, McNeil L, Okada R, et al (2017)

An immune clock of human pregnancy. Science immunology, Vol. 2, Washington, DC
Bilmes JA, et al (1998) A gentle tutorial of the em algorithm and its application to parameter estimation for gaussian

mixture and hidden markov models. Int Comput Sci Inst 4(510):126
Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech:

Theory Exp 2008(10):P10008
Bonacci T, Audebert S, Camoin L, Baudelet E, Bidaut G, Garcia M, Witzel I-I, Perkins ND, Borg J-P, Iovanna JL, et al (2014)

Identification of new mechanisms of cellular response to chemotherapy by tracking changes in post-translational
modifications by ubiquitin and ubiquitin-like proteins. J Proteome Res 13(5):2478–2494

Bothorel C, Cruz JD, Magnani M, Micenkova B (2015) Clustering attributed graphs: models, measures and methods. Netw
Sci 3(3):408–444
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