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Abstract
Random graph generators are necessary tools for many network science applications.
For example, the evaluation of graph analysis algorithms requires methods for
generating realistic synthetic graphs. Typically random graph generators are
generating graphs that satisfy certain global criteria, such as degree distribution or
diameter. If the generated graph is to be used to evaluate community detection and
mining algorithms, however, the generator must produce realistic community
structure, as well. Recent research has shown that a clique is not necessarily a realistic
community structure, necessitating the development of new graph generators. We
propose HYGEN, a random graph generator that leverages the recent research on
non-clique-like communities to produce realistic random graphs with hyperbolic
community structure, degree distribution, and clustering coefficient. Our generator can
also be used to accurately model time-evolving communities.

Keywords: Random graph generators, Community detection, Hyperbolic community
structure

Introduction
Modular structure is a characteristic of real-world networks. Its constituents, or com-
munities, typically display specific patterns of connectivity. Especially in social networks,
communities show a pronounced core-tail structure: a small fraction of themembers have
strong ties to each other and form the core. The majority of members only have ties to
the core and not to each other (Laumann and Pappi 1976; Alba and Moore 1978; Morgan
et al. 1997; Reed and Selbee 2001; Panzarasa et al. 2009; Metzler et al. 2019). This kind
of intra-community structure is well described by a hyperbolic model (Araujo et al. 2014;
Metzler et al. 2016). The hyperbolic model can express the particular core-tail structure
which is frequently observed in real-world networks. It also encompasses power law-like
connectivity and is suitably general to represent clique-like as well as star-like patterns of
connectivity (see Fig. 1b).
Understanding network organization is a primary goal of social sciences. Reaching this

goal requires not only adequate models, but also suitable community detection algo-
rithms. The quality of community detection algorithms is best tested on real-world data.
This, however, requires significant amounts of testing data with reliable labels. Man-
ual labelling is qualitatively the most adequate. In contrast, any automated community
labelling procedure implies a comparison of the community detection algorithm under
test to another procedure of detecting the communities. A favourable alternative to obtain
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(a) (b)
Fig. 1 Visualization of parameters for the hyperbolic model, and real-world examples. Models are shown on
the degree-ordered adjacency matrix of each community. Customarily, the positive domain of the
coordinate system is plotted from top left. Orange dots represent edges. The solid line visualizes the
hyperbolic model. a γ and H b Examples of hyperbolic communities from (Metzler et al. 2016)

large amounts of reliably labelled testing data is to use random graph generators that
create graphs with similar properties as real-world templates.
Most random graph generators aim at modelling global properties of the graphs, such

as degree distribution, clustering coefficient, or effective diameter. Hence, models such
as Erdős and Rényi (1959), Albert and Barabási (2002), or the Forest fire model (Leskovec
et al. 2005) do not generate community structure and are not applicable to commu-
nity detection. Similarly, graph expansion (Park and Kim 2018; Zhang and Tay 2016)
and hyperbolic geometry (Krioukov et al. 2010) models focus on the global modelling of
real-world graphs. Kronecker graphs (Leskovec et al. 2010) can be interpreted to have a
community structure, but due to the recursive structure, the constructed communities
have symmetries in size and shape not observed in real-world graphs.
Specialised random graph generators are proposed to generate graphs with a commu-

nity structure. The best-known among them is the stochastic blockmodel (SBM) (Holland
et al. 1983), which is probably the most popular model to study community detection
and clustering techniques (see Abbe (2017) for a detailed discussion). Despite its popular-
ity, SBM has severe limitations, as it cannot incorporate variable inter-community degree
distributions. To address this, degree-corrected SBMs (DC-SBM) (Karrer and Newman
2011) incorporate an additional degree parameter for each vertex. This allows modelling
uneven edge probabilities. As pointed out by Zhu et al. (2014), DC-SBMs use the degrees
of vertices as parameters, implying that the model cannot separate vertices based on
degree even when that would be the correct partitioning. This limitation is overcome
by degree-generated SBMs (Zhu et al. 2014). Degree-generated SBMs treat the expected
degree of each vertex as generated from prior distributions, such as power laws, whose
exponents vary from one community to another. Our model further differs from these, as
we assume that intra- and inter-community edges have different probabilities.
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The R-MAT generator (Chakrabarti et al. 2004) is another popular model for generating
random graphs with community structure. It is based on recursively subdividing the
adjacency matrix into four equally sized partitions and distributing the edges within the
partitions according to partition-specific probabilities. This approach allows it to mimic
the degree distributions of real-world graphs, but restricts the shape of the constructed
communities.
A third popularmodel for testing community detection algorithms is the Lancichinetti–

Fortunato–Radicchi (LFR) benchmark (Lancichinetti et al. 2008), which extends the
Girvan–Newman benchmark (Girvan and Newman 2002). Unlike SBM or R-MAT, LFR
can produce overlapping community structures and weighted and directed graphs. Com-
pared to Girvan–Newman, LFR emphasizes the heterogeneous distributions of node
degrees and community size. Yet, LFR generates near-uniform intra-community degree
distributions, violating the assumption of non-clique-like community structures.
Orman et al. (2013) examine variations of LFR which achieve more realism with respect

to transitivity and degree correlation in the generated graphs by choosing alternate ran-
dom models for the initial step of the algorithm. In recent work, Fagnan et al. (2018)
propose a generalization of LFR which follows the evolution patterns and characteris-
tics of real networks. Unlike the present work, these works concentrate on overlapping
communities.
To the best of our knowledge, however, no existing random graph generator is designed

to model graphs consisting of hyperbolic communities. As many real-world graphs seem
to follow a hyperbolic or core–tail model, we introduce a novel random graph genera-
tor to fill this gap. HYGEN generates modular networks with realistic intra-community
structures using parameter distributions derived from observations on real graphs.

Contributions

This article extends our previous work on HYGEN (Metzler and Miettinen 2019). We
present the model in more detail and have improved the exposition and analysis thereof.
Our novel contributions in this work are the following:

• We present an alternative formulation of the HYGEN model as a graphon.
• We show that the graphon model is particularly suitable for modelling time-evolving

communities.
• We show empirically that existing random graph generators are not suitable for

generating hyperbolic community structure.

The HYGEN Model
As discussed above, and as we will show later, the aforementioned random graph mod-
els do not generate communities that would have the kind of core-tail structure that is
commonly observed in real-world social networks (see, e.g Araujo et al. (2014), Metzler
et al. (2016, 2019)). To address that, we propose the HYGEN random graph generator
that is based on the hyperbolic community model of Metzler et al. (2016). For the sake
of completeness, we will first present the model of Metzler et al. (2016) before present-
ing the HYGEN model for one and multiple communities. Finally, we provide a different
sampling approach, based on graphons, that is particularly suitable for time-evolving
communities. Table 1 contains a list of symbols used throughout this article.
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The hyperbolic community model

The hyperbolic community model of Metzler et al. (2016) generates undirected graphs.
Let G = (V ,E) be an undirected graph with |V | = n and |E| = m. Assume that the
vertices are assigned a unique number from {0, . . . , n− 1} in an arbitrary manner. We use
pair (u, v) to denote both a pair of vertices and the (potential) undirected edge between
them.
A community of G is a tuple (VC ,πC ,�C) where VC ⊆ V are the nodes of the com-

munity with nC = |VC |, πC : VC → {0, . . . , nC − 1} is a permutation of the nodes that
maps the nodes of a community to a set of indices {0, . . . , nC − 1}, and �C is a set
of parameters that defines the shape of the community. We assume that the permuta-
tion πC orders the nodes in descending order according to their intra-community degree
degC(v) = |{u ∈ VC : (v,u) ∈ E}|.
The key feature of the hyperbolic community model is that not all edges between nodes

in VC are necessarily part of the community VC . Which edges are part of the community
is defined using a function f : {0, . . . , nC − 1} × {0, . . . , nC − 1} × �C → {0, 1}, themodel
of the community. The function f takes a pair of permuted node indices and the set of
parameters for the community, and decides whether the edge between the nodes is part
of the community. An edge (u, v) is a part of the community C if

1 u ∈ VC and v ∈ VC ; and
2 f (πC(u),πC(v),�C) = 1.

In what follows we will mostly omit writing the permutation. Instead, when it is clear
from the context, we will denote vertices by their indices in the permutation; for instance,
v, u, and w could be denoted by i, j, and h, with the meaning that i = πC(v), j = πC(u),
and h = πC(w).
Metzler et al. (2016) study three different models, called hyperbolic, fixed, and

mixture. Despite being seemingly different, the three models are equivalent (Metzler
et al. 2016), and we will use them interchangeably. For the sake of completeness, we will
present two of them, hyperbolic and fixed, here, as they are the two models we will
need the most. The hyperbolic model takes two parameters, p and θ , and the model
function fhyperbolic is

fhyperbolic(i, j, p, θ) =[ (i + p)(j + p) ≤ θ ] , (1)

where we used the Iverson bracket notation: [P]= 1 if proposition P is true and [P]= 0
otherwise. The hyperbolicmodel makes the hyperbola shape of the community obvi-
ous, but otherwise the parameters are not straight forward to interpret. Thefixedmodel
has more interpretable parameters: γ defines the size of the core of the community andH
indicates how thick the tail is. A core of the community is a subcommunity of people that
are known by (almost) everybody else in the community, while the tail consists of the rest
of the members in the community (see Fig. 1a)1.
Metzler et al. (2016) show that we can transform the parameters offixed to the param-

eters of hyperbolic using the following equations (Metzler et al. (2016), Eqs. (7) and
(8)):

1The terms core and periphery are also used for similar structures (Borgatti and Everett 1999). We use the notion of core
and tail instead since the hyperbolic model allows for more shape variations than the term periphery implies: tails may
get progressively thinner while nodes in the periphery are assumed to be evenly connected to the core.
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p = γ 2 − (nC − 1)H
(nC − 1) + H − 2γ

(2)

θ = (γ − H)2(γ − nC − 1)2

(nC − 1 + H − 2γ )2
. (3)

Single community

The model for a single community is straight forward and we express it via the fixed

model. Assume, for now, that the size of the community, nC , is given. To define the com-
munity in fixed, we need to have the two parameters, γ andH. In our model, we assume
that the relative γ , γR = γ /nC , follows the normal distribution with some mean μ and
variance σ 2. Assuming we have sampled some γ = nCγR, we will sample H by assuming
that H/γ ∼ Exponential(λ) (we will motivate these distributions later using experiments
with real-world data sets).
After we have sampled γ and H, we can generate a perfect community C using the

fixedγ ,H model. The community C will have no noise, that is, no edges between the
nodes in the tail of the community and no missing edges within the community. As this
is an unrealistic assumption, we will apply uniform noise to remove edges from the com-
munity and add edges between tail nodes. For this, we will need twomore parameters, din
and dout, that describe the densities of the community and of the area outside the com-
munity; a fraction of 1 − din edges within the community are removed and a fraction of
dout edges outside the community (i.e. between tail nodes) is added.

Multiple communities

To generate multiple communities, we use an approach similar to SBMs, and gener-
ate individual communities independently of each other. For each community, we will
draw the size nC from distribution Dsize. Our experiments suggest using the generalized
extreme value distribution as the distribution of the sizes, but the power law distribution,
as used by Lancichinetti et al. (2008), is a viable alternative.
After the community size is sampled, we can sample γ and H as explained above. Do

note that the way we sample them is independent of the community size, and hence we
can use the same distributions for every community.
After we have sampled a noise-free community, we will remove some of its edges to

obtain the desired “inside” density din and plant the community to the graph. The planting
happens so that the communities do not overlap, similar to SBMs, but we can permute
the order of the nodes, so that the hyperbolic shape is not immediately obvious. After all
communities have been planted, we apply the “outside” noise to achieve the dout density
among the edges that are between nodes in different communities and between nodes
that in the tail of the same community. The full process is detailed in Algorithm 1.
Notice that this model assumes that the “inside” noise is the same in all communities,

and the “outside” noise is uniform throughout the graph (though these two types of noise
can be very different, and in general, din � dout). We also assume the size and shape of
the communities to be uncorrelated.

Time complexity

Let us analyse the time complexity of Algorithm 1. For a community C, denote by EpC
the edges of a “perfect” community (i.e. one with no noise) and denote by Ep be the
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Algorithm 1: HYGEN algorithm
Data: distributions Dsize, Dγ , DH , densities din, dout, number of communities k
Result: random graph G
for i = 1 : k do

draw size s from Dsize, γ from Dγ , and H from DH
scale γ according to s, and H according to γ

make model fixed(γ , H)
select edges to discard uniformly at random to reach din
plant result into G

apply noise dout to the outside community area of G
return G

edges in a graph consisting only perfect communities. Let En be the set of edges noise
adds to the graph (inter- and intra-community). Drawing the parameters and adjusting
them is a constant-time operation, creating the model takesO(nC) time, and sampling the
edges to discard from the community can be done in time O

(|EpC |) (Knuth 1981, p. 137).
Assuming we have k communities, the total time to generate a graph with no noise is
O

(
k

(
1 + nc + |EpC |)) = O (k + |V | + |Ep|). To add noise, we need to do sampling with-

out replacement over a population ofO
(|V |2 − |Ep|

)
edges, taking essentially linear time.

When |Ep| and |En| are small compared to |V |2 (i.e. the graph is sparse), we can sample
with replacement to obtain practically the same result, taking O(|En|) time. In total, the
full running time of Algorithm 1 is O(k + |V | + |Ep| + |En|), which is only slightly more
than O(|V | + |E|).

HYGEN as a Graphon

A graphon (Orbanz and Roy 2015) is a measurable function g : [ 0, 1]×[ 0, 1]→[ 0, 1].
Graphon g can be seen as a model for random graphs: to sample a graph G from graphon
g, one first samples n vertices by sampling n points from the unit interval [ 0, 1] uniformly
at random (that is, V ⊂[ 0, 1]). One then samples the edges so that G has edge (u, v) with
probability g(u, v). For undirected G, g has to be symmetric, that is, g(u, v) = g(v,u), and
the undirected edge between u and v is sampled as the directed edge (u, v).
The HYGEN model for one community is easy to express as a graphon. The graphon

is parameterised with four parameters, pR, θR, din, and dout. The parameters pR and θR
define the hyperbola as with the standard model: given two nodes u, v ∈[ 0, 1], the edge
between them is part of the community (i.e. u and v are in the intra-community area of
the community) if

(u + pR)(v + pR) ≤ θR . (4)

Parameters din and dout are as with the standard model, that is, they define the
(expected) inside density and (expected) outside density. The graphon for the HYGEN

model for one community is

h =
{
din if (u + pR)(v + pR) ≤ θR
dout otherwise.

(5)

Notice that the parameters pR and θR are not the same p and θ as in the hyperbolic
model. To understand the difference, it is easier to study the graphon equivalent of the
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fixed model. In the standard fixed model, the parameter γ indicates the size of the
core; in the graphon version, it indicates the relative size of the core, that is, which frac-
tion of the nodes belongs to the core. Similarly, the H parameter in the graphon model
corresponds to the relative thickness of the tail. We denote these parameters as γR andHR,
respectively. They can be derived from the hyperbola analogously to the standard case
(see Metzler et al. (2016)): we can set γR as the value u′ where (u′ +pR)(u′ +pR) = θR and
HR as the value where (u′ + pR)(1 + pR) = θR. This gives

γR = −pR ± √
θR (6)

HR = −p2R + pR − θR
pR + 1

(7)

As we require that γR,HR ∈[ 0, 1], if pR ≥ 0, say, then (7) implies that it must be that
θR ≥ pR(pR+1) and then (6) takes from γR = −pR+√

θR. Similar conditions can be easily
derived for pR < 0 (see Metzler et al. (2016) for the conditions in the standard model).
Vice versa, we can also solve pR and θR from γR and HR (cf. Eqs. (2) and (3)):

pR = γ 2
R − HR

−2γR + HR + 1
if γR �= 1 and HR �= 1 (8)

θR = (γR − 1)2(γR − HR)2

(−2γR + HR + 1)2
if γR �= 1 and HR �= 1. (9)

When γR = HR = 1, we can set, for instance, pR = 0 and θR = 1.
Using graphons in the HYGEN algorithm is straight forward: we generate a graphon for

each community based on its parameters and replace the community generation inside
the for-loop of Algorithm 1 with sampling the community from its graphon, as explained
above. In addition, the graphon model is particularly useful for modelling time-evolving
communities. Unlike the standard HYGEN algorithm, the graphon model makes it easy to
adjust the size of the community while retaining some vertices: this can be done by simply
randomly discarding some of the previously-selected nodes and potentially sampling new
ones. Generating a full time-evolving graph would then amount to running Algorithm 1
for every time step, but instead of generating the communities from the scratch, we adjust
their sizes based on the graphon model.
Unlike the standard HYGEN model, the graphon model has somewhat more random-

ness. The parameter γR, for example, does not define the actual size of the core, but the
expected size of the core. The actual size of the core is a binomially distributed random
variable with parameters γR and s, where s is the size of the community. Similarly, the
density parameters din and dout are only expectations.

HYGEN graphs with specific community structures

In the above, we described HYGEN model using randomly sampled shape parameters.
Normally, we would fit the hyperparameters of the distributions to some real-world data
sets to obtain a realistic model for the random graphs, but in some cases, we might want
to obtain specific community structures.
One specific task is to generate random graphs with power law connectivity within the

communities (similar to the HyCom model of Araujo et al. (2014)). That is easy to do via
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the third model presented by Metzler et al. (2016), the mixturemodel. That model has
again two parameters, x ∈[−1, 1] and � ∈ R, and the function f defining the shape is

fmixture(i, j, x,�) = (1 − |x|)(i · j) + x(i + j) ≤ � . (10)

The mixture model is, again, equivalent to the fixed and hyperbolic models
(Metzler et al. 2016). By setting x = 0, it becomes clear that the model reduces to a power
law; the exponent of the power law is absorbed by the parameter�, as setting�′ = �1/−α

(assuming � > 0) yields to

(ij)−α ≤ �′ .

Hence we can sample power law communities by just sampling one parameter, � ∈
(0,∞).
A clique-like community is even more restricted than power law community, as we can

set γ = H = nC to obtain a clique. With such fixed settings, our model reduces to a
variation of SBM.

Theoretical results on HYGEN random graphs
The HYGEN model is designed to preserve important graph properties. In addition to
the hyperbolic community structure, HYGEN also preserves the degree distribution and
the clustering coefficient of the graph. These two properties measure the connectivity of
networks (Aggarwal and Wang 2010), and are often studied with social networks. In this
section, we present theoretical analysis of the HYGEN random graphs, proving that they
preserve the degree distribution and clustering coefficients (up to noise).
In the last part of this section, we discuss how the hyperbolic community structure

determines the degree correlation. This measure is studied to assess to what extent nodes
of similar degree connect to each other.

Degree distribution

The degree distribution is perhaps the most important global property of the graph and
has been one of the main topics in many seminal papers (e.g. Watts and Strogatz (1998);
Faloutsos et al. (1999); Albert and Barabási (2002)), and preserving the distribution (at
least approximately) is one of the standard aims of random graph generators.
As the HYGEN graphs have disjoint communities, we will first analyse a single com-

munity. For the sake of simplicity, we will study the complementary cumulative degree
distribution F̄ : {0, . . . , |V |} →[ 0, 1], where F̄(k) is the fraction of vertices with degree at
least k. Clearly, the cumulative degree distribution F is F(k) = 1 − F̄(k). For a single
community with no noise we have the following lemma.

Lemma 1 Let C = (VC ,EC) be a community that follows the hyperbolic(p, θ) model
perfectly. The complementary cumulative degree distribution F̄C of C is determined by the
parameters p and θ .

Proof According to the model, an edge (i, j) is in EC if and only if (i+p)(j+p) ≤ θ (recall
that the model assumes that the vertices are sorted by degree). Re-writing, we obtain that
(i, j) ∈ EC if

j ≤ θ/(i + p) − p . (11)
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That is, vertex i has degree at least j if (11) holds, and conversely,

F̄C(j) = max{i ∈ N : j ≤ θ/(i + p) − p}/|VC | .

Lemma 1 uses the hyperbolic model for the simplicity of the proof. Thanks to the
the equivalence relations (2) and (3) (see also Metzler et al. (2016)), we can also state the
lemma using the potentially more intuitive fixedmodel and its parameters:

Corollary 1 The complementary cumulative degree distribution of C, F̄C is determined
by the parameters H and γ .

Lemma 1 shows that the degree distribution of a single community is determined by
the model; to extend that to the full graph, it is enough to notice that as the communities
are disjoint, the total degree distribution is the sum of the individual communities’ degree
distributions.

Lemma 2 Given a graph G = (V ,E) that is a product of the HYGEN model with no
noise, its complementary cumulative degree distribution F̄ is completely determined by the
parameters of its communities.

Proof LetG consist of k communities C1 = (
VC1 ,EC1

)
, . . . ,Ck = (

VCk ,ECk

)
and denote

by nCi = |VCi | the number of nodes in community i. As the communities are disjoint, and
there are no vertices outside the communities,

n = |V | =
k∑

i=1
nCi .

That there is no noise means that (1) communities are perfect in the sense of Lemma 1,
and (2) there are no inter-community edges. Hence, by Lemma 1, F̄Ci is defined by the
parameters of community Ci, and

F̄(j) = 1
n

k∑

i=1
nCi F̄Ci(j) , (12)

that is, the number of nodes inGwith degree at most j is the sum of the numbers of nodes
with degrees at most j over all the communities.

Lemmata 1 and 2 cover the case where there is no noise. Such an assumption is
usually too strict for real-world graphs, and would yield to bad modelling of real-world
phenomena. When we add the noise, the model parameters (e.g. p and θ ) will not be
enough to define the overall edge distribution. We can show, however, that the noise has
most effect to the tails of the degree distribution.

Lemma 3 Let G be aHYGEN graph with no noise and G′ the same graph with a fraction
of q ∈[ 0, 1] noise applied, that is, dout = q and din = 1 − q in G′. The expected degree of
vertex v in G′, EG′ [ d(v)], is

EG′ [d(v)] = d(v) + q(n − 2d(v)) , (13)

where d(v) is the degree of v in G and n is the number of vertices in G.
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Proof A fraction of q edges connected to v will be removed due to the noise, and a
fraction of q edges not connected to v will be added. Hence,

EG′ [ d(v)]= d(v) − qd(v) + q
(
n − d(v)

)
,

which simplifies to (13).

Equation 13 already hints that if d(v) is large or small, the expected degree can have
bigger relative changes. Let α(v) = d(v)/n, that is α(v) is the relative degree of v. Then we
can write (13) as

EG′ [α(v)]= EG′ [ d(v)] /n = α(i) + q
(
1 − 2α(i)

)
, (14)

showing that the noise has the most effect on nodes with α(v) ≈ 0 or α(v) ≈ 1; on the
contrary, if α(v) = 1/2, the presence of noise will have no effect on the expected degree.
The above result means that communities that have many vertices with either very few

or very many neighbors are most affected by the noise. An extreme example of such a
community would be a star, and similarly, communities with steep power-law curves in
degree distribution would also see significant changes from small amounts of noise.

Clustering coefficient

In addition to the degree distribution, the clustering coefficient is often used to measure
the connectivity of the graphs, and high clustering coefficients are associated with “small-
world graphs” (Watts and Strogatz 1998).
There exists two different versions of the clustering coefficient, the global clustering

coefficient and the local clustering coefficient (Aggarwal and Wang 2010).

Definition 1 Given a graph G, its global clustering coefficient cc(G) is defined as

cc(G) = number of closed triplets in G
number of all triplets in G

. (15)

Definition 2 Given an undirected graph G = (V ,E) and its vertex v ∈ V, the local
clustering coefficient ccv(G) of v in G is defined as

ccv(G) = 2|{(u,w) : u,w ∈ 
(v), {u,w} ∈ E
}|

d(v)(d(v) − 1)
, (16)

where 
(v) is the neighbourhood of v.

We can again show that, up to the effects of the noise, the clustering coefficients – both
local and global – are fully determined by the model parameters. We start by analysing
the local clustering coefficient in a single community, as that is the most straight forward
to do.

Lemma 4 Let C = (VC ,EC) be a community that follows the hyperbolic(p, θ) with-
out any noise and let i be an arbitrary vertex of C. The local clustering coefficient cci(C) of
i in C is determined entirely by p and θ .

Proof Equation 16 has three terms that determine the clustering coefficient: neighbour-
hood 
(i), set of edges EC , and degree d(i). Given that C follows hyperbolic(p, θ), we
can use (11) to express the neighbourhood of v as



Metzler and Miettinen Applied Network Science            (2019) 4:53 Page 11 of 25


(i) = {
h ∈ VC : h ≤ θ/(i + p) − p

}

and the set of edges EC as

EC = {
i, j ∈ VC : j ≤ θ/(i + p) − p

}
,

showing that they both depend only on p and θ . That the degree of vertex i, d(i), depends
only on p and θ follows from Lemma 1.

To analyse the global clustering coefficient cc, we will first make some definitions.
Define the indicator function χ(i, j) as

χ(i, j) =
{
1 j ≤ θ/(i + p) − p
0 otherwise .

(17)

This function indicates for every pair of vertices i and j if there would be an edge
between them in a community following the hyperbolic(p, θ) model with no noise.
The number of closed triplets in a community following noise-free hyperbolic(p, θ)

model can be counted by testing whether all of the edges between the vertices exist.
Define Tcl : N3 → {0, 1} as

Tcl(i, j, h) = χ(i, j) · χ(i, h) · χ(j, h) . (18)

An open triplet (wedge) is a set of three vertices connected by exactly two edges. Define
To : N3 → {0, 1} as

To(i, j, h) = χ(i, j) · χ(i, h) · (1 − χ(j, h)) (19)

to test whether (i, j, h) is an open triplet centred at i.

Lemma 5 Let C be as in Lemma 4. The global clustering coefficient cc(C) of C is entirely
determined by p and θ .

Proof As the value of χ i, j is defined by p and θ (with fixed i and j), so are the values of
Tcl and To. We can write (15) with them as

cc(C) =
∑

i,j,h∈VC
Tcl(i, j, h)

∑
i,j,h∈VC

(
Tcl(i, j, h) + To(i, j, h)

) ,

where we always assume that i, j, and h are disjoint.

The above Lemmata 4 and 5 can be extended to a full graph following noise-free HYGEN

model.

Lemma 6 Let G = (V ,E) be a graph that follows the HYGEN model with no noise. The
global clustering coefficient cc(G) and the local clustering coefficient ccv(G) for any v ∈ V
are determined through the parameters of the hyperbolic communities of G.

Proof As there are no inter-community edges, the neighbourhood of any v ∈ V is
entirely contained in the community where v is, and Lemma 4 applies directly. The func-
tion χ , testing whether there is an edge between vertices i and j, also needs to take the
communities into account. It can be re-defined as
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Table 1 List of symbols

Symbol Meaning

p Center of the hyperbola in the hyperbolicmodel

pR Center of the hyperbola in the graphon hyperbolicmodel

θ Boundary of the hyperbola in the hyperbolicmodel

θR Boundary of the hyperbola in the graphon hyperbolicmodel

γ Size of the core in the fixedmodel

H Thickness of the tail in the fixedmodel

γR Relative size of the core in the graphon fixedmodel

HR Relative thickness of the tail in the graphon fixedmodel

din Density of edges inside the community

dout Density of the edges outside the community

N Set of natural numbers {0, 1, 2, . . .}

χ(u, v) =
{
1 if u, v ∈ C for some community C and πC(u) ≤ θC/(πC(v) + pC) − pC
0 otherwise,

where pC and θC are the parameters of the community C and πC is the permutation
associated with it. With this definition of χ , the functions Tcl and To will also work
throughout the full graph, concluding the proof.

Lemma 6 also shows that the average local clustering coefficient is determined by the
community parameters.

Corollary 2 Let G be as above. The average local clustering coefficient cc(G) =
1

|V |
∑

v∈V ccv(G) is entirely determined by the community parameters.

It is not trivial to analyse the effects of noise to the clustering coefficient. Triangles
or wedges from the inside-community area disappear, and new ones get introduced
involving the outside-community area. Given the overall density of a graph, the expected
number of triangles or wedges is derivable, but integrating the specific intra-community
structure into this expectation remains an open problem.

Degree correlation

The degree correlation measures whether the number of links between nodes with high
degree and nodes with low degree is systematically different from what is expected in a
random network. A network is called assortative if nodes of similar degree tend to link
to each other, and dissassortative if the network exhibits a preference for links between
nodes of dissimilar degree. Both trends of correlation may occur in real world networks.
While social networks tend to be assortative, other kinds of networks, including those
of question-answering portals, are typically observed to be disassortative (Aggarwal and
Wang 2010).
Positive degree correlation in social networks occurs since the degree-ordered adja-

cency matrix typically shows a banded structure, meaning that links between nodes of
similar degree occurmore likely than other links. Themodular character of such networks
with multiple, potentially distinct, communities helps assortativity. Interestingly, for the
building blocks of such modular networks, the individual communities, we observe an
opposite trend of degree correlation.
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Using results of prior work, we may claim that hyperbolic communities are usually dis-
assortative: Jonhson et al. (2013) study the relation between nestedness of networks and
disassortivity. They show that with high probability, disassortative networks are nested
and vice versa. Let G = (V ,E) be an undirected graph. We say G is nested if we can
order the vertices v ∈ V in a sequence (v1, v2, . . . , vn) such that N(vi+1) ⊆ N(vi) for all
i = 1, . . . , n − 1. As discussed by Karaev et al. (2018), hyperbolic communities are a spe-
cial case of nested matrices. Notice that also communities whose adjacency is described
by a power law function are therefore disassortative since the power law is special case of
the hyperbolic model.

Experimental evaluation
In this section we present the results of our empirical evaluation. We will first explain
the data sets, then study how the parameters are distributed in real-world graphs, and
then we study how the other random graph generators work at modelling the kind of
communities observed in real-world graphs. We will then study the quality of the graphs
constructed using the HYGEN model: first, we will study how well the generated graphs
fit to the model and then we will study how random the generated graphs are. Finally, we
will study how good the graphon model is at modelling time-evolving communities.
We base our evaluation on the HYGEN parameters. Up to noise, clustering coefficient as

well as degree distribution are derivable from the HYGEN parameters, as we have estab-
lished in the previous section. We do not test inter-community connections such as path
length, modularity, or degree correlation, since these would measure only added noise,
or in case of the degree correlation of individual communities, be already predetermined
through the structures we allow.

Datasets

We use two different collections of real-world data sets. The first collection, called SNAP,
consists of four networks with community information from the Stanford Large Network
Dataset collection (Leskovec and Krevl 2014): Amazon, DBLP, Friendster, and YouTube.
These are real-world social networks with ground-truth communities labeled in the data.
The properties of the graphs are summarised in Table 2.
Our second collection of real-world datasets is called SE and it contains four

time-evolving communities from the https://stackexchange.com family of online
question–answer sites (Q&A sites) (Stack Exchange 2016). The communities are
https://gaming.stackexchange.com, https://gardening.stackexchange.com, https://tex.
stackexchange.com and https://unix.stackexchange.com. The data are fromMetzler et al.
(2019). Some basic properties of these communities are listed in Table 3. The data sets

Table 2 Summary of the networks in the SNAP collection

Network Nodes Edges Communities

All 100–1000

Amazon 334 863 925 872 75 149 1 380

DBLP 317 080 1 049 866 13 477 805

Friendster 65 608 366 1 806 067 135 957 154 19 763

YouTube 1 134 890 2 987 624 8 385 129

https://stackexchange.com
https://gaming.stackexchange.com
https://gardening.stackexchange.com
https://tex.stackexchange.com
https://tex.stackexchange.com
https://unix.stackexchange.com
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Table 3 Basic properties of four SE communities

Community Start date Largest size Average γR Average HR

Gaming 2009-08-01 3818 0.106 0.004

Gardening 2010-07-01 446 0.124 0.009

Tex 2008-08-01 3342 0.074 0.009

Unix 2008-08-01 5450 0.073 0.001

The average γR and average HR are computed using a weighted average with the community size at each month being the
weight. The parameters γ and H for these communities are by Metzler et al. (2019)

contain a snapshot of the community at the begin of each month from the start date until
November 2016.

Distributions for the parameters

Above, we suggested distributions to use for the distributions of the shape parameters γ

and H and the size nC . Here we detail how these suggestions were obtained.
For these experiments, we use the SNAP collection of real-world data sets. We sam-

ple 500 communities of size between 100 and 1000 nodes2 and compute the hyperbolic
models for each community to obtain empirical distributions for γ ,H, and the (truncated)
community size nC .
For each of the empirical distributions for γ , H, and nC , we fit different distribu-

tions (namely, generalized extreme value distribution, inverse Gaussian distribution,
Birnbaum–Saunders distribution, exponential distribution, log-normal distribution, log-
logistic distribution, gamma distribution, Rayleigh distribution, Weibull distribution,
Nakagami distribution, Rician distribution, normal distribution, logistic distribution,
extreme value distribution, and t-location-scale distribution). Not every distribution is
applicable for each of the parameters. While the observed γ s look normally distributed,
H and the community size show an exponential behaviour.
In order to validate our subjective observations, we tested how well the different dis-

tributions fit using the negative log-likelihood (LL). Alternative reasonable measures for
evaluation would be Akaike or Bayesian information criterion. We observe highly sim-
ilar results with either of the measures and therefore only present the evaluation with
respect to LL. To show the results in a concise manner, we present here only compar-
isons of our chosen distributions against all other options. Namely, for every distribution
D that is not the one we chose to model parameter p, we compute our test statistics
Tp(D) = LLp(D) − LLp(D∗), where LLp(D) is the negative log-likelihood of modelling
parameter p using distribution D and LLp(D∗) is that for the selected distribution D∗.
The larger values Tp(D) obtains, the better the selected distribution performs compared
to distribution D, Tp(D) = 0 indicates that D and D∗ perform equally well, and negative
values indicate that D performs better than the chosen distribution D∗.
Based on our experiments, we propose to model γ (relative to the community size)

using the normal distribution,H (relative to γ ) using the exponential distribution, and the
community size nC using the generalized extreme value distribution. Our comparison of
these distributions against others in the SNAP datasets are presented in Fig. 2.
As can be seen in Fig. 2a, the normal distribution is constantly at least as good as the

other distributions (i.e. there are no negative values), implying that the use of normal

2Notice that the YouTube network has only 129 communities within that size range; hence we use them all.
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(a) (b) (c)
Fig. 2 Relative log-likelihoods (LL) of the hypothesised distributions compared to the other distributions. For
each dataset, the boxplot indicates how well each parameter follows the hypothesised distribution
compared to other potential distributions. Positive values indicate that the preferred distribution performs
better than the others and zero indicates even performance. a γ b H c size

distribution is a valid choice. The situation when modelling the distribution of the H
parameter (w.r.t. γ ) is more complicated. Our experiments showed the exponential distri-
bution to have the best fit, but as can be seen in Fig. 2b, in some cases other distributions
would be better. More experiments would be needed to give a conclusive answer to the
question which distribution explains observed Hs best.
For modelling the distribution of the community size (Fig. 2c), the GEV distribution

is always the best, and shows the strongest performance against the other distributions.
Please note, however, that in this test we model the distribution of the sizes of the com-
munities in a single network at one point of time; when studying the sizes of a single
community over time, very different distributions might be needed (cf. Fig. 8).

Limits of the current graph generators

While many of the existing random graph generators cannot be used to model commu-
nity structures in networks at all, there are a number of related approaches that allow
for generated graphs with community structure. To the best of our knowledge however,
there exists no approach of preserving the intra-community connection patterns in the
modeling process.
In this section, we detail why SBM, LFR, and R-MAT do not provide solutions to

the modeling task we aim to solve. For this purpose, we compare the outcome of these
generators when fitted to idealized hyperbolic communities. One may argue that such
communities are not realistic and therefore not a fair basis of comparison for these
generators that are designed to model real-world graphs, which are usually sparse and
exhibit a certain level of noise. However, the purpose of this experiment is to see to what
extent the pure hyperbolic structure can be captured at all by the different generators.

Experimental Setup. We generate single hyperbolic communities with the extremes of
shapes that can be represented: a star, a near-clique, a triangular, and a stereotypical core-
tail pattern (see Fig. 3; cf. Fig. 1b). Each of these communities consists of 100 nodes. For
each of the graph generators, SBM, LFR, and R-MAT, we learn the respective parameters
with these communities as input and generate new graphs according to those parameters.
After that, we fit the best hyperbolic model on the newly generated graphs, measure the
fitting quality in terms of log-likelihood (LL), and compare how well the obtained model
matches the original input. We repeat this experiment 50 times to counteract effects of
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(a) (b) (c) (d)
Fig. 3 Adjacency matrices of idealised hyperbolic communities. The different extremes of hyperbolic
structures, range from star-like to near-clique. a 20%-core b star c near-clique d triangle

randomness. Figure 5 summarizes the resulting hyperbolic models that best fit the com-
munities generated by the respective method. We overlay the 50 obtained models in light
grey. Ideally, we would expect to see the exactly the structures of Fig. 3 again.
Notice that the LFR implementation strictly requires multiple communities to be gen-

erated. Therefore, we provide graphs containing twice the same community as input (like
illustrated in Fig. 6a for the 20%-core) and use the better matching one in the evaluation
of the fit quality.

SBM. The standard SBM is based on the assumption that vertices within a block
are stochastically equivalent. The hyperbolic model fulfils this assumption only in the
extreme case of a quasi-clique, where the size of the core equals the size of the commu-
nity. The typical core-tail structure of hyperbolic communities cannot be captured (see
Fig. 4a). As the generated graphs after fitting the SBMmodel are almost uniformly dense,
the hyperbolic models fitted on these outputs exhibit a huge degree of variance and often
differ a lot from the original input (see Fig. 5a). The high negative LL scores of the fits
(see Table 4) indicate that the fitted hyperbolic models are also not particularly good at
explaining SBM-generated communities. Regarding the case of a near-clique, it is worth
pointing out that a perfect clique would be recovered well by the SBM. The case of the
near-clique (Fig. 5a, column 3) is substantially harder: almost all nodes are connected to
each other but a few miss some connections. For the SBM however, the primary aim is to
match the overall density evenly. Thus the fit is such that many nodes are fully connected
and some are connected to almost every other node, which yields into a substantially
different looking hyperbolic model.

(a) (b) (c) (d)
Fig. 4 How the compared graph generators create a new random community when given the 20%-core
community shown in Fig. 3 as input. The adjacency matrices in each subfigure are degree-ordered. a SBM b
DC-SBM c R-MAT d LFR
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(a)

(b)

(c)

(d)
Fig. 5 Hyperbolic model fitted on results of alternate generators. Each subfigure summarizes 50 repetitions
of using the alternative generator to fit the respective input displayed in Fig. 3. For every sample, the
adjacency matrix of the closest hyperbolic model is displayed in light grey. Shades of grey result from
overlaying all samples and yield a visual summarization of the observed shapes. The ideal result would be
complete resemblance to the respective input. a Hyperbolic model fitted on results of SBM. b Hyperbolic
model fitted on results of DC-SBM. c Hyperbolic model fitted on results of R-MAT. d Hyperbolic model fitted
on results of LFR

Table 4 Average best log-likelihood for 50 trials of generating hyperbolic communities with SBM,
DC-SBM, R-MAT, and LFR, with standard deviations

20%-core star near-clique triangle

SBM -2354(1919) -451(1406) -282(1007) -3393(39)

DC-SBM -1545(1734) -212(713) -3238(521) -2679(768)

R-MAT -2008(38619) -440(958) -214(548) -2727(230133)

LFR -2515(7697) — -1299(17346) -3714(6250)

Notice that HyGen would achieve the ideal value of 0 in each of the examined cases.
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DC-SBM. DC-SBMs allow for variation of the degree within a community (see Fig. 4b).
Fitting back a hyperbolic model on the DC-SBM outcome of modelling a 20%-core struc-
ture, a star, or a triangle are fairly accurate in the sense that the parameters γ and
H are close to the original (see Fig. 5b). Yet, the hyperbolic models fitted on the DC-
SBM-generated communities leave some amount of noise to be explained otherwise (see
Table 4). The DC-SBM expects a power-law degree distribution within the communities
and draws edges from that one to recover the connectivity pattern inside the community.
In particular the near-clique case (see Fig. 5b, column 3) seems to be hard to explain by a
power law. The hyperbolic model is more general in the sense that it includes power-law
distributions as a special case. It also has a substantially different noise model, assuming
uniform density for the inside-community area and as well as for the outside.

R-MAT. R-MAT is designed to model the degree distribution of the input data using
a recursive procedure. The results we observe for the single artificial communities are
comparable to those of the DC-SBM (see Fig. 5c). The recursive construction procedure
however introduces particular structures in the data. To construct a graph, R-MAT subdi-
vides the adjacency matrix recursively into quarters of certain density. This makes it hard
to capture multiple communities, especially of unequal sizes. An additional experiment
reveals that, already if R-MAT is fitted on a graph of two equally sized (hyperbolic) com-
munities with no inter-connections, the resultingmodel is not capturing the this structure
well (see Fig. 6): by its definition, R-MAT models consist of four self-similar blocks. This
means, the blocks with community structure are always mirrored to the off-diagonal,
introducing many surplus links between the communities.

LFR. The LFR benchmark generates random graphs given power-law distributions for
the node degree and the community size. Creating graphs that consist of a single commu-
nity is not included as a special case in this approach. To still obtain comparablemodelling
results for the four sample hyperbolic communities (see Fig. 3), we fit LFR on graphs con-
sisting of twice each of those communities. The reported LL scores of fitting a hyperbolic
model on the LFR results then refer to the better of the two obtained communities. While
for the star pattern, we could not find a set of valid LFR parameters to describe this pattern
with the procedure suggested by Lancichinetti et al. (2008), we observe that the remaining

(a) (b) (c)
Fig. 6 How R-MAT reconstructs a graph of two identical hyperbolic communities. To fit the hyperbolic
models, we assume that the community sizes remained unchanged during modeling. Fitting implies degree
ordering the communities. a input graph b R-MAT result c fitted model
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hyperbolic communities are modeled very similar to each other by LFR, as the best hyper-
bolic model to explain these communities is the same in each case (see Fig. 5d). A closer
look at the LFR-generated graphs reveals that they actually differ: the average degree per
community is retained from the original communities, but the hyperbolic structure is lost.

Stability of the graph generation

Wenow turn our attention into analysing the HYGEN-generated graphs. In this section we
will study how well the generated graphs fit to the real-world graphs; in the next section,
we will study how random the generated graphs are.
We used the following procedure to test how well the generated graphs fit to the

real-world data they were generated from: First, we fitted the hyperparameters of the
parameter distributions to real-world networks from the SNAP collection. Then we used
these distributions in HYGEN to sample collections of random graphs. Finally, we com-
puted the best hyperbolic model for each community in the generated graphs using the
code of Metzler et al. (2016) and evaluated how accurately the found communities match
to the original communities. Our hypothesis is that the found communities have simi-
lar distributions of parameters as the original communities, indicating that the generated
graphs retain the essence of the community structure of the original graphs.
In order to compare HYGEN, we also generated graphs using LFR and DC-SBM. Based

on our experiments in the previous section, we know that they cannot model the hyper-
bolic structure too well, but it is still possible that they can model all of the structure that
is observed in real-world graphs.
In order to fit the hyperbolic model to the generated communities, we need to know

what these communities are. Both HYGEN and LFR return this information; the DC-SBM
implementation we used (Nepusz 2015), on the other hand, only uses this information
internally and does not report it. In order to find the communities from graphs generated
by DC-SBM, we will fit the model again to the generated graphs, and record the com-
munity structure from the fitted models. We assume that DC-SBM correctly recovers
communities when provided graphs generated by it.
The results of this experiment, with respect to γ ,H, and community size, are presented

in Fig. 7. It shows four boxplots for each dataset and parameter combination: the first,
called empirical, is the distribution observed from the original data, i.e. the distribution
we should match, and the other three boxplots show the distributions of the parameters
when fitted to the generated graphs.
In order to obtain reliable results, with HYGEN and LFR, we sampled a hundred

times as many communities as was in the original data. That is, for the YouTube

data, we sampled 12900 communities, and for the other datasets, we sampled 50000
communities. DC-SBM, on the other hand, was so slow to generate the sampled
graphs and fit to them that we had to limit it to one graph with 100 communi-
ties for each dataset. Even with this limitation, it could not finish the Friendster data
set within a week, and hence we exclude DC-SBM from the results regarding the
Friendster data.
The results in Fig. 7a show that HYGEN generates a very good match for γR in all

datasets. LFR is somewhat accurate, but has much higher standard deviation and often
generates toomany communities with too large cores. This behaviour is most pronounced
in the YouTube dataset. DC-SBM generates communities with even larger cores, and in
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(a) (b)

(c)
Fig. 7 Distributions of parameters in generated graphs compared to the empirical distributions observed in
the original data. H and γ are obtained after fitting hyperbolic models. a γR b HR c community size (data for
DC-SBM > 1600 not displayed)

case of DBLP and YouTube, the first quartile of γR in DC-SBM generated communities is
above the third quartile of the original distribution, indicating a very bad fit.
Figure 7b shows the results for the relative H. Again, HYGEN produces the most accu-

rate results, although the communities have a slightly thicker tail than in the original data
at least inDBLP and Friendster data sets. On the other hand, these data sets have extremely
thin tails in their communities. The communities generated by the LFR model have much
thicker tails than the real communities or those generated by the HYGEN model. In short,
it is obvious that LFR cannot model the kind of thin tail real-world data sets often have.
DC-SBM, on one hand, under-estimates the tail thickness for the Amazon data set, and
on the other hand, over-estimates it for the YouTube data set.
When we look at the sizes of the generated communities, in Fig. 7c, we can observe

that LFR has very small deviation of the community sizes, and they are generally too
small, while DC-SBM generates too large communities for Amazon and DBLP data sets,
but approximately correctly-sized communities for the YouTube data set. The communi-
ties generated by HYGEN have again the best fit in the distribution of the sizes, though it
seems to generate slightly less of the larger communities than what is seen in the real data.
Overall, we can conclude that HYGEN provides a reasonably good fit for the original

data, and significantly better than what is provided by either LFR or DC-SBM. This again
shows that HYGEN is the best method for modelling hyperbolic structure, and that the
real-world data actually has communities with structure that cannot be captured by the
other models.

Randomness of the generated graphs

We now turn onto our second evaluation: whether the generated graphs are random
enough. In a way, this experiment test the opposite of the previous experiment; it would
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be easy to obtain a very good match to the original graph by simply generating graphs
that are identical copies of the original one, but these would be rather useless. Hence, it is
important to study also whether the generated graphs have enough randomness.
For this study, we quantify the randomness using the conditional entropy H(Y | X).

Intuitively, it measures how much information is needed to describe random variable Y
given that we know random variable X, that is, how much X “tells about” Y. If Y is fully
determined by X,H(Y | X) = 0, and if Y and X are independent,H(Y | X) = H(Y ), the
entropy of Y (Cover and Thomas 2006). As 0 ≤ H(Y | X) ≤ H(Y ), we report the relative
conditional entropyHR(Y | X) = H(Y | X)/H(Y ) ∈[ 0, 1].
We use the relative conditional entropy to compare the adjacency matrices of the dif-

ferent communities (original and generated). As the graphs are undirected, we will only
study the upper triangular part of the adjacency matrix. We sort the rows and columns
of the adjacency matrix according to the vertex degree so that they are ordered in similar
way for all graphs. We then consider the upper triangular part of the adjacency matrix as
a binary vector, and identify that as a discrete random variable.
To generate the data to compute HR(Y | X), we generated 100 random graphs using

HYGEN. We sampled γ and H from fitted distributions, but for the size, we used the
original sizes of the communities to ensure that the random variables X and Y are of same
length.
The relative conditional entropy HR(Y | X) is computed per community because

communities sampled from the original graph do not maintain their context (i.e. which
community overlaps with which community), and thus we cannot match the generated
communities correctly to the original communities unless we generate the communities
one-by-one. In addition, using the fixed sizes of communities introduces determinism not
present in the full graph model that could bias the analysis.
Our results are presented in Table 5. The results indicate that the information we have

on the generated graphs given the original data is very small (all relative conditional
entropies are larger than 0.96), that is, the generated communities are truly random.
Together with the previous experiment, showing that the generation preserves the desired
structure, we can conclude that HYGEN can generate random graphs that preserve the
desired structure.

Modelling time-evolving communities

In this section we use the graphon version of the HYGEN model to model time-evolving
communities. Communities in social networks, especially in online Q&A sites, such as
https://stackexchange.com, have surprisingly constant relative core size (Metzler et al.
2019). In other words, the relative γ , γR, stays almost constant over time, indicating that
the graphon model should be a good model for such communities. The purpose of this

Table 5 Average relative conditional entropy of generated communities given the original data

HR(Y | X)

Amazon 0.996

DBLP 0.996

Friendster 0.990

YouTube 0.963

Standard deviations are within the displayed precision and thus omitted

https://stackexchange.com
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experiment is to study whether that is true; in particular, whether the graphon model can
generate time-evolving communities that behave similarly to the real ones.
In these experiments, we used the four communities from the SE collection, described

in Table 3. Notice that here each dataset is just one community; this is sufficient for this
experiment, as multi-community graphs would not change the behaviour of single com-
munities. A graphon was initialised for each community using the relative parameters γR
and HR from Table 3 and a new community was sampled for every month in the data.
We did not model the size of these communities, but used the real sizes. Similarly, we
kept the same number of nodes from the previous month as was kept in the real data.
Also, the sampling was done without adding any noise. This way we can concentrate on
the shape of the community; the modelling of the size, or the amount of the overlap,
over time is an interesting problem for future work (as Fig. 8 shows, there is no com-
mon trend in the sizes) and adding the noise will not change the analysis of the shape.
As the tail height parameter HR is almost zero for every community (as is the case with
essentially all communities like this (Metzler et al. 2019)), we do not report any results on
that one.
Figure 8 shows the results for the four SE communities. The blue line shows the true

γR for each month (computed by Metzler et al. (2019)). The red line shows the average
γR computed from 100 samples from the graphon, and the shaded red area extends two
standard deviations above and below the average (though clipping at 0).
As we can see in the blue lines, all communities have much higher values of γR

at the beginning of their lives but soon the values converge to a lower value and
stay rather constant. The biggest reason for the behaviour at the begin seems to be

Fig. 8 Behaviour of γR in graphon models of different communities. Blue line: real γR ; red dashed line:
average γR over 100 sampled communities; red shading: area two standard deviations above and below the
average γR ; black line: community size (scale on the right)
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the size of the community (depicted as black line in the figures): initially all com-
munities start small, but as they grow, the relative core size γR stabilises. This can
be readily seen, for instance, from the gardening community, that has a cyclic pat-
tern in its size: the value of γR varies the most when the community has the smallest
sizes.
The graphon model can capture this variance based on size very well. The larger the

sample (i.e. community), the smaller the standard deviation around the expected core
size γR. Consequently, the samples follow the behaviour of the real graphs very closely,
having much higher deviation at the early stages of the communities and stabilizing as
the community grows. Notice that the model even follows the individual peaks very well
(e.g. in unix community), even if the initial values are usually more than two standard
deviations away from the average.
Overall, this experiment shows that the graphon model can be used very effectively

to model time-evolving hyperbolic communities, even though there are some important
future directions to explore. The current model selects the members that leave the com-
munity uniformly at random; potentially more realistic model would depend, for instance,
on the length of the node’s membership in the community and on its degree. Also, we did
not model the community size over time. In order to generate fully synthetic graphs, this
is a very important feature, although as can be seen already from Fig. 8, different commu-
nities can have so different behaviour that a single distribution is probably never sufficient
to model all of them.

Discussion and conclusions
Being able to generate random graphs with realistic community structure is important
for testing community detection algorithms and for understanding how realistic graphs
behave. Recent research has shown that real-world communities have much richer struc-
ture than the typically-assumed quasi-clique. Ourmodel, HYGEN, is capable of generating
random graphs with this richer structure, making them more realistic. The proposed
model can also formulated as a graphon; a modelling that is particularly well-suited for
modelling time-evolving graphs.
While HYGEN is already an improvement over the state-of-the-art random graph gener-

ators, there are still important topics of further development. The first important topic is
to incorporate more realistic noise models to HYGEN. At the present, the model assumes
uniform noise with different probabilities of eliminating real edges and adding spurious
ones. Our experiments, however, indicate that the noise is correlated with the size of
the community. Incorporating a size-dependent noise model for removing the true edges
is somewhat straight forward, but modelling similar noise for inter-community edges
requires future work.
The HYGEN-generated communities have currently too thick tails compared to what

we see in the real world. This might be because the distribution we use to model the tail
thickness parameter (Exponential) is not concentrated strongly enough, or it might have
something to do with the noise model.
Finally, HYGEN produces non-overlapping communities. In principle, this could be

solved relatively easily: the HYGEN algorithm (Algorithm 1) could generate partially-
overlapping communities assuming it knows the amount of overlap. This could be
either provided indirectly by specifying number of nodes for the output graph G, or by
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specifying the amount of mixture among communities. The real challenge however is not
the definition of such a model, but its evaluation. Available test data from real world net-
works only comes with community information with respect to the nodes. Assuming the
hyperbolic model, overlap can either be within the intra-community area, or outside. In
both cases, we would observe overlapping nodes, but only in the first case the communi-
ties actually overlap. Due to the lack of data to evaluate the realism of generated graphs
with overlapping communities, we leave this extension of the model for future work.
HYGEN has its obvious use for testing community detection algorithms. A compre-

hensive comparison of community detection algorithms, as done by Orman et al. (2013)
and Fagnan et al. (2018), is a planned future work. HYGEN can generate realistic graphs
equipped with reliable labelling of the communities. Besides this, HYGEN might serve as
an anonymization tool to study the structure of social networks without revealing the
participants identities.
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