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Abstract
Community Discovery is among the most studied problems in complex network
analysis. During the last decade, many algorithms have been proposed to address such
task; however, only a few of them have been integrated into a common framework,
making it hard to use and compare different solutions. To support developers,
researchers and practitioners, in this paper we introduce a python library - namely
CDLIB - designed to serve this need. The aim of CDLIB is to allow easy and standardized
access to a wide variety of network clustering algorithms, to evaluate and compare the
results they provide, and to visualize them. It notably provides the largest available
collection of community detection implementations, with a total of 39 algorithms.

Keywords: Social network analysis, Community discovery library, Community
detection framework

Introduction
In the last decades, the analysis of complex networks has received increasing attention
from several, heterogeneous fields of research. This popularity comes from the flexibility
offered by such an approach: networks can be used to model countless phenomena with
a common analytical framework whose basic bricks are nodes and their relations.
Social relationships, trading, transportation and communication infrastructures, even

the brain can be modeled as networks and, as such, analyzed using what is now called
network science. Undoubtedly, such pervasiveness has produced an amplification in the
visibility of network analysis studies, thus making this complex and interesting field
widespread among higher education centers, universities and academics. Given the expo-
nential diffusion reached by network science, several tools were developed to make it
approachable to the wider audience possible. Network analysis programming libraries
are nowadays available to computer scientists, physicists as well as mathematicians;
moreover, graphical tools were developed for social scientists, biologists as well as for
educational purposes.
One of the hottest topics in network science is the Community Discovery, the task of

clustering network entities belonging to topological dense regions of a graph.
Althoughmanymethods and algorithms have been proposed to cope with this problem,

and related issues such as their evaluation and comparison, few of them are integrated
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into a common software framework, making hard and time-consuming to use, study
and compare them. Only a handful of the most famous methods are available in generic
libraries such as NetworkX and Igraph, and running any other method requires to:

1 Find a reliable implementation
2 Learn how to use it
3 Transform the graph to study in the requested format
4 Export and transform the resulting clustering in a format suitable to the user needs.

This laborious process is probably the cause of two strong weaknesses of the Commu-
nity Discovery field:

• Despite the large number of algorithms published every year, most of the newly
proposed ones are compared only to a few classic methods.

• Practitioners barely ever try different methods on their data, while it is well known in
the field that different methods often provide widely different solutions.

To cope with these issues - as previously done also in the network diffusion context with
NDLIB (Rossetti et al. 2018) - we introduce a novel library designed to easily select/ap-
ply community discovery methods on network datasets, evaluate/compare the obtained
clustering and visualize the results.
CDLIB represents a comprehensive, easy to use solution for network clustering. This

paper aims to introduce CDLIB, describing its main features, and placing it among other
tools already available to social network analysis practitioners.
The paper is organized as follows. First we briefly introduce some concepts needed to

frame the context CDLIB is designed to analyze. Moving from the Community Discovery
problem definition, we introduce CDLIB: there we describe how the library is designed,
its rationale and main characteristics. Once made clear the key features of CDLIB, we
identify and discuss the available competitors of the library. Finally we conclude the paper,
underlining the advantages of CDLIB w.r.t. its competitors and providing insights on the
future evolution of our framework. An appendix to this paper briefly describes themodels
made available by CDLIB v0.1.0.

Community discovery
Community discovery (henceforth CD), the task of decomposing a complex network
topology into meaningful node clusters, is one of the oldest and most discussed problems
in complex network analysis (Coscia et al. 2011; Fortunato 2010). One of the main rea-
sons behind the attention such task has received during the last decades lies in its intrinsic
complexity, strongly tied to its overall ill-posedness. Indeed, one of the few universally
accepted axioms characterizing this research field regards the impossibility of providing a
single shared definition of what community should look like. Usually, every CD approach
is designed to provide a different point of view on how to partition a graph: in this sce-
nario, the solutions proposed by different authors were often proven to performwell when
specific assumptions can be made on the analyzed topology. Nonetheless, decomposing
a complex structure in a set of meaningful components represents per se a step required
by several analytical tasks – a need that has transformed what usually is considered a
problem definition weakness, the existence of multiple partition criteria, into one of its
major strength. Such peculiarity has lead to the definition of several “meta” community
definitions, often tied to specific analytical needs. For instance, classic works intuitively
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describe communities as sets of nodes closer among them than with the rest of the net-
work, while others, looking at the same problem from another angle, only define such
topologies as dense network subgraphs.
A general, high-level, formulation of the Community Discovery problem definition is as

follows:

Definition 1 (Community Discovery (CD)) Given a network G, a community C is
defined as a set of distinct nodes: C = {v1, v2, . . . , vn}. The community discovery problem
aims to identify the set C of all the communities in G.

The absence of a unique, well-posed, definition of what a community in a complex
network should represent is only one of the issues to face when approaching network
clustering.
Such an ambiguous problem definition is nonetheless one of the causes for which

researchers continuously propose novel approaches with the aim of solving well-defined
instantiation of this task - often aiming at solving context-specific applications.
Due to the massive literature available in this field, over the years several attempts

were made to organize and cluster methods identifying some common grounds. Among
others, the surveys of Fortunato (Fortunato 2010; Fortunato and Hric 2016) and Coscia
(Coscia et al. 2011) propose complete, detailed and extensive taxonomies for classic algo-
rithms. However, due to the peculiar problem definition, more thematic surveys emerged,
focusing for instance on overlapping (Xie et al. 2013), directed (Malliaros and Vazirgian-
nis 2013), node-centric (Rossetti et al. 2017) as well as dynamic community discovery
(Cazabet et al. 2018; Rossetti and Cazabet 2018).
Another category of research contributions aims at comparing empirically existing

methods on real or synthetic networks, as has been done for instance in Lancichinetti and
Fortunato (2009); Leskovec et al. (2010); Harenberg et al. (2014). Indeed, sincemost meth-
ods do not share a common definition of communities to find, the only way to compare
the quality of discovered partitions is to compare their results with a known ground truth,
or to evaluate their quality using quality functions. With no standard library implement-
ing various algorithm, each of these works require to re-implement methods and/or to
adapt each existing implementation to a single common format. As a consequence, those
empirical evaluations are only able to compare a limited number of well-known methods,
and compare them with one or two evaluation metrics.

CDlib: community discovery library
We designed CDLIB - “(C)ommunity (D)iscovery Library" - to simplify the definition/ex-
ecution/evaluation of community discovery analysis. CDLIB is a Python package built
upon the network facilities offered by NetworkX1 and Igraph2. The library, available for
Python 3.x, is currently hosted on GitHub3, on pypi4 and has its online documentation
on ReadTheDocs5. Moreover, CDLIB is also made available through the SoBigData.eu
catalogue6.

1NetworkX: https://goo.gl/PHXdnL
2Igraph: https://goo.gl/Hi5Srf
3CDLIB GitHub: https://goo.gl/Gu3VSV
4CDLIB pypi: https://goo.gl/FPtHHU
5CDLIB docs: https://goo.gl/ggGbUz
6SoBigData: http://www.sobigdata.eu

https://goo.gl/PHXdnL
https://goo.gl/Hi5Srf
https://goo.gl/Gu3VSV
https://goo.gl/FPtHHU
https://goo.gl/ggGbUz
http://www.sobigdata.eu
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A complete list of the diffusion models implemented in CDLIB v0.1.0, along with their
short descriptions, is reported in the Appendix. At the date of publication, CDLIB pro-
vides 39 implementations of CD algorithms, including 14 overlapping, 1 fuzzy, and 2 edge
partitions methods.
The main features of the library are as follows.
• Implementation of a wide range of algorithms for community detection, including

overlapping, fuzzy and edge clusterings.
• Standardized representation for both graphs and clusterings.
• Tools to efficiently compare methods when varying their parameters, or methods

between themselves.
• Implementations of a variety of scores and quality functions to evaluate the quality of

individual communities and whole clusterings.
• Visualization tools to compare and analyze clusterings obtained by one or several

methods.
In the next sections, we present in details each of those capabilities.

Library rationale

The library provides several community detection algorithms (Refer to the Appendix for
a complete list), implemented such as (i) they take as input a unified graph topology
representation (ii) they return a clustering using a unified representation.

• The graph topology is implemented by borrowing the entities exposed by both the
NetworkX and Igraph libraries. CDLIB allows to call all its CD algorithms equivalently
on graph instances belonging to those libraries: it performs, if needed, all the required
data type conversions under the hood without requiring the user to be aware of them.

• Apart from the graph object and method parameters needed to instantiate a specific
CD algorithm, all the exposed models are designed to return objects having as
supertype a common class, namely Clustering. Such abstract type exposes several
facilities that will be discussed further on.

The standardization of clustering representation - and the decoupling of input/output
w.r.t. algorithmic implementations - makes easy to extend CDLIB with novel algorithms.
Any CD method written in python can be included in our library just wrapping it into an
ad-hoc input/output harmonization process that:

• ensures the conversion, if needed, of a NetworkX/Igraph object into the graph
representation used by the algorithm, and

• reshapes the algorithm results in a concrete class derived by Clustering.
The following code shows an example of experiment definition, configuration and

execution.
Listing 1 Example of the execution of a CD algorithm on a NetworkX Graph object.
1 from cd l i b import a l go r i t hms
2 import networkx as nx
3
4 # Network topo logy
5 g = nx . k a r a t e _ c l ub_g r aph ( )
6
7 # Model execu t i on
8 coms = a l go r i t hms . demon ( g , e p s i l o n =0 . 25 )

In lines 1–2 are imported all the required modules; in line 5 the Zachary’s Karate Club
(Zachary 1977) g is built using NetworkX; in line 8 the Demon (Coscia et al. 2012; 2014)
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algorithm is executed. As previously discussed, we can replace the NetworkX graph
object with the equivalent Igraph one while preserving the final result.

Listing 2 Example of the execution of a CD algorithm on an Igraph Graph object.

1 from cd l i b import a l go r i t hms
2 import i g r aph as i g
3
4 # Network topo logy
5 g = i g . Nexus . g e t ( " k a r a t e " )
6
7 # Model execu t i on
8 coms = a l go r i t hms . demon ( g , e p s i l o n =0 . 25 )

Once computed the desired network clustering, CDLIB allows its users to:

• evaluate it using several fitness scores
• compare it with alternative partitions
• visualize it using predefined and standard graphic facilities

Network Clustering

As already discussed, the results of each CD algorithm in CDLIB is an object that inherits
from the abstract class Clustering. This choice is due to the fact that our library has been
designed to handle heterogenous clustering types. In particular, in its current release,
CDLIB allows executing approaches that partition a graph over the node set (NodeCluster-
ing) as well as over the edge set (EdgeClustering). Moreover, our library explicitly handles
three different sub-types of clustering:

• Partitions (Crisp clustering): each node (edge) belongs to a unique cluster
(community);

• Overlapping: each node (edge) is allowed to belong to more than one community at
the same time;

• Fuzzy: each node (edge) belongs to multiple communities with different level of
involvement in each one of them.

This differentiation among clustering types allows to fulfill two main goals: (i) enable
clustering specific evaluation methods/representation for each specific concrete class;
(ii) make the CDLIB framework easily extendible to support, in future releases, even
more specific clustering types (e.g., multiplex node/edge clustering, dynamic node/edge
clustering).
For the sake of simplicity, let us consider as an example the structure of the

object instance produced by a generic node clustering algorithm of our library. The
NodeClustering object contains the following information: (i) the list of communities
obtained; (ii) a reference to the original graph object; (iii) all the metadata regarding the
community extraction process (i.e., community discovery algorithm name and parameter
configuration); (iv) a flag that specifies if the clustering is overlapping or not; (v) the per-
centage of nodes that are involved into the clustering. FuzzyNodeClustering extends
such information with a node-community allocation probability matrix to keep track of
the probabilistic component of the final non-overlapping partition. Clustering objects
make use of such information to enable specific fitness measures and community com-
parison scores that will be briefly discussed in the Section “Clustering Evaluation and
Comparison”.
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Ensemble clustering

Usually, given a network to analyze, it is a good practice to test several community discov-
ery algorithms (or variations w.r.t. their parameter values) to identify the best partition
for the specific analytical goal/fitness measure.
CDLIB offers a range of built-in facilities to simplify this task. The cdlib.ensemble

submodule allows automating the execution of multiple instances of community detec-
tion algorithm(s) with different sets of parameters. In particular, two different families of
meta-functions are defined:

• Pooling: automate the pooled execution of multiple CD algorithms over the same
graph;

• Optimization: automate the parameter space search for a given CD algorithm so to
maximize (minimize) a given partition fitness score.

Indeed, pooling and optimization facilities can be combined together to design more
complex behaviors (i.e., pooling different algorithms with the aim of comparing their best
partitions w.r.t. a given quality score).

Listing 3 Example of multiple execution of two CD algorithm.

1 from cd l i b import a l go r i t hms as a l
2 from cd l i b import ensemble as en
3 from cd l i b import e v a l u a t i o n as ev
4 import networkx as nx
5
6 # Network topo logy
7 g = nx . k a r a t e _ c l ub_g r aph ( )
8
9 # Louvain

10 r e s = en . Parameter ( name= " r e s o l u t i o n " , s t a r t =0 . 1 , end=1 , s t ep =0 . 1 )
11 rnd = en . BoolParameter ( name= " randomize " )
12 l ouv a i n_ con f = [ res , rnd ]
13
14 # Angel
15 eps = en . Parameter ( name= " e p s i l o n " , s t a r t =0 . 1 , end=1 , s t ep =0 . 1 )
16 demon_conf = [ eps ]
17
18 methods = [ a l . l ouva in , a l . demon ]
19
20 # Models pooled execu t i on
21 coms = en . pool ( g , methods , [ l ouva in_con f , demon_conf ] )
22
23 # Optimal Search Louvain
24 coms , mod = en . g r i d _ s e a r ch ( graph=g , method= a l . l ouva in ,
25 parameters =[ res , rnd ] , q u a l i t y _ s c o r e =ev . e rdo s_ r eny i _modu l a r i t y ,
26 a g g r e g a t e=max )

In Example 3 is shown how to perform both pooling and optimal partition search using
two facilities offered by cdlib.ensemble.
As a first step, lines 9–18 defines the parameter ranges of the two algorithms selected

to partition the NetworkX graph (Louvain (Blondel et al. 2008) and Demon). Param-
eters and BoolParameters are named tuples defined in cdlib.ensemble that allow
the submodule functions to generate parameter ranges for CD methods. Line 21 the
function ensemble.pool executes the specified methods (leveraging all the parameter
combinations previously expressed) on the input graph g.
In some scenarios, one’s objective could be to search the (potentially complex) param-

eter space of an algorithm in order to discover automatically the clustering optimizing a
given quality function (parameter-tuning). CDLIB allows doing so using several strategies,
among them the function grid_search. An example of how to use such function-
ality is shown in line 24 where, for the Louvain algorithm, is returned the partition
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having maximum modularity while varying the resolution and randomize parameter
values.
In the current version of the library, cdlib.ensemble exposes the facilities reported

in Table 1.

Clustering evaluation and comparison

As already mentioned, CDLIB allows not only to compute network clusterings applying
several algorithmic approaches but also enables the analyst to characterize and compare
the obtained results.
Clustering evaluation and comparison facilities are delegated to the cdlib.evaluation

submodule (also referred by the Clustering objects). In Table 2 we reported the
description of the symbols used in the formulas for fitness and comparison functions.
The submodule provides several fitness scores, listed in Table 3, as well as clustering com-
parison measures, reported in Table 4. The former set can be used to get insights on the
compactness and topological consistency of communities, while the latter allows measur-
ing the level of similarity among partitions obtained by applying different algorithms or
w.r.t. a golden ground truth. Indeed, evaluating communities considering solely the score
they are able to achieve in a given fitness function has amajor drawback: it favors methods
that are designed to maximize it. Even though this type of strategy can be used fruit-
fully to compare methods that explicitly optimize a specific measure, its application to
approaches that search for communities with a different definition may produce mislead-
ing or inconclusive/irrelevant comparisons. To cope with such an issue it is good practice
to evaluate the similarity of different partitions in order to get insights on the different
families of clusters different algorithms are able to unveil.

Listing 4 Example of community discovery algorithms comparison.
1 from cd l i b import a l go r i t hms
2 import networkx as nx
3
4 # Network topo logy
5 g = nx . k a r a t e _ c l ub_g r aph ( )
6
7 # Models execu t i on
8 louva in_coms = a l go r i t hms . l ouva i n ( g )
9 l e iden_coms = a l go r i t hms . l e i d e n ( g )

10
11 # Modular i ty e v a l u a t i o n
12 louvain_mod = louva in_coms . e r do s _ r eny i _modu l a r i t y ( )
13 le iden_mod = le iden_coms . e r do s _ r eny i _modu l a r i t y ( )
14
15 # C l u s t e r i n g comparisons
16 nmi = louva in_coms . norma l i zed_mutua l_ in format ion ( le iden_coms )

Table 1 Ensemble functionalities offered by CDLIB

Name Description

grid_execution Instantiate the specified community discovery method performing a grid search
on the parameter set.

pool Execute a pool of community discovery algorithms on the input graph.

grid_search Returns the optimal partition of the specified graph w.r.t. the selected algorithm
and quality score performing an exaustive grid search on the parameter space.

random_search Returns the optimal partition of the specified graph w.r.t. the selected algorithm
and quality score over a randomized sample of the parameters space.

pool_grid_filter Execute a pool of community discovery algorithms on the input graph and
returns the optimal partition for each algorithm given the specified quality
function.
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Table 2 Description of the symbols used in the formulas for fitness and comparison functions

Symbol Description

C partition of the graph

Ci community ∈ partition C

bC number of edges on the community boundary

dm internal degree median value

eC number of community internal edges in C

k the total degree

kintiC the degree of node i within C

koutiC the degree of node i outside C

lC number of edges from nodes in C to nodes outside C

Mint total possible internal edges:
∑

C

(nC
2

)

Nc Total number of communities of all sizes detected by a given algorithm,
∑

i ncx
i
c

nC number of community nodes in C

�(i) degree of the node i

p density of the graph

pC the density of community C. pC = mC/
(nC
2

)

〈q〉 the expected fraction of internal edges

xc number of communities having the same number of nodes of c

Coverage percentage of communities in Y that are matched by at least an object in X |Yid ||Y| where Yid
is the subset of communities in Y matched by community in X

D(x||y) KL divergence

Dc the sum of the degrees of the vertices in community C

δ(ci , cj) indicator function: it assumes value 1 iff i and j belong to the same community, 0 otherwise

δ1(nia , n
j
b) indicator function: it assumes value 1 iff two communities a and b have the same number

of nodes, nia = njb , 0 otherwise

Exp(s1, s2) the expected agreement between solutions s1 and s2. Exp(s1, s2) = ∑min(J,K)
j=0 Nj1Nj2/N2

H(X) partition entropy of X

H(X) the entropy of the random variable X associated to an algorithm community

H(Y) the entropy of the random variable Y associated to a ground truth community

H(X , Y) the joint entropy

I(X : Y) mutual information 1
2 [H(X) − H(X|Y) + H(Y) − H(Y|X)]

MI(X , Y) mutual information of X and Y

Obs(s1, s2) the observed agreement between solutions s1 and s2. Obs(s1, s2) = ∑min(J,K)
j=0 Aj/N

Redundancy percentage of communities in Y that are matched by at least an object in X |X|
|Yid | where Yid

is the subset of communities in Y matched by community in X

Example 5, shows how given two alternative partitions of a given graph it is possible,
using CDLIB, to compare them both structurally - applying, for instance, the Normalized
Mutual Information score (Lancichinetti et al. 2008) - and in terms of a specific fitness
function - leveraging in our scenario the modularity index (Erdös and Rényi 1959).
To facilitate clustering comparisons, CDLIB also implements aggregate ranking solu-

tions (e.g., TOPSIS - as proposed in Jebabli et al. (2018)). Such functionalities allow to,
once obtained multiple fitness/comparison scores for a set of CD algorithms to generate
an aggregate ranking to better summarize the results. Moreover, CDLIB also implements
non-parametric statistical significance test (Friedman with Bonferroni-Dunn post-hoc
(Demšar 2006)) to assess the reliability of produced rankings.
It must be noted that all implemented metrics cannot be applied to all the avail-

able CD algorithms: to address this issue, before executing any function defined in
cdlib.evaluation, CDLIB takes care of checking its consistency w.r.t. the computed
network clustering type.
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Visualization Facilities

To allow the final user visualising clustering results, CDLIB exposes a set of predefined
visual facilities using Matplotlib7. These facilities are exposed through the visualization
submodule cdlib.viz. Such submodule offers two different classes of visualization:
Network Visualization, that allows plotting a graph with node color coding for commu-

nities (Fig. 1).

Listing 5 Example of community network visualization (Results shown in Fig. 1)
1 from cd l i b import a l gor i thms , v i z
2 import networkx as nx
3
4 g = nx . k a r a t e _ c l ub_g r aph ( )
5 coms = a l go r i t hms . l ouv a i n ( g )
6 pos = nx . s p r i n g _ l a y ou t ( g )
7 v i z . p l o t _ n e two r k _ c l u s t e r s ( g , coms , pos )
8 v i z . plot_community_graph ( g , coms )

Analytics plots, where community evaluation outputs can be easily used to generate a
visual representation of the main partition characteristics (Fig. 2).
All the plots are generated taking as inputs Clustering objects that contain all the

required functionalities andmetadata to customize the final result. The example reported
in Fig. 2 cover only a small subset of the possible analytical views that can be generated
leveraging all the fitness/comparisons measures offered by CDLIB.

CDLIB-REST: web service

The facilities offered by CDLIB are specifically designed for those users that want to run
experiments on their local machine. However, in some scenarios, e.g., due to limited com-
putational resources or to the rising of other needs, it may be convenient to separate
the machine on which the definition of the experiment is made from the one that actu-
ally executes the simulation. In order to satisfy such needs - as already done with NDLIB

(Rossetti et al. 2018) for the simulation of diffusive phenomena - we developed a RESTfull
service, CDLIB-REST8, that builds upon CDLIB an experiment server queryable through
API calls.

CDlib-REST rationale. The web service is designed around the concept of the exper-
iment. Every experiment is identified by a unique identifier and it is composed of two
entities: (i) a network and (ii) one (or more) CD algorithm(s).
In particular, in order to perform an experiment, a user must:

1. Request a token, which univocally identifies the experiment;
2. Load or select a network resource;
3. Select one, or more, CD algorithm(s);
4. Set the parameters for the CD algorithm(s);
5. Execute the CD algorithm(s);
6. Evaluate and/or compare CD algorithm(s);
7. (optional) Reset the experiment status, modify the algorithms/network;
8. Destroy the experiment.

Figure 3 shows an example of the workflow for CDLIB-REST. The last action, involving
the destruction of the experiment, is designed to clean the serialization made by

7Matplotlib: https://goo.gl/EY96HV
8CDLIB-REST: https://github.com/GiulioRossetti/cdlib_rest

https://goo.gl/EY96HV
https://github.com/GiulioRossetti/cdlib_rest
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Fig. 1 Visual Analitycs. Network Visualization for communities obtained with Louvain method on
the Zachary’s Karate Club graph. CDLIB allows to: (left) visualize communities on the original graph by
identifying them using the same color palette for the nodes; (right) collapse each community in a single
node and visualize the community connection graph

Fig. 2 Visual Analitycs. Analytics plots for CD algorithm. First line: (left) is the plot of the scores (in this
case obtained with adjusted_mutual_information) obtained by a list of methods on a list of graphs
(on LFR benchmark graphs (Lancichinetti et al. 2008)); (right) is the plot of the distribution of a property (e.g.
size) among all communities for a clustering, or a list of clusterings on the Zachary’s Karate Club graph.
Second line: (left) is the plot of the relation between the two functions size and
internal_edge_density of CD algorithms on the Zachary’s Karate Club graph; (right) is the plot of the
similarity matrix between a list of clusterings, using the provided scoring function (in this case obtained with
adjusted_mutual_information) on the Zachary’s Karate Club graph
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Fig. 3 CDLIB-REST example of workflow of CDLIB-REST

the service. If an experiment is not explicitly destroyed its data is removed, and the
associated token invalidated, after a temporal window that can be configured by the
service administrator. CDLIB-REST is built using aiohttp9, that offers asynchronous
request, and gives a standard online documentation page (shown in Fig. 4) that can
also be directly used to test the exposed endpoints both configuring and running
experiments.
Python API wrapper. In order to provide a simplified interface to query the CDLIB-

REST service, we defined a Python wrapper that organizes and exposes all the imple-
mented API. Such API wrapper, shipped along with the web service, allows to define and
run remote experiments as shown in the example below:
Listing 6 Example of definiton and execution of remote CD algorithms
1 import networkx as nx
2 from c d l i b _ r e s t import CDlib_API
3
4 # Connect ing the s imu l a t i on s e r v i c e
5 with CDlib_API ( " h t tp : / / 0 . 0 . 0 . 0 " , 8081) as ap i :
6 # Crea te the network
7 g = nx . k a r a t e _ c l ub_g r aph ( )
8 ap i . load_network ( g )
9

10 # Run the CD a lgo r i thm
11 coms = ap i . demon ( e p s i l o n =0 . 25 )
12 # Eva l u a t e the r e s u l t
13 s t a t s = ap i . f i t n e s s _ s c o r e s ( [ coms ] , summary=F a l s e )

CDlib competitors
To the best of our knowledge, until now, no existing library includes large numbers of CD
algorithms and correspondingmeasures to compare their results. Users that want to com-
pare CD algorithms encounter several difficulties: (i) different programming languages,
(ii) different input format for the graph file, (iii) different output format of the results.

9aiohttp: https://aiohttp.readthedocs.io/en/stable/

https://aiohttp.readthedocs.io/en/stable/
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Fig. 4 CDlib-REST webpage of the documentation

Two widespread libraries, NetworkX and Igraph, have implemented a handful of the
most famous CD algorithms and performance measures, but they represent only a minor
fraction of existing algorithms and measures. CDLIB is the first library to provide a stan-
dardized input/output for a wide range of CD algorithms, encompassing not only those
available through those two libraries, but also a large spectrum of methods they do not
provide.
We can separate CDLIB alternatives in two main categories: (i) Collections of imple-

mentations (ii) Standalone libraries.

Collections of implementations

The most simple collections of implementations are repositories, listing of methods that
can be implemented in different languages, with different input and outputs.
While those collections are helpful to discover existing implementation, the prob-

lem we stated in the introduction is still present: one needs to satisfy all the required
implementation dependencies, learn how to instantiate each method, and format inputs
and outputs to suit its needs.
Among such repositories, we can cite:
• RapidsAtHKUST10: a repository collecting some overlapping CD algorithms written

in C++, Java and Python.

In other projects, wrappers are built over existingmethods, so that they can be runmore
easily, notably in CoDACom 11. The result is not a standalone library, but a collection of
scripts allowing to run methods more conveniently.

10https://goo.gl/ADmvrQ
11https://codacom.greyc.fr/use.php

https://goo.gl/ADmvrQ
https://codacom.greyc.fr/use.php


Rossetti et al. Applied Network Science            (2019) 4:52 Page 16 of 26

Standalone libraries

We already cited NetworX and Igraph, well-known network science libraries. Both of
them contains several algorithms (5 for NetworkX, 9 for Igraph) and some quality
functions to evaluate them.
A few other resources exist:
• CommunityDetection12: A python library, with no English documentation, this

git-hub repository includes implementations for 7 well-known methods. It has not
been maintained in the last three years.

• Circulo13: a Community Detection Evaluation Framework, is probably the closest
competitor to CDLIB; it is a project started in 2014. The framework is written in
Python, based on Igraph, and includes functionalities of data extract transform load
(ETL) and performance metrics. The metrics include internal statistical measures of
a community (i.e. density), external measurements (i.e. expansion), and network wide
metrics (ground truth comparisons). The project has seen no activity in the last three
years, and offer no documentation of available functionalities. It provided 17
algorithms; although some of them require the installation of additional tools and the
compilation of additional code, due to the calling of external methods.

• SNAP14: Stanford Network Analysis Platform is a general purpose network analysis
and graph mining library. The core is written in C++ and there is also a python
version built as a wrapper around the C++ one. The project is active, provides two
crisp algorithms (the Girvan-Newman and the Clauset-Newman-Moore method)
and an overlapping one Affiliation Graph Model fitting (AGMfit): it requires the
installation of additional tools.

• CommunityALG15: is a set of Matlab functions and algorithms for the community
detection in networks that expands the BrainConnectivity toolbox16. This toolbox is
widely used by brain-imaging researchers, and has been ported to many projects.

• CDTB17: the Community Detection ToolBox is a MATLAB toolbox which can be
used to perform community detection. The CDTB contains several functions and
includes graph generators, clustering algorithms (12 CD methods) and finally
clustering evaluation functions. Furthermore, CDTB is designed in a parametric
manner so that the user can add his own functions and extensions. The project has
not been maintained in the last five years.

• Leidenalg18: this package implements the Leiden algorithm in C++ and exposes it to
python. It scales well, and can be run on graphs of millions of nodes (as long as they
can fit in memory). It works with direct, weighted and multiplex graphs and provides
some support for community detection on bipartite graphs. It provides
implementations for six different methods derived from Leiden algorithm; the
methods currently implemented are: modularity, Reichardt and Bornholdt’s model
using the configuration null model and the Erdös-Rényi null model, the constant
Potts model (CPM), Significance, and Surprise.

12goo.gl/btdzSS
13goo.gl/BybtKi
14http://snap.stanford.edu/
15https://github.com/carlonicolini/communityalg
16https://sites.google.com/site/bctnet/
17goo.gl/JCpPpF
18https://github.com/vtraag/leidenalg

https://github.com/vtraag/leidenalg
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• GraphTool19: is a Python module for manipulation and statistical analysis of
networks. The core data structures and algorithms are implemented in C++; this
confers it a level of performance that is comparable to that of a pure C/C++ library,
both in memory usage and computation time. Many algorithms are implemented in
parallel which provides excellent performance on multi-core architectures. In term of
community detection, it supports only methods based on bayesian inference of
stochastic block models. CDLIB include these methods by handling conversion
to/from this library.

In order to compare the selected libraries we identify the following set of features:

• Programming Language. The choice of a programming language
• CD algorithms. The set of CD algorithm implemented in the library, with the

distinction from crisp and overlapping models.
• Project Status. Whether the project is currently developed or if its support ceased.

Table 5 reports a characteristization of the selected libraries. We can observe that
half of the analyzed libraries are not actively maintained at the moment of our survey.
Moving to library related characteristics, we observe a clear pattern: all libraries offer
out of the box support for crisp CD algorithms while few libraries, natively support
overlapping ones.

Conclusions and future works
One of the main issues in current research is results reproducibility. In some specific
contexts, like Community Discovery, we can observe how (i) the lack of (easily findable)
algorithm implementations, and (ii) the absence of standard input/output formats repre-
sent the main causes for a significant stagnation of comparative analysis and replication
studies. Such limitations can be witnessed in a common pattern: authors of CD algorithms
usually compare their approaches only against a few classic methods whose implementa-
tion are easily findable online. We think that a way to address such issue is to provide a
task dedicated library that: (i) allows researcher access to the widest possible set of models
and algorithms, and (ii) acts as starting point for the integration of novel methods.
With this aim, we introduced CDLIB, a python library for community discovery that

takes care of supporting its users from the model definition to the analysis/comparison
and visualization of results. CDLIB primary effort focuses on providing a simple
abstraction layer over the data model and in designing input/output specifications shared
by both methods and evaluation functions.
CDLIB is an ongoing open project: we plan to further extend it by integrating novel

algorithms (contributions are welcome), by supporting alternative clustering definitions
(i.e., multiplex, evolving,. . . ) and by integrating evaluation/visualization facilities.

Appendix A: Community discoverymethods implemented in CDLIB

CDLIB exposes several community discovery algorithms, covering both node partition
approaches and edge partition approaches. In particular, the actual release of the library
(v0.1.0) implements the following algorithms:

19https://graph-tool.skewed.de/

https://graph-tool.skewed.de/
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Table 5 Number of methods available in the main competitors of CDLIB

Library Language Active # algorithms

Total Crisp Overlapping

CDLIB Python � 39 24 14

NetworkX Python � 5 4 1

Igraph C � 9 9 0

snap Python/C++ � 2 1 1

CDTB Matlab 12 11 1

Circulo Python 17 11 6

Leidenalg C++ 6 6 0

GraphTool Python/C++ � 4 2 2

Appendix B: Node partition.
Crisp communities

Agglomerative Clustering on a Directed Graph (AGDL): this method is a graph-
based agglomerative algorithm, for clustering high-dimensional data introduced in Zhang
et al. (2012). The algorithm uses the indegree and outdegree to characterize the affinity
between two clusters.

Fluid this model was introduced in Parés et al. (2017) and is based on the simple idea
of fluids (i.e., communities) interacting in an environment (i.e., a non-complete graph),
expanding and contracting. It is a propagation-based algorithm and it allows to specify
the number of desired communities (k) and it is asynchronous, where each vertex update
is computed using the latest partial state of the graph.

Constant Potts Model (CPM) : this algorithm is a Leiden model (Traag et al. 2011)
where the quality function to optimize is: Q = ∑

ij
(
Aij − γ

)
δ(σi, σj) where A is the

adjacency matrix, σi denotes the community of node i, δ(σi, σj) = 1 if σi = σj and 0
otherwise, and, finally γ is a resolution parameter. The internal density of communities
pc = mc

(nc2 )
≥ γ is higher than γ , while the external density pcd = mcd

ncnd ≤ γ is lower than
γ . In other words, choosing a particular γ corresponds to choosing to find communities
of a particular density, and as such defines communities. Finally, the definition of a com-
munity is in a sense independent of the actual graph, which is not the case for any of the
other methods.

Diffusion Entropy Reducer (DER) is a clustering algorithm introduced in Kozdoba and
Mannor (2015). The algorithm uses random walks to embed the graph in a space of
measures, after which a modification of k-means in that space is applied. It creates the
walks, creates an initialization, runs the algorithm, and finally extracts the communities.

Eigenvector : it is the Newman’s leading eigenvector method for detecting community
structure based on modularity (Newman 2006). This is the proper internal of the recur-
sive, divisive algorithm: each split is done by maximizing the modularity regarding the
original network.

Expectation–Maximization (EM) : this method is based on based on a mixture model
(Newman and Leicht 2007). The algorithm uses the expectation–maximization algorithm
to detect structure in networks.
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Gdmp2 : it is a method for identifying a set of dense subgraphs of a given sparse graph
(Chen and Saad 2012). It is inspired by an effective technique designed for a similar
problem—matrix blocking, from a different discipline (solving linear systems).

Girvan–Newman : this algorithm detects communities by progressively removing edges
from the original graph (Girvan and Newman 2002). The algorithm removes the “most
valuable" edge, traditionally the edge with the highest betweenness centrality, at each step.
As the graph breaks down into pieces, the tightly knit community structure is exposed
and the result can be depicted as a dendrogram.

Greedy modularity : this algorithm uses the modularity to find the communities struc-
tures (Clauset et al. 2004). At every step of the algorithm two communities that contribute
maximum positive value to global modularity are merged.

Infomap : it is based on ideas of information theory (Rosvall and Bergstrom 2008). The
algorithm uses the probability flow of random walks on a network as a proxy for informa-
tion flows in the real system and it decomposes the network into modules by compressing
a description of the probability flow. This method is not implemented internally but we
use the external implementation20.

Label Propagation Algorithm (LPA) : this algorithm detects communities using net-
work structure alone (Raghavan et al. 2007). The algorithm doesn’t require a pre-defined
objective function or prior information about the communities. It works as follows: (i)
every node is initialized with a unique label (an identifier) (ii) these labels propagate
through the network (iii) at every iteration of propagation, each node updates its label to
the one that the maximum numbers of its neighbors belong to. Ties are broken uniformly
and randomly. (iv) LPA reaches convergence when each node has the majority label of its
neighbors.

Leiden : this algorithm (Traag et al. 2018) is an improvement of the Louvain algorithm.
The Leiden algorithm consists of three phases: (1) local moving of nodes, (2) refinement
of the partition (3) aggregation of the network based on the refined partition, using the
non-refined partition to create an initial partition for the aggregate network. This method
is not implemented internally but we use the external implementation21.

Louvain : this method maximizes a modularity score for each community (Blondel et
al. 2008). The algorithm optimizes the modularity in two elementary phases: (1) local
moving of nodes; (2) aggregation of the network. In the local moving phase, individual
nodes are moved to the community that yields the largest increase in the quality func-
tion. In the aggregation phase, an aggregate network is created based on the partition
obtained in the local moving phase. Each community in this partition becomes a node
in the aggregate network. The two phases are repeated until the quality function cannot
be increased further. This method is not implemented internally but we use the external
implementation22.

20https://pypi.org/project/infomap/
21https://github.com/vtraag/leidenalg
22https://github.com/taynaud/python-louvain

https://pypi.org/project/infomap/
https://github.com/vtraag/leidenalg
https://github.com/taynaud/python-louvain
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Rber pots : it is a Leiden model where the quality function to optimize is: Q =
∑

ij
(
Aij − γ p

)
δ(σi, σj) where A is the adjacency matrix, p = m

(n2)
is the overall density

of the graph,σi denotes the community of nodei, δ(σi, σj) = 1 if σi = σj and 0 other-
wise, and, finallyγ is a resolution parameter. The method was introduced in Reichardt
and Bornholdt (2006). This method is not implemented internally but we use the external
implementation23.

Rb pots is a Leiden model where the quality function to optimize is: Q =
∑

ij

(
Aij − γ

kikj
2m

)
δ(σi, σj) where A is the adjacency matrix, ki is the (weighted) degree

of node i, m is the total number of edges (or total edge weight), σi denotes the com-
munity of node i and δ(σi, σj) = 1 if σi = σj and 0 otherwise. For directed graphs
a slightly different formulation is used, as proposed by Leicht and Newman : Q =
∑

ij

(

Aij − γ
kouti kinj

m

)

δ(σi, σj), where kouti and kini refers to respectively the outdegree and

indegree of node i , and Aij refers to an edge from i to j. Note that this is the same
of Leiden algorithm when setting γ = 1 and normalising by 2m, or m for directed
graphs. The method was introduced in Reichardt and Bornholdt (2006) and Leicht and
Newman (2008). This method is not implemented internally but we use the external
implementation24.

Structural ClusteringAlgorithm forNetworks (SCAN) : is an algorithmwhich detects
clusters, hubs and outliers in networks (Xu et al. 2007). It clusters vertices based on a
structural similarity measure. The method uses the neighborhood of the vertices as clus-
tering criteria instead of only their direct connections. Vertices are grouped into the
clusters by how they share neighbors.

Significance communities : it is a Leiden model where the quality function to opti-
mize is: Q = ∑

c
(nc
2
)
D(pc ‖ p) where nc is the number of nodes in community c,

pc = mc
(nc2 )

, is the density of community c, p = m
(n2)

is the overall density of the graph, and

finally D(x ‖ y) = x ln x
y + (1 − x) ln 1−x

1−y is the binary Kullback-Leibler divergence. For
directed graphs simply multiply the binomials by 2. The expected Significance in Erdos-
Renyi graphs behaves roughly as 1

2n ln n for both directed and undirected graphs in this
formulation. It was introduced in Traag et al. (2013).

Spinglass : this method relies on an analogy between a very popular statistical mechanic
model called Potts spin glass, and the community structure (Reichardt and Bornholdt
2006). It applies the simulated annealing optimization technique on this model to
optimize the modularity.

SBM inference : this method is based on the inference of a stochastic block model. It
corresponds to the version using the minimum description length principle to automati-
cally discover the number of communities, introduced in Peixoto (2014a). It can fit both
degree-corrected or non-degree-corrected SBM.

23https://github.com/vtraag/leidenalg
24https://github.com/vtraag/leidenalg

https://github.com/vtraag/leidenalg
https://github.com/vtraag/leidenalg
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SBM inference with nested block models : this method is based on the inference
of a nested stochastic block model. The goal of the nested block model is to avoid a
resolution limit problem forbidding to discover small communities in large networks.
This method was introduced in Peixoto (2014b). It can fit both degree-corrected or
non-degree-corrected SBM.

Surprise Communities : it is a Leiden model where the quality function to optimize is:
Q = mD(q ‖ 〈q〉) where m is the number of edges, q =

∑
c mc
m , is the fraction of internal

edges, 〈q〉 =
∑

c (
nc
2 )

(n2)
is the expected fraction of internal edges, and finally D(x ‖ y) =

x ln x
y + (1 − x) ln 1−x

1−y is the binary Kullback-Leibler divergence. For directed graphs, we
can multiply the binomials by 2, and this leaves 〈q〉 unchanged, so that we can simply
use the same formulation. For weighted graphs, we can simply count the total internal
weight instead of the total number of edges for q , while 〈q〉 remains unchanged. It was
introduced in Traag et al. (2015).

Walktrap : it is an approach based on randomwalks (Pons and Latapy 2005). The general
idea is that if you perform random walks on the graph, then the walks are more likely to
stay within the same community because there are only a few edges that lead outside a
given community.Walktrap runs short randomwalks and uses the results of these random
walks to merge separate communities in a bottom-up manner.

Overlapping Communities

Angel : it is a node-centric bottom-up community discovery algorithm. It leverages
ego-network structures and overlapping label propagation to identify micro-scale com-
munities that are subsequently merged in mesoscale ones. Angel is the, faster, successor
of Demon.

BigClam : it is an overlapping community detection method that scales to large net-
works. The model was introduced in Yang and Leskovec (2013) and it has three main
ingredients: 1) The node community memberships are represented with a bipartite affili-
ation network that links nodes of the social network to communities that they belong to.
2) People tend to be involved in communities to various degrees. Therefore, each affili-
ation edge in the bipartite affiliation network has a nonnegative weight. The higher the
node’s weight of the affiliation to the community the more likely is the node to be con-
nected to other members in the community. 3)When people share multiple community
affiliations, the links between them stem for one dominant reason. This means that for
each community a pair of nodes shares we get an independent chance of connecting
the nodes. Thus, naturally, the more communities a pair of nodes shares, the higher the
probability of being connected.

Cluster-Overlap Newman Girvan Algorithm (CONGA) : is an algorithm for discov-
ering overlapping communities (Gregory 2007). It extends the Girvan and Newman’s
algorithm with a specific method of deciding when and how to split vertices. The algo-
rithm is as follows: 1. Calculate edge betweenness of all edges in the network. 2. Calculate
vertex betweenness of vertices, from edge betweennesses. 3. Find the candidate set of ver-
tices: those whose vertex betweenness is greater than the maximum edge betweenness.
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4. If candidate set is non-empty, calculate pair betweennesses of candidate vertices, and
then calculate split betweenness of candidate vertices. 5. Remove edge with maximum
edge betweenness or split vertex with maximum split betweenness (if greater). 6. Recal-
culate edge betweenness for all remaining edges in same component(s) as removed edge
or split vertex. 7. Repeat from step 2 until no edges remain.

Cluster-Overlap Newman Girvan Algorithm Optimized (CONGO) : it is an opti-
mization of the CONGA algortithm (Gregory 2008). The CONGO algorithm is the same
as CONGA but using local betweenness. The complete CONGO algorithm is as follows:
1. Calculate edge betweenness of edges and split betweenness of vertices. 2. Find edge
with maximum edge betweenness or vertex with maximum split betweenness, if greater.
3. Recalculate edge betweenness and split betweenness: a) Subtract betweenness of h-
region centered on the removed edge or split vertex. b) Remove the edge or split the
vertex. c) Add betweenness for the same region. 4. Repeat from step 2 until no edges
remain.

Demon : it is a node-centric bottom-up overlapping community discovery algorithm
(Coscia et al. 2012; 2014). It leverages ego-network structures and overlapping label prop-
agation to identify micro-scale communities that are subsequently merged in mesoscale
ones.

Ego-networks : this method returns overlapping communities centered at each node
within a given radius.

Kclique : this method finds k-clique communities in graph using the percolation method
(Palla et al. 2005). A k-clique community is the union of all cliques of size k that can be
reached through adjacent (sharing k-1 nodes) k-cliques.

LinkAggregate Algorithm and Iterative ScanAlgorithm (LAIS2) : it is an overlapping
community discovery algorithm based on the density function (Baumes et al. 2005). In
the algorithm considers the density of a group is defined as the average density of the
communication exchanges between the actors of the group. LAIS2 is composed of two
procedures LA (Link Aggregate Algorithm) and IS2 (Iterative Scan Algorithm).

Lemon : it is a large scale overlapping community detection method based on local
expansion via a minimum one norm (Li et al. 2015). The algorithm adopts a local
expansion method in order to identify the community members from a few exemplary
seed members. The algorithm finds the community by seeking a sparse vector in the span
of the local spectra such that the seeds are in its support. Lemon can achieve the highest
detection accuracy among state-of-the-art proposals. The running time depends on the
size of the community rather than that of the entire graph.

Local optimization Funtion Model (LFM) : it is based on the local optimization of a
fitness function (Lancichinetti et al. 2009). It finds both overlapping communities and the
hierarchical structure.

MultiCom : it is an algorithm for detecting multiple local communities, possibly
overlapping, by expanding the initial seed set (Hollocou et al. 2017). This algorithm uses
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local scoring metrics to define an embedding of the graph around the seed set. Based on
this embedding, it picks new seeds in the neighborhood of the original seed set, and uses
these new seeds to recover multiple communities.

Node perception : it is based on the idea of joining together small sets of nodes
(Soundarajan and Hopcroft 2015). The algorithm first identifies sub-communities cor-
responding to each node’s perception of the network around it. To perform this step,
it considers each node individually, and partition that node’s neighbors into communi-
ties using some existing community detection method. Next, it creates a new network in
which every node corresponds to a sub-community, and two nodes are linked if their asso-
ciated sub-communities overlap by at least some threshold amount. Finally, the algorithm
identifies overlapping communities in this new network, and for every such community,
merge together the associated sub-communities to identify communities in the original
network.

Overlapping Seed Set Expansion (OSSE) : this is an overlapping community detection
algorithm optimizing the conductance community score (Whang et al. 2013). The algo-
rithm uses a seed set expansion approach; the key idea is to find good seeds, and then
expand these seed sets using the personalized PageRank clustering procedure.

Speaker-listener Label Propagation Algorithm (SLPA) : it is an overlapping commu-
nity discovery that extends the LPA (Xie et al. 2011). SLPA consists of the following three
stages: 1) the initialization 2) the evolution 3) the post-processing

Fuzzy Communities

Fuzzy-Rough Community Detection on Fuzzy Granular model of Social Network
(FRC-FGSN) : the method assigns nodes to communities specifying the probability of
each association (Kundu and Pal 2015). The flattened partition ensures that each node is
associated with the community that maximizes such association probability. FRC-FGSN
may generate orphan nodes (i.e., nodes not assigned to any community).

Appendix C: Edge partition.
Hierarchical Link Clustering (HLC) : it is a method to classify links into topologically
related groups (Ahn et al. 2010). The algorithm uses similarity between links to build a
dendrogram where each leaf is a link from the original network and branches represent
link communities. At each level of the link dendrogram is calculated the partition density
function, based on link density inside communities, to pick the best level to cut.

Markov CLustering (MCL) : this algorithm is based on a simulation of (stochastic) flow
in graphs (Enright et al. 2002). The MCL algorithm finds cluster structure in graphs by
a mathematical bootstrapping procedure. The process deterministically computes (the
probabilities of ) random walks through the graph, and uses two operators transforming
one set of probabilities into another. It does so using the language of stochastic matrices
(also called Markov matrices) which capture the mathematical concept of random walks
on a graph. TheMCL algorithm simulates randomwalks within a graph by the alternation
of two operators called expansion and inflation.
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