Chauhan et al. Applied Network Science (2019) 4:46 H H
https://doi.org/10.1007/541109-019-0142-3 Ap p l I ed N etWO rk SCI ence

Multiscale planar graph generation ®

Check for
updates
* .

Varsha Chauhan'"t ®, Alexander Gutfraind? and llya Safro' T

*Correspondence:

varshac@clemson.edu Abstract

"Varsha Chauhan and llya Safro The study of network representations of physical, biological, and social phenomena

contributed equally to this work can help us better understand their structure and functional dynamics as well as

School of Computing, Clemson o)

University, Clemson, SC, USA formulate predictive models of these phenomena. However, due to the scarcity of

Full list of author information is real-world network data owing to factors such as cost and effort required in collection

available at the end of the article of network data and the sensitivity of this data towards theft and misuse, engineers and

researchers often rely on synthetic data for simulations, hypothesis testing, decision
making, and algorithm engineering. An important characteristic of infrastructure
networks such as roads, water distribution and other utility systems is that they can be
(almost fully) embedded in a plane, therefore to simulate these system we need
realistic networks which are also planar. While the currently-available synthetic network
generators can model networks that exhibit realism, they do not guarantee or achieve
planarity. In this paper we present a flexible algorithm that can synthesize realistic
networks that are planar. The method follows a multi-scale randomized editing
approach generating a hierarchy of coarsened networks of a given planar graph and
introducing edits at various levels in the hierarchy. The method preserves the structural
properties with minimal bias including the planarity of the network, while introducing
realistic variability at multiple scales.

Reproducibility: All datasets and algorithm implementation presented in this work are
available at https://bit.ly/2CjOUAS

Keywords: Planar graphs, Multiscale graph generation, Graph generators

Introduction

A network is a representation of a set of entities and the relationships between them. The
network paradigm is often used to represent physical, biological, engineered and social
systems (Newman 2018). Networks can help us better understand the structural and func-
tional dynamics of these systems and formulate predictive models. However, collecting
real-world network data often requires time and can be expensive. Also, for many appli-
cations, the sensitivity of real-world data towards theft and misuse further adds to the
cost of protection and security of the data, which sharply limits its availability.

The problem of data scarcity can be tackled by using synthetic data which can mimic
both the properties and diversity of real world networks. Such synthetic data can be used
for simulations, analysis, and performance/quality verification of algorithms - a crucial
task in algorithm engineering. Synthetic network generation is one of the most important
fields in network science from both theoretical and practical perspectives. We refer the
reader for an in-depth discussion to recent reviews in Gutfraind et al. (2015); Staudt et al.
(2017).

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

@ Springer Open International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
— reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-019-0142-3&domain=pdf
http://orcid.org/0000-0001-8255-0230
mailto: varshac@clemson.edu
https://bit.ly/2CjOUAS
http://creativecommons.org/licenses/by/4.0/

Chauhan et al. Applied Network Science (2019) 4:46 Page 2 of 28

Planar graph generation

Planar graphs are the class of graphs that can be embedded in a two-dimensional
plane without edge crossings. Designing efficient algorithms for planar graphs is an
important subfield in the area of algorithm development and optimization (Meinert
and Wagner 2011). From the practical perspective, the planarity is also an impor-
tant characteristic of many physical networks such as roads, utilities, water distribu-
tion systems, and some circuit designs. Many of these networks are, in fact, almost
planar, that is, one can remove typically small fraction of edges to make them
exactly planar.

The wide range of real-world applications of planar networked systems has created a
demand for planar graph generators. Although the planar graphs share the property that
they can be embedded in a plane, a planar graph generator should also be able to repli-
cate other properties exhibited in a real-world networks. However, the currently available
synthetic network generators can either generate networks that exhibit realism with no pla-
narity guarantees, or give planar networks with otherwise random structure that lack the
structural characteristics of real-world networks. Also, most of the existing research in
general purpose network generation covers models related to scale-free networks, heavy-
tailed degree distributions, and relatively high clustering coefficient that are not typical
to real-world (almost) planar networks.

Our contribution

In this paper, we present a flexible algorithm that can synthesize realistic planar replicas of
a known planar graph that can be rescaled to much larger graphs. The method follows the
multi-scale editing approach (Gutfraind et al. 2015) in which a given graph is projected
into a hierarchy of its coarsened representations (coarse graphs) that are then perturbed
by edits at various scales of coarseness in the hierarchy. The method preserves the struc-
tural properties including the planarity with controllable bias, while introducing realistic
variability at multiple scales of coarseness. Because the method belongs to the family of
multiscale editing approaches, it generates planar graphs that attempt to replicate prop-
erties of the original graph at all levels of its coarse-grained resolutions which is the main
property of the multiscale editing approach.

Throughout this paper we refer to the term “realistic” network multiple times. Realism
of a generated similar network is not a uniquely defined notion as its meaning obvi-
ously depends on the application in which generating a similar to the original network is
required. The question of realism definition is beyond the scope of this paper. We refer
the reader to a discussion in Gutfraind et al. (2015) and its preliminary extended ver-
sion (Gutfraind et al. 2012). Intuitively, the multiscale generative method suggests that
a realistic network is the one that replicates some properties of the original network
at multiple scales of coarseness (in contrast to many different methods that generate
similar networks with predefined properties such as clustering coefficient and degree dis-
tribution only at the finest scale). We advocate that preserving them at multiple scales
is at least as important for a variety of applications as at the finest scale. Technically,
in many cases, preserving just a couple of such properties as the degree and second
shortest distance distributions, will imply preservation of many path-based metrics such
as betweenness and diameter which does not necessarily happen at the finest level
only methods.

Chauhan et al. Applied Network Science (2019) 4:46 Page 3 of 28

Network generation algorithms

The field of network science and, in particular, network synthesis is vast and cannot
be comprehensively reviewed here. Hence, we focus on several particularly illuminating
approaches for modeling realistic networks that presumably may be applied as or changed
to the first step in realistic planar graph generator. In contrast to the different versions
of random planar graph generators, there is an obvious lack (Barthélemy 2011) of planar
graph generators that generate graphs that are similar to the original planar graphs. This is
the reason, why practitioners and decision makers use other graph generators in combina-
tion with planarization postprocessing to generate planar and hopefully realistic graphs.
This is also a reason for our comparison with these algorithms in the next sections. These
approaches fall into categories, namely, sampling models, generative models and editing
models.

Sampling models

Sampling models are typically used for large scale networks. In this technique we pick
a subset of vertices and/or edges from original graph and calculate the distribution of
various graph properties such as degree distribution or link probabilities. The network is
then generated by sampling from estimated distribution. One of the important examples
of this model is the Exponential Random Graph Models (ERGM) model.

The ERGM models (Hunter et al. 2008) are a class of statistical models, earlier called
p-star models, that are popular in the study of large-scale social networks. To build a
network, the ERGM first estimates certain parameters by fitting an observed social net-
work and then constructs new networks by sampling from the estimated distribution. For
example, in the Bernoulli and Erdés-Rényi ERGM models which generate homogeneous
networks, the parameter space is based on same probabilities for each added connection,
whereas the Chung-Lu ERGM model (Aiello et al. 2000) for large random graph with
given degree distribution, the probability of connection of two nodes is proportional to
the product of the degree of the nodes. The model can generate large graphs which depict
some of the behaviors of massive realistic graphs and also predict the size and number
of large components in the graph. ERGM models are successful in generating social net-
works and exhibit realistic degree distributions and small world structures. Also there
are several ERGMs with community structure (Karrer and Newman 2011; Fronczak et al.
2013; van Lidth de Jeude et al. 2019) but none of them give any planarity guarantees, and
normally violate planarity. While potentially, this model could serve as the first step in pla-
nar network generation (the planarity could be one of the properties or it can be applied
with subsequent planarization of synthesized network), we emphasize that it is extremely
slow and cannot be applied even on medium size networks, so we cannot experiment with
it and compare to our generator.

Generative models

Generative models typically construct a network starting with an empty or small
seed network and then iteratively add network elements (such as nodes and edges)
to match some properties of a network that have to be preserved. These algo-
rithms attempt to preserve the real network properties over the evolution and
growth of the synthetic network. Important examples of generative models are the

following.

Chauhan et al. Applied Network Science (2019) 4:46 Page 4 of 28

BTER Block Two-Level Erd6s-Rényi model (BTER) (Seshadhri et al. 2012) is based on
the idea that a network contains communities that are Erdos-Rényi graphs in which each
pair of vertices is independently connected with some probability. BTER graphs contain
dense Erdos-Rényi communities that are found in real-world networks. The algorithm is
two-phased. In the first phase, a collection of blocks or Erdés-Rényi communities with
specified degree distribution is created. Then the blocks made interconnected and excess
degree nodes are removed based on Chung-Lu (CL) model (Aiello et al. 2001) such that
each subnetwork is well modeled by CL. BTER has been shown to model realistically a
variety of network properties, but as with ERGM, it gives no guarantees of planarity. Also,
whether communities in (almost) planar networks have hierarchical and connectedness
structure similar to BTER model or not is not explored.

RMAT and Stochastic Kronecker Graphs The Recursive Matrix graph generator
introduced by Chakrabarti et al. (2004) and its extensions AutoMAT-fast (Chakrabarti et
al. 2004) can generate large-scale complex realistic networks. The generator is based on a
recursive algorithm that operates on the adjacency matrix of the graph by dividing it into
four equal-sized partitions and distributing edges to each partition based on fitting a set
of parameters.

The Stochastic Kronecker Graphs (SKG) (Mahdian and Xu 2007) extends the methods
of RMAT. Similarly to RMAT it is a recursive model, which starts with a small initiator
matrix and recursively produces large graphs by applying Kronecker products. SKG can
be interpreted as network which is a hierarchy of communities which grow recursively to
create copies of themselves and every node has unique set of attributes values. The model
can generate graphs with static patterns such as degree distribution as well as temporal
patterns such as diameter over time. As before, planarity is not guaranteed as well as the
community structure similarity with real-world networks that have one.

Multifractal Network Generator In 2010, Pallaa et al. (2010) introduced the multi-
fractal network generator which can generate realistic networks with specified statistical
features. The method starts with defining a generative measure on a single fractal or unit
square and calculating link probability. The network is then scaled to the infinite limit by
recursively dividing the fractal into a number of rectangles and introducing connections
between them based on the link probability. Although this method was able to generate
small scale realistic graphs the recursive method was slow for large complex networks.
It is unknown if the generated networks can be constructed to have planar or quasi-
planar structure, but the random nature of the construction suggests that planarity would
be uncommon even in small graphs. However, the backbone networks generated by this
model could be planar and thus possibly relevant to some infrastructure networks (for
example, see major gas pipes in Newman (2010)). Unfortunately, these networks have
layers of fractals and do not exhibit properties of infrastructure networks such as small
diameters, shortcut edges and redundancy in paths. Thus making comparison of these

networks with infrastructure networks impossible.

Editing models

The editing models approach starts with a given (real or empirical) network and con-
trollably introduces random changes to its elements (such as nodes and edges) until the
network becomes sufficiently different from the original network. These changes are
designed to introduce variability while preserving key structural properties during the

Chauhan et al. Applied Network Science (2019) 4:46 Page 5 of 28

random editing. Such methods are a promising direction for a relatively more realistic
modeling of networks, and that includes properties such as planarity or near-planarity.

Edge-swapping The edge-swapping method (Tabourier et al. 2011; Rao et al. 1996) is
perhaps the first important algorithm in the class of editing models, and it is based on the
insight that the degree distribution of a graph is preserved under a chain of edge-swapping
operations. Such a chain of edge swaps can even asymptotically achieve important mixing
properties giving high variability. Despite these successes, edge-swapping operations can
be very disruptive to planarity and other global properties of the graph, and there are no
good post-selection methods for achieving planarity.

Multiscale Network Generation In Gutfraind et al. (2015), several of us proposed
a strategy termed MUSKETEER (Multiscale Entropic Network Generator) for realistic
graph generation. The main idea was based on the observation that the properties of real
networks that should be preserved during generation are not only those measured at the
finest resolution but also those that can be measured at the coarse resolutions. Multi-
scale generation leverages coarsening schemes used in highly-accurate multiscale solvers
for combinatorial optimization such as linear arrangement, compression and partition-
ing (Ron et al. 2011; Hager et al. 2018; Safro et al. 2006; 2008; Safro and Temkin 2011).
In such coarsening schemes, nodes in a network are assigned into aggregates (or, typi-
cally, very small communities) which are themselves parts of larger aggregates and so on
in a hierarchical manner. The algorithm was successful in generating a number of replicas
for several real-world original networks, but did not guarantee planarity. This paper con-
tinues this line of research and offers an implementation of the multiscale strategy that
actually produces planar networks.

ReCoN Staudt et al. (2017) later used principles similar to those of multiscale method
and developed a fast network generator that could generate large-scale replicas of real
complex network that are structurally similar to original network. Instead of leveraging
multiscale coarsening schemes, ReCoN generated synthetic networks by randomizing the
edges between communities which were detected by the community detection methods
while keeping the same degrees of nodes. ReCoN is built on top of the LFR generator
implemented in Staudt et al. (2014).

Planar network generators

Planar networks with underling graphs have attracted a lot of attention since a landmark
paper by Tutte (1963). Most of the research was dedicated on the study of structural prop-
erties (including their generation) of random planar graphs or uniform random planar
graphs such as triangulations, and meshes. However, the currently available planar graph
generators usually generate uniform random graphs by interpolation of planar subgraphs
or generate planar subgraphs of a non-planar graph. Unfortunately, they are very far from
being practically important for such tasks as generating graphs underlying infrastructure
networks since they fail to present most other properties that are viewed as significant
in this area, such as the degree distribution, the community structure and others. Some
important available planar graph generators are discussed below.

Plantri and Fullgen software. Plantri (Brinkmann et al. 2007) can generate trian-
gulations, quadrangulations, and convex polytopes using recursive algorithm which is
efficient and fast. Fullgen (Brinkmann 2011) generates fullereness which are planar cubic
graphs with 5 or 6 faces. The important characteristic of this software is that it generates

Chauhan et al. Applied Network Science (2019) 4:46 Page 6 of 28

only one graph as output from a family of isomorphic graphs saving the space needed to
store them. The software also offers the user the option to restrict adjacent pentagons
using an input parameter.

Markov Chain Planar Graph Generator. This algorithm was proposed by Denise et al.
(1996) and is based on Markov Chain that generates planar subgraphs from a non-planar
graph. The algorithm defines a Markov Chain on the state space of all subgraphs of the
original graph and transitions as follows. If an edge exists in space, it is deleted. If it is not
present it is added in case it maintains planarity otherwise it is discarded. The method
can successfully generate a planar subgraph in polynomial time.

Delaunay Triangulation and refinement method. This method has been widely used
by researchers to generate mesh networks. In Shewchuk (1996), Shewchuk presented
an implementation of 2-dimensional constraint Delaunay triangulation and Ruppert’s
(Ruppert 1995) Delaunay refinement algorithm for mesh generation.

Geometric graphs. Gilbert (1961) proposed a model to construct random plane net-
works by first selecting points in infinite plane based on Poisson process with a specific
density and then connecting points based on their distance (a parameter) from each other.
The random geometric graphs closely represent the graphs generated by percolation pro-
cess through various porous materials and therefore these graphs are extensively utilized
by physicists to study continuum percolation models. Random geometric graphs also have
application in communication networks (Barthélemy 2011).

Planar Erdos-Rényi graph. In 1959, Erdos and Rényi (1959) introduced a method to
generate a random graph with N nodes and m edges by connecting the edges randomly
with independent probability p. The Erdos-Renyi planar graph generator generates ran-
dom planar graph with uniform probability (Denise et al. 1996) by rejecting the non
planar edges thereby preserving planarity (Denise et al. 1996; Gerke and McDiarmid 2004;
McDiarmid et al. 2005; Barthélemy 2011). This is the most basic planar model which
cannot be directly used for practical replication purposes.

Domain specific planar network generation

Important applications of planar networks are infrastructure networks such as roads,
water distribution systems and power grids. There is a shortage of data for these net-
works owing to various reasons such as time and cost involved for collecting the data.
Also the available data for infrastructure networks such as water distribution systems, and
other utilities cannot be published due to confidentiality issues. As a result, the study of
these networks and their simulation is highly dependent on the creation of high-fidelity
synthetic data.

In Cura et al. (2015), Cura et al. proposed a unified framework called StreetGen that
works on real Geographic Information System (GIS) data and modeling hypothesis which
automatized street reconstruction and generated a street network model which was
coherent to real-world street model. StreetGen required parameters for specific street
objects and needed specialization for different objects.

In order to generate a simulation data for grid networks, Wang et al. (2008) proposed an
algorithm that generates random but realistic topology power grid networks that could
be used as test power grids. The generator used probability distribution for defining for
number of nodal locations, then the parameters for distance was used to generate simple
topology which was connected.

Chauhan et al. Applied Network Science (2019) 4:46 Page 7 of 28

There is a similar shortage for data on water distribution systems (WDS) and the
researchers typically need to rely on synthetic data to run simulation, test hypothesis and
decision-making. The earlier methods for synthetic network generation involved man-
ually creating realistic networks based on real data. Sitzenfrei et al. (2013) developed a
software package DynaVIBe-Web that automated the generation of synthetic WDS net-
works. The generator used street networks, GIS data and real data from more than one
network. Muranho et al. (2012) developed an interactive application WaterNetGen as an
extension to well-known WDS optimization tool EPANET (Rossman 1994), which could
generate network topologies, which is based on user-defined parameters and constraints.

Though, the above network generators produce realistic networks, they are specialized
to specific domain and do not follow a generic approach to planar network generation.
Also, replicating structural properties of a given network is not among the features of
such generators. To our knowledge no work exists on cross-domain graph generators that
generate realistic planar graphs that attempt to create graphs that are controllably similar
to the given instances.

Notation

Throughout the paper, we will use the notation G = (V, E) for a graph, where V' is a set of
n nodes, and E is a set of m edges. We consider simple, undirected graphs, where ij € E is
an edge connecting nodes i and j, and the weight of ij is denoted as w(ij) and node volume
(total weight of aggregated nodes) is denoted by v(i). Both weight of edge and node are
non-negative. (Although, our generator is not expected to work with weighted graphs, the
weights will be used at the coarse levels to reflect aggregated nodes and edges).

The subscript (such as G;) used with a variable denotes the number of level in
multiscale hierarchy. We denote an edited network in the hierarchy at level i using
superscript and subscript (such as G;’l). A finally generated network at the level i is
denoted by G‘lg .

Multiscale planar graph generation
Multiscale network generation (MNG) introduced in Gutfraind et al. (2015) is an editing
model that generates realistic networks. The proposed multiscale planar graph generator
follows the main ideas of MNG and makes them applicable on planar graphs. For the
completeness of the paper we also overview basic components of the original method.
MNG follows a multilevel coarsening/uncoarsening scheme shown in Fig. 1. We start
with an input graph G and generate a hierarchy of next coarser graphs, Gy = G, G, ..., G,
where k is the number of coarsest level. The number of coarsened levels depends on the
structure and size of G, and user input, which is a vector where each value determines the
required edit or growth rate at each level of the hierarchy, and the length of vector deter-
mines the number of desired coarsening levels. The hierarchy construction (coarsening)
is terminated if the graph is too small or too dense (density of graph > 0.9) at some level
(i.e., the coarsest level is reached). The coarse level construction is generic and based on
the weighted aggregation method for combinatorial optimization problems (Safro et al.
2006; Ron et al. 2011). Currently, it does not depend on the application predefined aggre-
gates in the network such as knowledge about real communities. However, this process
can be adjusted as we did in Staudt et al. (2016).

Chauhan et al. Applied Network Science (2019) 4:46 Page 8 of 28

Original planar graph Synthetic planar graph

Editing
and fine
tuning of
properties

preserving

similarities

across all
levels

Fig. 1 The V-model for multiscale planar network generation. The original input planar network is coarsened
to generate a hierarchy of coarse networks, the process is then reversed generating fine-level networks. The
number of level (here 5) depends on the size of input network or the user input

In order to generate a synthetic graph, during the uncoarsening stage, we introduce a
series of local randomizations at different levels whose amounts can be specified by user’s
input. As mentioned previously, the user can control the number of levels coarsening and
amount of edits or perturbations at each of these levels using parameters edge edit rate
and edge growth rate. If user is interested in only local changes without destroying the
global structure of the network, only fine levels are specified for randomizations. Other-
wise, any realistic changes in global structure will require randomizations at coarse levels.
During the uncoarsening, these randomizations are carried forward to the next finer level
in the hierarchy. In Algorithm 1, we describe the sequence of steps in generating pla-
nar graph. We will now discuss each phase and notation in detail and our approach to
generate planar graphs using the multiscale method.

Algorithm 1 Multiscale Planar Network Generator MPNG(G;)
1: if G; is not small or too dense or perturbations are required for G; at level i by user

then
2 Git1 < create aggregated network from G; > see Alg. 2
G‘f 11 < MPNG(Gi41) > Return coarser edited network from recursive call

Gl‘?/ <« interpolateUnedited Aggregates from G‘lg 1
Gf <« interpolateEditedAggregates(Gf D G?—;—l)
end if
: Q; < measure properties of G;
G‘Lfg <« editing Gfl preserving Q;
: Return G‘tg

o % N O

Chauhan et al. Applied Network Science (2019) 4:46 Page 9 of 28

Coarsening

Since the input graph Gp is planar, the aggregation algorithm that creates coarsened
graphs G; makes them also planar, so we follow the same coarsening scheme as that in the
original MNG. Algorithm 2 lists the steps involved for generating coarse level graph G;;1
from G;.

Algorithm 2 Coarsening(G;)

1: if G; is not the coarsest graph then
Find set of seed nodes (C) for coarse network G,
Find fine-level nodes that belong to each aggregate

Return Gjt1

2
3
4 Calculate weight of edges connecting aggregates and weights of coarse nodes
5
6: end if

At each level of the hierarchy, we start with finding set of seed nodes, C, and its com-
plement fine-level nodes F which is based on two rules: (a) nodes with high volume
and connectivity (i.e., major aggregates) are more likely to be included in C, and (b) the
remaining nodes in F should be “strongly” coupled to enough neighbors in C. At level i,
given a graph G;, to generate coarse level nodes for G;1 we beginwith C =@ and F = V;
where V; is set of nodes at fine level G;. Next, we iteratively transfer some nodes from F
to C (visiting them one after another in random order), such that currently visited node
i € Fisadded to C if it is not well connected to those already chosen to C (Safro et al.
2006). The connection strength between nodes i and j is determined by means of normal-
ized weight of edge ij with respect to C, namely, if node i € F is not connected strongly
enough to the currently chosen C, i.e.,

2_jec W)
== ~ <

1
S w) W

then we move i to C and transfer our attention to the next node in F. Thus, instead of
requiring for a certain number of F-nodes to be transferred to C, we scan them iteratively,
and decide based on Eq. (1). The connection strength is parametrized using threshold «
which determines the speed and number of coarse nodes (and implicitly edges). Big val-
ues of o (in multiscale algorithms, typically, 0.7 or bigger) will result in small changes in
coarsened graphs that are created from level to level as most of nodes wont be strongly
connected to C (according to Eq. 1). In contrast, small values (in multiscale algorithms,
typically, 0.3 or smaller) will cause a decreased number of levels as not too many nodes
will be transferred to C. In all our experiments we have used « as 0.5, which guarantees
uniform coarsening. However, we note that the strength of connectivity criterion in net-
work generation requires further investigation similar to that in multiscale optimization
(Brandt and Ron 2003) where it plays a crucial role in the solution quality.

The final phase of coarsening is computing the connection strength between the coarse
nodes. Here we define the algebraic multigrid interpolation matrix P of size | V| x |C| (for
details see Safro et al. (2006)) in which P, represents the likelihood of # € V; to belong
to the aggregate seeded with node v € V. The Laplacian of the coarse graph G;;1,Liy1,

Chauhan et al. Applied Network Science (2019) 4:46 Page 10 of 28

can be calculated by the algebraic multigrid coarsening operator L;; < PTL;P where, L;
is the Laplacian of ith level graph, and

1, forueC,v=u
Puv = . (2)
0, otherwise.
The edge st connecting two coarse nodes s € Vi1 and t € Vi41, is assigned with the

weight
Dy Prsw(KDPy

and the volume of the coarse aggregate seeded by u € V; is Zi v(j)Pjy.

This step finalizes creating the (i 4 1)th level graph, and we can measure the properties
of ith level graph and store them in Q;. As in the original MNG, we attempt to preserve
the small loop structure of the network by avoiding any insertion of edges that connect
nodes that were previously separated by the long distances in the original network. This
is done by estimating the empirical probability of closed random walks (of limited length)
that start at some node whose degree is at least two (for details see Gutfraind et al. (2015)).
In general, this step is application dependent as in different applications the preserved
properties may vary. Because, in planar graphs of infrastructures it is important to gen-
erate realistic path lengths (e.g., not to create shortcuts that connect distant regions in a
graph), we are sampling using random walks the distribution of path lengths and shortcuts
(second shortest distance between nodes) and store them in Q;.

Uncoarsening

Once the coarsest level is reached, we start the uncoarsening. During this process, at each
level i + 1 we choose nodes and edges to be edited (randomized while keeping some
properties preserved), to generate edited network G‘lg 1 atlevel i + 1 and then project the
newly created graph to generate the next finer level G.

The projection is done in two steps. First, we interpolate the unedited aggregates (nodes
and edges) in interpolateUnedited Aggregates (see Algorithm 3) from G‘Lg 1 to generate
graph G?/. This process is just a reverse interpolation of aggregates based on aggregation
data stored during the coarsening phase. Because the input network at all levels is planar,
the interpolated edges do not violate planarity. This helps in preserving structural proper-
ties of original input network, as after this step we have a subgraph Gf/ of original network
coarsened at level i.

Algorithm 3 interpolateUnedited Aggregates (G‘f +1)

4
L: Gf < uncoarsen nodes from Gf 1 using data stored during coarsening at level i

2 Gl‘.i, < uncoarsen unedited edges G‘lg 1 using data stored during coarsening at level i
3: Return Gl’?l/

In the next step, we interpolate the edited aggregates in function interpolateEdited Ag-
gregates to generate graph G? by adding edited nodes and edges to graph generated with
Algorithm 3. The pseudocode for this step is presented in Algorithm 4. We first interpo-
late the edited nodes and add edges that were trapped within the aggregates (or coarse)
nodes connecting the interpolated fine nodes, i.e., these are edges that connect fine nodes

Chauhan et al. Applied Network Science (2019) 4:46 Page 11 of 28

that are coarsened within the same coarse node. Next we interpolate edited or new edges
introduced during editing phase at level i + 1. In this step, we introduce new fine level
edges for every coarse edge connecting a pair of aggregates u and v. This is done by ran-
domly selecting the fine level nodes generated by interpolating # and v. The number of
fine level edges added for each coarse edge is based on the degree distribution of nodes in
aggregates u and v at level i as stored in data structure during coarsening. This interpo-
lation is likely to introduce crossing over edges, therefore, when we add an edge ij to G;-i,
we check if the network is still planar. If it is not, the edge is discarded. If an edge is dis-
carded, we perform several iterations and find an edge which is similar to the edge ij using
properties stored in Q; during coarsening in Algorithm 1 (i.e., in our implementation, the
short loop structure).

Algorithm 4 interpolateEdited Aggregates (G‘lg 1o G?/)

1: Gf < uncoarsen nodes from G§+1

d : g
2 G < uncoarsen edited edges G;
3: Return Gfl

After the interpolation is complete and we have a fine-level graph Gfl, on which we
introduce randomizations or editing (discussed below in detail) specified by the user at
level i to generate a finer-level random planar network G‘f . The topology of the final net-
work depends on the level at which the changes are introduced and the number of edited
network elements both dependent on user input. At the coarsest level, every network ele-
ment is an aggregate which interpolate of many network elements at fine level, a small
change introduced at this level may generate high-entropy changes which are carried for-
ward to the next fine level, whereas addition of an element at fine levels may introduce
elements to the final synthetic network. In general, the changes introduced to deeper
levels of aggregation, the more significant changes are introduced in the topology.

Editing

In the final phase we measure the properties of the generated graph Gfl and compare with
the properties of original graph G; coarsened at level i which is stored in Q;, thus pre-
serving the local topological structure of the network and preventing addition of edges
between nodes which were separated by long distance in original network at coarse level
G; stored in Q;. We then use an editing process which introduces randomizations in
the network to generate a synthetic network. This is a process of deleting and adding
new edges whose both amounts depend on the user input for level i (namely, how much
randomization is required at each level, i.e., a value from O - no randomization, to 1 -
everything is randomized). In particular, we are interested in two properties, namely, the
second shortest path length distribution (to prevent generating unrealistic shortcuts) and
planarity. The first property, second shortest path length spath(, v) for an edge uv is the
number of edges in the shortest path # — v that does not include edge uv. Before intro-
ducing edits we estimate the distribution of spath at level i, P; by random sampling of
edges R C E; where E; is set of edges in graph G; as,

[{{u,v € R : spath(u,v) = d}|

Pi[d]~ R 3)

Chauhan et al. Applied Network Science (2019) 4:46 Page 12 of 28

When we delete an edge u;v; such that spath(u1,v1) = d, we choose a random node «
and v at randomly drawn distance from u using P;. This sampling of distances preserves
multiple structural properties such as clustering coefficient and average shortest path (see
more details in Gutfraind et al. (2015)).

The second critical property is planarity. In order to preserve planarity, if inserting the
new edge makes the network non-planar we discard it and find an alternate edge that pre-
serves the desired structural properties (in this case the first property) as well as planarity.
Technically, it is done by verification of existence of Kuratowski subgraph (Thomassen
1981) after adding a new edge. This step is repeated until we find a non-crossing edge that
preserves the planarity of the network and thus generating synthetic planar graph G‘lg at
coarse level i.

Rescaling

Rescaling is a part of the editing phase in which we add new elements (edges and nodes)
to the synthetic network in order to increase its size. The scaling factor and the coars-
ened level at which the network is rescaled is controlled by node growth parameter which
is provided as an input from the user depending on the user requirement. In general,
rescaling at coarsest levels will preserve the local structure of the input network, i.e. the
generated network will have increased number of communities whereas rescaling at finer
levels will increase the size of communities. The scaling factor ranges from 0 to any num-
ber which decides the percentage of new nodes that are to be added at the level i. This is
a two step process. First, we introduce a new node # and connect to an existing node v in
the network deleting an existing edge from v to restore the degree of node v. In the next
step, we find neighbors of v iteratively over increasing distance from v and connect the
newly added node u to the neighbors of node v thus preserving the local topological struc-
ture of the network at coarse level G; stored in Q;. The process is terminated when the
desired number of network elements are added and a rescaled network G‘f is generated at
coarse level i.

Computational experiments

In this section we show the computational results summarizing the performance of
our multiscale planar network generator in replicating the original and also generating
rescaled networks. To test the variability of the generator we used real-world infrastruc-
ture networks such as water distribution system, power grid and road network that are
either planar or have very few edge crossings that we removed. We used the water network
from “The Battle of the Water Networks II“ (Ostfeld et al. 2008) and for road network we
used a sub graph of Texas (Leskovec et al. 2009) road network from (Leskovec and Krevl
2014). We also used a finite element large planar sub-graph of a finite-element graph from
Boeing collection in Davis (1997). In case of the power grid (Leskovec and Krevl 2014)
which was not completely planar, we generated approximate maximal planar subgraph of
the network using Open Graph Drawing Framework (OGDF) (Chimani et al. 2013) to be
used as an input to our algorithm.

Replication
We tested our implementation on three sets of parameters, namely, “Musketeer Coarse”
(at only two coarsest levels 5% randomizations are allowed), “Musketeer Fine” (at only

Chauhan et al. Applied Network Science (2019) 4:46 Page 13 of 28

two finest levels 5% randomizations are allowed), and “Musketeer All” (small 1% ran-
domizations are allowed at all levels). The amount of edits for each set of parameters are
controlled such that the number of randomizations in final generated graphs for each set
of parameters are comparable. Because randomizations and editing are introduced at all
levels, even very little changes at the coarse levels will result in significant changes at the
finest level in generated synthetic graph.

We generated 30 network replicas for each network and compared the replicas with the
original network based on the following metrics: number of nodes and edges, number
of components, clustering coefficient, average degree, total degree-degree assortativity,
average harmonic distance, modularity, pagerank and average betweenness centrality. We
also compared our results with the existing generative models implemented in Staudt
et al. (2014), namely, ReCoN, RMAT and BTER and stochastic Kronecker graphs by
generating replicas of same input network. Since, these models do not necessarily gen-
erate planar network, we post-processed the generated networks to find the maximal
planar subgraph of the replicas using OGDF library which uses edge removing tech-
nique, i.e., it adds one edge at a time while preserving planarity, if addition of the
edge results in a non-planar graph then the edge is discarded thus generating a pla-
nar subgraph. We compared the generated planar graphs with the original graphs for
the structural properties mentioned above. Clearly, one may argue that these gener-
ators were not developed to planar networks. We, however, note that these methods
with planarization post-processing were chosen because there is no other acceptable
solution to generate more or less realistically looking planar network that is similar
to the original. As mentioned earlier, the available planar graph generators are gener-
ative models which either create specific classes of graphs with restricted values for
minimum degree and connectivity (e.g., plantri and fullgen or Delaunay triangulation
methods) or generate random realistic spatial networks based on give probability p
(e.g., planar Erdos—Renyi, and spatial Watts-Strogatz generator). Other examples include
domain specific generators for road networks (e.g., StreetGen) and power grid ran-
dom networks that are not necessarily planar networks. To the best of our knowledge,
there is no domain independent generator whose goal is to preserve similarity with the
input network.

The structural properties of the replicas were normalized such that 1 denotes the
property of original network. We performed 30 experiments for each set of param-
eters the results for which is graphically represented in Figs. 2, 3, 4, 5, 6, 7, 8 and
9. Our results indicate that multiscale planar graph generator can generate replicas
that preserve almost all the properties of the original networks with relatively small
deviation. Also, we observe that graphs generated by BTER and RMAT after planariza-
tion are close to original network (within 0 — 2, where 1 represents the property of
original input network after normalization) for properties such as average degree and
mean harmonic distance whereas the properties for networks generated by stochas-
tic Kronecker graphs (SKG) are far from those in the original graphs. As such the
plots for properties for the networks generated by SKG are not represented in the
plots. However, we note that the distortion of properties on the replicas by other net-
work generators may have been the result of the post-processing step (maximal planar
sub-graph of the generated replica), which often created more than one connected

components.

Chauhan et al. Applied Network Science

(2019) 4:46

I p-Musketeer Fine BN BTER SKG
mmm p-Musketeer Coarse mmm ReCoN RMAT
Powergrid Network(a) pMusketeer/All
average |
degree I © O OO0 (o]
® (e}
i
modularity 0 0 0 © 0 '?
clustering |
fficient
coelc:enw 1 ° l0 & OO0 0 O O 00 ¢
O—-0 |
o
total —— .
deg*deg -
assortativity i |
o »-J-.
—-—
mean |
eccentricity O CHNBD
| o
number 8
of 1
edges & CDI © O COoGm o]
"k
T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Fig. 2 Computational results on performance of planar Musketeer on power grid graph opsahl-powergrid
with 4941 nodes and 6211 edges for clustering coefficient, number of edges, mean eccentricity, total degree
*degree assortativity, modularity and average degree

mmm p-Musketeer Fine mmm BTER SKG
I p-Musketeer Coarse I ReCoN RMAT
average Powergrid Network(b) p-Musketeer Al
betweenness -
centrality | g
—— -
@
average sl
shortest A
path G)
o]
L * (o]
number S
of 4
components o
harmonic I
mean -
path -
—l— @
—— .
|
—— @
number =
of 4 |
nodes
€3]
[9]
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Fig. 3 Computational results on performance of planar Musketeer on power grid graph opsahl-powergrid
with 4941 nodes and 6211 edges for number of nodes, harmonic mean path, number of components,
average shortest path and average betweenness centrality

Page 14 of 28

Chauhan et al. Applied Network Science

(2019) 4:46

mmm p-Musketeer Fine mmm BTER SKG
B p-Musketeer Coarse mmm ReCoN RMAT
Finite Element Network(a) p-Musketeer Al
average |
degree : b |
° I
o [¢2]
modularity - A
|
:
clustering |
coefficient I @@ OO0 O ©O [e] |
D o |
L
total HH
deg*deg -
assortativity . a
@ 1 0
o
mean |
eccentricity @® OCHEDMD O
—— -
= °
number
of 4 -
edges . D
Y 1
o a
0.00 0.25 0.50 0.75 1.00 1.25 1.50 17D, 2.00

Fig. 4 Computational results on performance of planar Musketeer on finite-element graph with 4704 nodes
and 13427 edges for clustering coefficient, number of edges, mean eccentricity, total degree *degree

assortativity, modularity and average degree

I p-Musketeer Fine BN BTER SKG
I p-Musketeer Coarse I ReCoN RMAT
average Finite Element Network(b) p-Musketeerll
betweenness
centrality ! |©
— s o
(oe]
2 ,i
average ° o
shortest A
path ™ OUDGOTED O
— (o}
@
S *
number o
of 1
components o
harmonic |
mean - .
path I 0o
—i—
——— O
|
number i
of -
nodes I o
]
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1575 2.00

Fig. 5 Computational results on performance of planar Musketeer on finite-element graph with 4704 nodes
and 13427 edges for number of nodes, harmonic mean path, number of components, average shortest path

and average betweenness centrality

Page 15 of 28

Chauhan et al. Applied Network Science (2019) 4:46 Page 16 of 28

B p-Musketeer Coarse N ReCoN RMAT
Water Distribution Network(a) p:Musketeerall
average |
degree !
g - 0|g
o
~_ ko o
modularity
y 00@® @O m—
il
clustering |
coefficient P O oo o @ o 0 000 | O0nhpo o
o o o
p *tgtal o o O 00 @ 0% B0 —
egrdeg 1
assortativity O»& I 000 HPOO0CH
1
— -
mean | i P O
eccentricity p !
1 o
number B
of 1
edges P d i
o
~ 0 o
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Fig. 6 Computational results on performance of planar Musketeer on real water network with 407 nodes and
459 edges for clustering coefficient, number of edges, mean eccentricity, total degree *degree assortativity,
modularity and average degree

Rescaling

Our second set of experiments was designed to generate rescaled networks. We tested
our implementation on three sets of parameters, namely, “Musketeer Coarse” (30% edge
and node addition on 4 coarsest levels are allowed), “Musketeer Fine” (30% edge and
node addition on 4 finest levels are allowed), and “Musketeer All” (15% edge and node

EEE p-Musketeer Fine N BTER SKG
Il p-Musketeer Coarse Il ReCoN RMAT
average Water Distribution Network(b) p-Musketeer All
betweenness
centrality o O] | ©
HO
e Ty
———O
average
shortest -
path P !
| g o
number
of 1
components | q
harmonic I
mean - o |
path I oo
oo
—— I ——— [e]
*—l£—<
number =—o0
of A
nodes I 10
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Fig. 7 Computational results on performance of planar Musketeer on real water network with 407 nodes and
459 edges for number of nodes, harmonic mean path, number of components, average shortest path and
average betweenness centrality

Chauhan et al. Applied Network Science (2019) 4:46 Page 17 of 28

N p-Musketeer Fine BN BTER SKG
BN p-Musketeer Coarse I ReCoN RMAT
Road Network(a) p-Musketeer All
average |
degree . 1 oGy QDo
1 o
modularity A 00 @00 o . o
clustering |
coefficient 1 | =
o O—— o
@ O @CDIE0O
—— O
total o
deg*deg - .
assortativity |
Qo .
I
— -
mean |
eccentricity
i
-—ﬂ—
number
of -
edges . OP‘) @
i odﬁ
T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 75 2.00

Fig. 8 Computational results on performance of planar Musketeer on road network from roadNet-TX with
2001 nodes and 2957 edges for clustering coefficient, number of edges, mean eccentricity, total degree
*degree assortativity, modularity and average degree

N p-Musketeer Fine I BTER SKG
BN p-Musketeer Coarse I ReCoN RMAT
average Road Network(b) p-Musketeer Al
betweenness
centrality | | fo)
— oI
R
average
shortest
path
|
T g @
number
of 4
components
harmonic I
mean -
path oo | 'o
| = o
r—ﬂo—<
number
of 4 |
nodes
o
L]
T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 L.75 2.00

Fig. 9 Computational results on performance of planar Musketeer on road network from roadNet-TX with
2001 nodes and 2957 edges for number of nodes, harmonic mean path, number of components, average
shortest path and average betweenness centrality

Chauhan et al. Applied Network Science

(2019) 4:46

addition at all levels are allowed). The parameters are chosen such that the generated
network has 3 — 4 times the number of nodes and edges than the original network.
We generated 30 rescaled replicas for the same dataset as used in our previous exper-
iment and compared the generated networks with the original network based on the
following metrics: number of components, clustering coefficient, average degree, total
degree-degree assortativity, average harmonic distance, modularity, pagerank and average
betweenness centrality.

The structural properties of the replicas were normalized such that 1 denotes the
property of original network. The comparison for 30 experiments is presented in
Figs. 2, 3,4,5,6,7,8,9,10, 11, 12 13, 14 and 15. As depicted in the plots we are able to
preserve almost all the properties of original network even when the network is rescaled
to more than 3 times the original network. Also, there is no significant variance observed
in properties for the three different sets of parameters (coarse,fine and all) used to gen-
erate rescaled networks. However, we observed that rescaling by introducing elements
at finer levels results in high clustering coefficient in generated network. This is because
the planarity constraint restricts addition of long edges (edges between nodes which are
far from each other) which in turn forces the algorithm to connect new elements locally
at each level i. In case the network elements are introduced at coarsest levels, the locally
added edges and nodes are uncoarsened to several finer edges and nodes over the V-
cycle of coarsening and uncoarsening, and the near neighbors at level i are drifted apart
at level i + 1.However, network elements added at fine levels are not drifted as a result
of levels of coarsening and uncoarsening as described above, and the edges still connect
the nodes locally. Hence, we observe an increased number of triangles (Fig. 16) or high
clustering coefficient (Figs. 17 18, 19, 20, 21, 22 and 23) for networks generated by intro-
ducing elements at fine level as compared to coarse level. As depicted in Fig. 16 when
the network is rescaled by introducing new elements at only coarse levels, we find larger

Symmetric Pattern (a)
average | 1
degree ! ;G O EEE p-Musketeer Fine BN BTER SKG
% . BN p-Musketeer Coarse I ReCoN RMAT
‘;10 p-Musketeer All
modularity ®O 0 ® ©om i |
%
%
clustering |
coefficient |- O OO0 o [eX¢) o ' @ q
. o
total —.-—
deg*deg
assortativity é (o} 9 Qa £ © © g
1
mean | "10
eccentricity 1
L E——
»—'CO—M o
number O +—mm— Q0
of -
edges . A o 2 o 1
“ I
.._:-IO
0.00 0.25 0.50 0.75 1.00 125 1.50 1.75 2.00
Fig. 10 Computational results on performance of planar Musketeer on symmetric pattern with 1141 nodes
and 3162 edges for clustering coefficient, number of edges, mean eccentricity, total degree *degree
assortativity, modularity and average degree

Page 18 of 28

Chauhan et al. Applied Network Science

(2019) 4:46

=l p-Musketeer Fine mmm BTER SKG
mmm p-Musketeer Coarse mmm ReCoN RMAT
average Symmetric Pattern (b) p-Musketeer. ll
betweenness
centrality % o I
| 00 0O
e S O
average
shortest -
path !
— . O
1 o @O &
——
number o
of
components |
harmonic
mean A
path ®og o = 1
——ll—oO0
o peme—
1 a»
—— .
number m
of
nodes I
L
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Fig. 11 Computational results on performance of planar Musketeer on symmetric pattern with 1141 nodes
and 3162 edges for number of nodes, harmonic mean path, number of components, average shortest path
and average betweenness centrality

communities (e.g., mesh structures in case of our input road network) in the generated
network, whereas if the network is rescaled at fine level we observe smaller communi-
ties. The amount of new introduced elements can be controlled by user input which is
provided as node growth parameters at certain levels. The size of replicated and edited
aggregated clusters in the rescaled network can be controlled by choosing larger node

L Shape Problem(a)
average | |
degree 1 som mmm p-Musketeer Fine mmm BTER SKG
L) % mmm p-Musketeer Coarse mmm ReCoN RMAT
. iy p-Musketeer All
modularity - 6 @ O Moo q!
clustering | %
coefficient [oO® O [¢) o0 . o) o
O -»
total o®0
deg*deg
assortativity . P WOl O @0 oS g
b
mean |
eccentricity !
o= an,
number o—m— X o ©
of 4 OO0
edges . o !
5]
2. 0¥
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Fig. 12 Computational results on performance of planar Musketeer on graph for thermal L-Shape Problem
with 3025 nodes and 8904 edges for clustering coefficient, number of edges, mean eccentricity, total degree
*degree assortativity, modularity and average degree

Page 19 of 28

Chauhan et al. Applied Network Science (2019) 4:46

I p-Musketeer Fine I BTER SKG
BN p-Musketeer Coarse EEE ReCoN RMAT
average L Shape Problem(b) p-Musketeer All
betweenness @
centrality | o .
i
m | @
o—mm— OO0 o
average D
shortest 1
path !
g i O
0o o
number © -l
of
components !
harmonic
mean -
path [c1] | I
HiHO
o l @
——3l— 0 O
number [og
of 4
nodes I |
(]
0.00 0.25 0.50 0.75 1.00 125 1.50 175 2.00
Fig. 13 Computational results on performance of planar Musketeer on graph for thermal L-Shape Problem
with 3025 nodes and 8904 edges for number of nodes, harmonic mean path, number of components,
average shortest path and average betweenness centrality

HEE p-Musketeer Fine NN BTER SKG
mmm p-Musketeer Coarse mmm ReCoN RMAT
2D finite element problem(a) phuskasenal
average |
degree I Ico QR @D (0.0)
®
b OIQ"
-
modularity 0O®DO 0000) ,
*.‘
2 ©
clustering |
coefficient 1 o O ﬁ
O
——— —_————
— .
total
deg*deg -
assortativit
y > on
o
o
mean |
eccentricity 1
*—a - TR
oQ O @
number a @ O 8
of 4
edges I ocmm ®
¢ L]
OIO*
-
T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Fig. 14 Computational results on performance of planar Musketeer 2D finite element graph with 1866 nodes
and 3538 edges for clustering coefficient, number of edges, mean eccentricity, total degree *degree
assortativity, modularity and average degree

Page 20 of 28

Chauhan et al. Applied Network Science (2019) 4:46

mmm p-Musketeer Fine mmm BTER SKG
mmm p-Musketeer Coarse mmm ReCoN RMAT
average 2D finite element problem(b) p-MusketeerAll
betweenness I
centrality Pe)
| P =z=
| [¢) 0o
Tl o P |° ©
average
shortest
path |
oo
el i)
| O O O
—— - OO o
— -
number 00w
of -
components |
harmonic
mean -
path | o |
O
—— -
| 00
far ey o
number P
of 4
nodes I
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
Fig. 15 Computational results on performance of planar Musketeer 2D finite element graph with 1866 nodes
and 3538 edges for number of nodes, harmonic mean path, number of components, average shortest path
and average betweenness centrality

growth parameter for example in Fig. 24 we used node growth parameter as 1.5 at the
coarsest level to rescale the network to 1.5 times. Depending on the application, one may
want to add a postprocessing step which will create longer loops as in the original net-
work of Fig. 24. We created 13 links that close peripheral clusters by randomly choosing
pairs of disconnected nodes, adding edge, and checking the planarity. However, although
it may create a better visualization for the comparison with the original network, this step
may not be desired by many application.

In our experiment we used 0.3 as node growth rate for coarsest and finest level and 0.10
when introducing network elements at all levels.

Conclusions

In this paper we introduced a multiscale planar graph generation framework and its
implementation using Musketeer framework (Gutfraind et al. 2015) . Our evaluation sug-
gest that multiscale planar graph generation method can generate realistic replicas of
planar networks across domains with small loss of similarity. While there are clearly
enough space for the improvement of this method, to the best of our knowledge, this is
the first general purpose synthetic planar graph generation method that is able to produce
realistic instances.

Several future research directions can be explored. First, we would like to introduce
the algebraic distance edge weighting scheme (Chen and Safro 2011) in order to more
accurately preserve the distances during the uncoarsening. We have successfully used this
improvement for network sparsification (John and Safro 2016) and several combinatorial

Page 21 of 28

Chauhan et al. Applied Network Science (2019) 4:46 Page 22 of 28

(b) Rescaled by introducing network
elements at all levels

7}
(c) Rescaled by introducing network (d)Rescaled by

elements at coarsest levels introducing network
elements at fine levels

rescaling by introducing network elements at finest levels (Fig.d)

Fig. 16 Visualization of a road network from roadNet-TX with 2001 nodes and 2957 edges rescaled to at least
5900 nodes and 7000 edges. a Input network. b Rescaled by introducing network elements at all levels. ¢
Rescaled by introducing network elements at coarsest levels. d Rescaled by introducing network elements at
fine levels

optimization solvers (Safro et al. 2015; Ron et al. 2011). Second, it would be interesting to
investigate whether one should control the size of aggregates to preserve uniform coars-
ening, a multilevel technique that is well known in graph partitioning (Safro et al. 2015;
Bulug et al. 2016). The role of uniform coarsening is not well understood in multiscale
graph generation.

There exist several further research directions that are application dependent. For
example, approaches for assessing how much variation is desirable in the generation
and how to decide whether enough changes have been introduced can vary from
application to application. However, a unified strategy to address this issue would be
very helpful.

Chauhan et al. Applied Network Science

(2019) 4:46

Results for rescaling Powergrid Network

average |
page rank

avg. betweenness |
centrality

avg. shortest |
path

number of |
components

harmonic |
mean path

avg. degree -

modularity -

total deg*deg |
assortativity

mean |
eccentricity

clustering |
coefficient

f0 [eRie] EEE p-Musketeer Fine
I p-Musketeer Coarse
p-Musketeer All

@ @ OO. o

0.00

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Fig. 17 Computational results for road network from roadNet-TX with 2001 nodes and 2957 edges rescaled

to at least 6000 nodes

and 6500 edges

Results for rescaling Finite Element Network

average

page rank

avg. betweenness |
centrality

avg. shortest |
path

number of |
components

harmonic |
mean path

avg. degree

modularity
total deg*deg |
assortativity

mean |
eccentricity

clustering |
coefficient

=l p-Musketeer Fine
mmm p-Musketeer Coarse

m_'w p-Musketeer All
[¢]

e o p———

0.00

0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Fig. 18 Computational results for road network real water network with 407 nodes and 459 edges rescaled

to at least 1098 nodes

and 1500 edges

Page 23 of 28

Chauhan et al. Applied Network Science (2019) 4:46

Results for rescaling Water Distribution Network

average |
page rank '@Ilf @ Hmm p-Musketeer Fine

avg. betweenness | mmm p-Musketeer Coarse

centrality o—te9 p-Musketeer All

avg. shortest | =
path (o] | o

number of |
components

harmonic |
mean path |. o]
HH

avg. degree -

modularity %

total deg*deg |
assortativity

mean |
eccentricity

clustering |
coefficient (o]e] 1 ao

.
O- (0]

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Fig. 19 Computational results for finite-element graph with 4704 nodes and 13427 edges rescaled to at least
12700 nodes and 36000 edges

Results for rescaling Road Network
average

page rank |

I! mmm p-Musketeer Fine
avg. betweenness mmm p-Musketeer Coarse

centrality | o %% "B o oo o p-Musketeer All
avg. shortest |
path o % oo —WBloam Dooo

number of |
components |

harmonic |
mean path o o %“I %o
avg. degree i
0 omaiide™
modularity #

total deg*deg |
assortativity o o

O ——— (o) q

mean |
eccentricity

clustering |

coefficient | o o

o) v E— (e}
T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Fig. 20 Computational results for power grid graph opsahl-powergrid with 4941 nodes and 6211 edges
rescaled to at least 16500 nodes and 27000 edges

Page 24 of 28

Chauhan et al. Applied Network Science (2019) 4:46 Page 25 of 28

Results for rescaling Symmetric Pattern

average |
page rank III N p-Musketeer Fine
avg. betweenness | s B p-Musketeer Coarse
centrality Qo %&?G}P % 8o p-Musketeer All
avg. shortest |
path © @ 0% %o | ¥ —midlls ° 9. 000 0@® &
number of |
components I
harmonic |
mean path 80 &@80 lig ‘m

avg. degree
o & T=Rgg

modularity p
total deg*deg |
00 o &ooo o oo PEESP S

assortativity

mean |
eccentricity (©] @ I (o] o
. — -
clustering |
coefficient (¢] (o] (o] I @
£ oSo i e 0o
0.00 0.25 0.50 0.75 1.00 1:25 1.50 1.75 2.00

Fig. 21 Computational results on performance of planar Musketeer on symmetric pattern with 1141 nodes
and 3162 edges to at least 2200 nodes and 6000 edges

Results for rescaling L Shape Problem

average |
page rank Qo mmm p-Musketeer Fine
avg. betweenness | % Emm p-Musketeer Coarse
centrality axg) 00 I amxo83 p-Musketeer All
aw

avg. shortest |
path Q - o foe) Q 00] | ﬂ o
—i
number of |
components I

s D
harmonic

mean path | $2 O ke WO
[)

avg. degree @ ®
modularity |
O"
total deg*deg |
assortativity O O o GIMIIII)
¥ %o =
mean |
eccentricity oY e) — | o
s P O
clustering |
coefficient ?D o o | @ O
o
(Vg o
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Fig. 22 Computational results on performance of planar Musketeer on graph for thermal L-Shape Problem
with 3025 nodes and 8904 edges to at least 9000 nodes and 12000 edges

Chauhan et al. Applied Network Science (2019) 4:46 Page 26 of 28

Results for rescaling 2D finite element problem

average |
page rank I Il p-Musketeer Fine

avg. betweenness | ¢ B p-Musketeer Coarse
centrality [eXe} ' I |ﬂ QoGO O 8> p-Musketeer All
avg. shortest | *
e oo T ™

number of | s
components '

harmonic |
mean path o 00 H‘n @ O

avg. degree

modularity -

total deg*deg |

assortativity -*&I o |

mean |
eccentricity [<JKe] [e]e]

clustering |
coefficient |
HE-O

0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Fig. 23 Computational results on performance of planar Musketeer 2D finite element graph with 1866 nodes
and 3538 edges rescaled to at least 4000 nodes and 7000 edges

Network rescaled to 1.5 times by introducing
Input Network network elements at only coarsest level

Fig. 24 Visualization of a road network from roadNet-TX with 2001 nodes and 2957 edges rescaled to at least
5028 nodes and 7375 edges

Chauhan et al. Applied Network Science (2019) 4:46 Page 27 of 28

Acknowledgements
This material is based upon work supported by the National Science Foundation under grants #1522751 and #1745300.

Funding
This material is based upon work supported by the National Science Foundation under grants #1522751 and #1745300.

Availability of data and materials
All datasets and algorithm implementation presented in this work are available at https://bit.ly/2CJOUAS

Authors’ contributions

We use the following notation for different types of contribution: AD - algorithm design and discussions, | -
implementation, P - paper writing, E - experimental evaluation. The authors contributed as follows: VC (AD, I, P, E), AG
(AD, P), IS (AD, I, P, E). All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1School of Computing, Clemson University, Clemson, SC, USA. 2Loyola University Medical Center, Maywood, IL, USA.

Received: 3 July 2018 Accepted: 10 May 2019
Published online: 16 July 2019

References

Aiello W, Chung F, Lu L (2000) A random graph model for massive graphs. In: Proceedings of the Thirty-second Annual
ACM Symposium on Theory of Computing. ACM. pp 171-180

Aiello W, Chung F, Lu L (2001) A random graph model for power law graphs. Exp Math 10(1):53-66

Barthélemy M (2011) Spatial networks. Phys Rep 499(1-3):1-101

Brandt A, Ron D (2003) Chapter 1 : Multigrid solvers and multilevel optimization strategies. In: Cong J, Shinnerl JR (eds).
Multilevel Optimization and VLSICAD. Springer

Brinkmann G. (2011) Program fullgen-a program for generating nonisomorphic fullerenes. see http://cs.anu.edu.au/bdm/
plantri

Brinkmann G, McKay BD, et al (2007) Fast generation of planar graphs. MATCH Commun Math Comput Chem
58(2):323-357

Bulug A, Meyerhenke H, Safro |, Sanders P, Schulz C (2016) Recent advances in graph partitioning. In: Algorithm
Engineering: Selected Results and Surveys. Springer. pp 117-158

Chakrabarti D, Zhan Y, Faloutsos C (2004) R-mat: A recursive model for graph mining. In: Proceedings of the 2004 SIAM
International Conference on Data Mining. Springer. pp 442-446

Chen J, Safro 1 (2011) Algebraic distance on graphs. SIAM J Sci Comput 33(6):3468-3490

Chimani M, Gutwenger C, Jinger M, Klau GW, Klein K, Mutzel P (2013) The open graph drawing framework (ogdf). Handb
Graph Drawing Vis 2011:543-569

Cura R, Perret J, Paparoditis N (2015) Streetgen: In-base procedural-based road generation. ISPRS Ann Photogramm
Remote Sens Spat Inf Sci 2:409

Davis T (1997) University of Florida Sparse Matrix Collection. NA Dig 97(23)

Denise A, Vasconcellos M, Welsh DJ (1996) The random planar graph. Congressus numerantium:61-80

Erd6s P, Rényi A (1959) On random graphs, I. Publ Math (Debrecen) 6:290-297

Fronczak P, Fronczak A, Bujok M (2013) Exponential random graph models for networks with community structure. Phys
Rev E 88(3):032810

Gerke S, McDiarmid C (2004) On the number of edges in random planar graphs. Comb Probab Comput 13(2):165-183

Gilbert EN (1961) Random plane networks. J Soc Ind Appl Math 9(4):533-543

Gutfraind A, Meyers LA, Safro | (2012) Multiscale network generation. CoRR abs/1207.4266. 1207.4266

Gutfraind A, Safro |, Meyers LA (2015) Multiscale network generation. In: 18th IEEE International Conference on
Information Fusion (Fusion). Springer. pp 158-165

Hager WW, Hungerford JT, Safro | (2018) A multilevel bilinear programming algorithm for the vertex separator problem.
Comput Optim Appl 69(1):189-223

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008) ergm: A package to fit, simulate and diagnose
exponential-family models for networks. J Stat Softw 24(3):54860

John E, Safro | (2016) Single-and multi-level network sparsification by algebraic distance. J Complex Netw 5(3):352-388

Karrer B, Newman ME (2011) Stochastic blockmodels and community structure in networks. Phys Rev E 83(1):016107

Leskovec J, Krevl A (2014) SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/data

Leskovec J, Lang KJ, Dasgupta A, Mahoney MW (2009) Community structure in large networks: Natural cluster sizes and
the absence of large well-defined clusters. Internet Math 6(1):29-123

Mahdian M, Xu Y (2007) Stochastic kronecker graphs. In: International Workshop on Algorithms and Models for the
Web-Graph. Springer. pp 179-186

McDiarmid C, Steger A, Welsh DJ (2005) Random planar graphs. J Comb Theory Ser B 93(2):187-205

Meinert S, Wagner D (2011) An experimental study on generating planar graphs. In: Frontiers in Algorithmics and
Algorithmic Aspects in Information and Management. Springer. pp 375-387

https://bit.ly/2CjOUAS
http://cs.anu.edu.au/bdm/plantri
http://cs.anu.edu.au/bdm/plantri
http://arxiv.org/abs/1207.4266
http://snap.stanford.edu/data

Chauhan et al. Applied Network Science (2019) 4:46 Page 28 of 28

Muranho J, Ferreira A, Sousa J, Gomes A, Marques AS (2012) Waternetgen: an epanet extension for automatic water
distribution network models generation and pipe sizing. Water Sci Technol Water Supply 12(1):117-123

Newman M (2010) Networks: An Introduction. Oxford University Press, Inc., New York

Newman M (2018) Networks. Springer

Ostfeld A, Uber JG, Salomons E, Berry JW, Hart WE, Phillips CA, Watson J-P, Dorini G, Jonkergouw P, Kapelan Z, et al (2008)
The battle of the water sensor networks (bwsn): A design challenge for engineers and algorithms. J Water Resour Plan
Manag 134(6):556-568

Palla G, Lovész L, Vicsek T (2010) Multifractal network generator. Proc Natl Acad Sci 107(17):7640

Rao AR, Jana R, Bandyopadhyay S (1996) A markov chain monte carlo method for generating random (0, 1)-matrices with
given marginals. Sankhya: Indian J Stat Ser A:225-242

Ron D, Safro I, Brandt A (2011) Relaxation-based coarsening and multiscale graph organization. Multiscale Modeling
Simul 9(1):407-423

Rossman LA (1994) EPANET Users Manual, Cincinnati, OH: US Environmental Protection Agency

Ruppert J (1995) A delaunay refinement algorithm for quality 2-dimensional mesh generation. J Algoritm 18(3):548-585

Safro |, Temkin B (2011) Multiscale approach for the network compression-friendly ordering. J Discret Algorithm
9(2):190-202

Safro |, Ron D, Brandt A (2006) Graph minimum linear arrangement by multilevel weighted edge contractions. J
Algorithm 60(1):24-41

Safro |, Ron D, Brandt A (2008) Multilevel algorithms for linear ordering problems. ACM J Exp Algorithmic 13:4

Safro I, Sanders P, Schulz C (2015) Advanced coarsening schemes for graph partitioning. ACM J Exp Algorithmics (JEA)
19:2-2

Seshadhri C, Kolda TG, Pinar A (2012) Community structure and scale-free collections of erdés-rényi graphs. Phys Rev E
85(5):056109

Shewchuk JR (1996) Triangle: Engineering a 2d quality mesh generator and delaunay triangulator. In: Applied
Computational Geometry Towards Geometric Engineering. Springer. pp 203-222

Sitzenfrei R, Moderl M, Rauch W (2013) Automatic generation of water distribution systems based on gis data. Environ
Model Softw 47:138-147

Staudt C, Sazonovs A, Meyerhenke H (2014) Networkit: An interactive tool suite for high-performance network analysis.
CoRR, abs/1403.3005:41

Staudt CL, Hamann M, Safro |, Gutfraind A, Meyerhenke H (2016) Generating scaled replicas of real-world complex
networks. In: International Workshop on Complex Networks and Their Applications. Springer. pp 17-28

Staudt CL, Hamann M, Gutfraind A, Safro I, Meyerhenke H (2017) Generating realistic scaled complex networks. Appl
Netw Sci 2(1):36. https://doi.org/10.1007/541109-017-0054-z

Tabourier L, Roth C, Cointet J-P (2011) Generating constrained random graphs using multiple edge switches. J Exp
Algorithmics 16:1-71117115. https://doi.org/10.1145/1963190.2063515

Thomassen C (1981) Kuratowski's theorem. J Graph Theory 5(3):225-241

Tutte WT (1963) A census of planar maps. Canad J Math 15(2):249-271

van Lidth de Jeude J, Di Clemente R, Caldarelli G, Saracco F, Squartini T (2019) Reconstructing mesoscale network
structures. Complexity 2019:4

Wang Z, Thomas RJ, Scaglione A (2008) Generating random topology power grids. In: Hawaii International Conference on
System Sciences, Proceedings of the 41st Annual. Springer. pp 183-183

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://doi.org/10.1007/s41109-017-0054-z
https://doi.org/10.1145/1963190.2063515

	Abstract
	Keywords

	Introduction
	Planar graph generation
	Our contribution

	Network generation algorithms
	Sampling models
	Generative models
	Editing models
	Planar network generators
	Domain specific planar network generation

	Notation
	Multiscale planar graph generation
	Coarsening
	Uncoarsening
	Editing
	Rescaling

	Computational experiments
	Replication
	Rescaling

	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

