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Abstract
In this paper we study the problem of walk-specific information spread in directed
complex social networks. Classical models usually analyze the “explosive” spread of
information on social networks (e.g., Twitter) – a broadcast or epidemiological model
focusing on the dynamics of a given source node “infecting” multiple targets. Less
studied, but of equal importance is the case of single-track information flow, wherein
the focus is on the node-by-node (and not necessarily a newly visited node) trajectory
of information transfer. An important and motivating example is the sequence of
physicians visited by a given patient over a presumed course of treatment or health
event. This is the so-called a referral sequence which manifests as a path in a network of
physicians. In this case the patient (and her health record) is a source of “information"
from one physician to the next. With this motivation in mind we build a Bayesian
Personalized Ranking (BPR) model to predict the next node on a walk of a given
network navigator using network science features. The problem is related to but
different from the well-investigated link prediction problem. We present experiments
on a dataset of several million nodes derived from several years of U.S. patient referral
records, showing that the application of network science measures in the BPR
framework boosts hit-rate and mean percentile rank for the task of next-node
prediction. We then move beyond the simple information walk to consider the derived
network space of all information walks within a period, in which a node represents an
information walk and two information walks are connected if have nodes in common
from the original (social) network. To evaluate the utility of such a network of
information walks, we simulate outliers of information walks and distinguish them with
the other normal information walks, using five distance metrics for the derived feature
vectors between two information walks. The experimental results of such a
proof-of-concept application shows the utility of the derived information walk network
for the outlier monitoring of information flow on an intelligent network.

Keywords: Information walk prediction, Network measures, Bayesian personalized
ranking, Patient referral network, Outlier detection

Introduction
It is common to represent interactions between people using a (social) network, which –
regardless of the defining notion of connection – could produce a mathematical struc-
ture reflecting the possible paths for the flow of information between the actors. The
person-to-person communication in such a network turns into a path (Wikipedia), or
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more accurately a walk (Wikipedia), since it is possible (and in many contexts even likely)
for the “walker" (e.g., news) to revisit some person (node)1. Indeed, multiple “visits" can
provide a kind of reinforcement of the information of interest that might be relevant to its
learning or absorption. This node-by-node (e.g., person-after-person) information spread
model – a “single-track" model – is a kind of epidemiological model but different from the
classical diffusion/broadcasting models that are often used in the analysis of social media.
A single-track model of spreading will not produce the kinds of exponential growth (of
“infected nodes”) in each round.
Single-track information spread is appropriate to our particular interest: the problem

of next visit prediction of a walker in a network. Our original motivation arises from
research on physician collaboration networks built by referrals (An et al. 2018a), where
two nodes/physicians are directly connected with a weighted edge if they have been vis-
ited by the same patients within a given time period. Patients “walk" this network in the
course of a presumptive treatment event. A predictive application based on the features
of such “referral sequences" (a given “visit" is enabled by the first physicianmaking a refer-
ral for the patient to the second physician) may provide a better understanding of the
process of collaboration among health professionals. Furthermore, precise prediction of
the next visited physician may help with the efficient allocation of medical resources for
a patient’s treatment. Other examples of single-track information walks in different con-
texts include a traveler visiting preferred places, consumers traversing stores in a shopping
mall, or the work history of an employee. In all these cases, the records of transitions
define the corresponding network, where the existence and times of visiting some nodes
in history will influence the future possibility of visiting (transition) between a pair of
nodes. Indeed, a walker may be the first to ever traverse from one node to another –
suggesting that these nodes did not connect each other in history records. Therefore, a
more accurate framing is the problem of visit prediction for a walker in a state space.
Since we assume a context of information sharing and metadata in specific domains, we
name these information walks and the problem in our research as information walk pre-
diction. In the above instances the entire walk up to the last node may directly affect
the selection of the next visited node, so that this problem is generally not a memoryless
Markov chain.
In previous work we analyzed a network of physicians (see An et al. (2018a, c))

based on U.S. patient referral records, which pave the way for research on information
walks. Herein, exploiting both metrics proposed in our analysis (An et al. 2018a, c) and
classical network science measures, we propose a numerical score to model the pref-
erence/attractiveness between the last observed node on an information walk and any
possible candidate node in the network. This score takes multiple feature vectors from
the targeted information walk as well as several groups of involved nodes. Based on the
preference score, we apply a general Bayesian Personalized Ranking (BPR) framework to
represent the goal of next-node prediction in an objective function so that the problem
could be solved by machine learning. We use a large U.S. patient referral network as an
important real-world setting for applying ourmethodology. Several network sciencemea-
sures (e.g., node centrality) in the national physician network facilitate the prediction for a
pair of nodes including those not directly linked in the past. The study and comparison of
several models demonstrate that features of an information walk improve the BPR frame-
work since it exceeds Long Short-Term Memory (LSTM) and other metrics reflecting
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standards used in link prediction research. The main reasons for such an improvement is
the inclusion of network science measures with other metadata features.
This paper moves beyond our published paper (An et al. 2018b) in the Complex Net-

works 2018 conference through its introduction and use of the relationships among
multiple ongoing information walks. We also investigate the space of information walks
with a network science model, in which each node represents an information walk and
an edge connects two nodes of information walks if they share at least one common node
(e.g., the same physician) in the originating network. We find several significant patterns
in the new network of information walks and verify them via a statistical test.
A key contribution is our identification of criteria to label an information walk with

different structural patterns in the network of information walks as an outlier. We use a
simulation-based test of information walk outliers in the network of information walks
in order to (1) demonstrate the efficacy of the model for the information walks network;
(2) complement the proposed BPR-IW model of walk prediction since the users of an
intelligent network platformmay not have time to focus on every walk and check the pre-
diction of its future direction while an overall outlier detection function could filter some
“abnormal” or “new” walks and remind users to check. In related work (Savage et al. 2014;
Ranshous et al. 2015; Eswaran and Faloutsos 2018; Takahashi et al. 2011), researchers
have targeted different parts in a graph to build a specific outlier detection algorithm,
including nodes, subgraphs, separate point-to-point edges (e.g., TCP-IP communication,
connections between new accounts in social networks). Herein we are the first to imple-
ment outlier detection for a whole information walk, which differs from prior work due
to the existence of the same single “walker” or information flow along the sequence of
visited nodes.
We simulate the outlier information walks with random replacement of their nodes,

explore the measures of an information walk in a network of information walks, and
design five distancemetrics (based on the walk features) within a general outlier detection
framework to distinguish the simulated (outlier) information walks from those actually
observed. Moreover, since an outlier information walk may be an abnormal or creative
(e.g., new treatment procedure) case, the initial results suggest a way to contribute to
a more intelligent network via outlier detection for ongoing information walks, which
complements our proposed BPR walk prediction model.
“Related works” section surveys related works about information diffusion and outlier

detection in a network. In “Proposed models” section, we introduce the BPR frame-
work with a preference score for the task of information walk prediction, and detail the
construction of a network of information walks and the model of outlier detection for
information walks. “Evaluation of walk prediction” section provides the details of our walk
prediction experiment. “Patterns in network of information walks” section analyzes the
network of information walks and reports key patterns within it. “Simulation test of out-
lier detection” section shows the result of a simulation test of information walk outlier
detection. Finally, “Conclusions” section summarizes our findings and suggests directions
of further research.

Related works
The focus of our work is related to but different from the well-investigated problem of link
prediction, in which given a dynamic network observed at a time point, (possibly new)
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links in the future are predicted (e.g., Martínez et al. (2017)). Another related problem
is finding missing links (Nakagawa and Shaw 2004). Traditional link prediction models
(e.g., Adamic and Adar (2003) and Liben-Nowell and Kleinberg (2007)) usually only rely
on a form of node similarity derived from network topology and generally ignore the
whole (information) walk. Many past works target the problem of multitrack spread-
ing or broadcasting in a directed acyclic graphs (DAGs), while our proposed information
walk model allows the existence of a loop. Representative works include the Independent
Cascade (IC) model (Kimura and Saito (2006) and Bourigault et al. (2014)), the Linear
Threshold (LT)model (He et al. 2012), and probabilisticmethods (Gomez-Rodriguez et al.
2011; Myers and Leskovec 2010). In addition, past works do not consider observed infor-
mation walks as a part of their key inputs. In contrast, we incorporate information walks
using summary measures of network features in the corresponding network. Diffusion
models are clearly different, and they have been introduced to the research of epidemics
(Raj et al. 2012).
In other domains, several applications (most notably online shopping or search) try to

predict a visit to a next “item”. The general BPR model (Rendle et al. 2009) previously has
been introduced to online shopping (Rendle et al. 2010) to serve users with personalized
goods recommendations. A common problem has been to predict the next place of work
of a given employee in a labor pool using LSTM (Li et al. 2017) or a “gravity law" (James
et al. 2018) based approach. Choi et al. (2016) applied deep learning to estimate the next
medication code in a course of treatment by combining codes of medical treatment and
physician visiting records to obtain a comprehensive feature representation.
The idea of state transition (e.g., Leibon and Rockmore (2013)) has been tested for

an accurate recommendation. Recently, a Transition-based Factorization Machine model
(TFM) (see He et al. (2017) and Pasricha and McAuley (2018)) was used to predict the
next state in an abstract space of items for users. In contrast to the TFM model, our
proposed preference scoremodel considers network sciencemeasures and shows the ben-
efits of incorporating them with other metadata features (more details can be found in
“Evaluation of walk prediction” section).
Outlier detection (i.e., anomaly detection) is a thoroughly investigated problem in the

field of applied machine learning. A survey paper (Ranshous et al. 2015) reviewed diverse
methods of outlier detection in a graph from multiple perspectives, including nodes,
edges, subgraphs, and changes due to an event. Another survey (Gupta et al. 2014) applied
outlier detection methods to temporal data. Recently, researchers targeted the outlier
“bridge edges" in a streaming of graphs (Eswaran et al. 2018; Aggarwal et al. 2011) or a
streaming of separate point-to-point edges (Eswaran and Faloutsos 2018; Takahashi et al.
2011). Our proposed outlier detection method deals with the new target of information
walks, which considers both overall structural and temporal patterns. Past work on scan
statistics (Park et al. 2009) for a single abnormal edge detection has focused on predict-
ing local patterns at every step. In contrast, we target the whole information walk and
use time series features derived from a network of information walks to inform outlier
detection.
There is an extensive statistical literature (Barnett and Lewis 1974; Hido et al. 2011;

Hodge and Austin 2004) on outlier detection, including that for longitudinal data. In sta-
tistical methodology and applications, outlier detection is often characterized by the study
of residuals or other measure of deviation of the estimated or fitted values of a model
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from the observed (i.e., true) values. For example, if the data are assumed to follow a nor-
mal distribution law, onemight compute the number of residual standard deviations away
from the mean in order to rank the observed residuals from most to least indicative of
an outlier. In non-parametric statistical models, a statistic for measuring the distance of
an observation from the value most expected in the absence of outliers is specified from
the onset, as opposed to being implied by the modeling assumptions. We propose new
distance metrics to be maximized by a proximity based outlier detection algorithm. As
this is the first paper to introduce an information walk network, we assess our outlier
detection methods for the purpose of demonstrating the utility of an information walk
network rather than seeking to find the optimal outlier detection method among several
options (e.g., algorithmic and statistical models). This later task may be undertaken once
the concept of an information walk network has been proven.

Proposedmodels
In this section, we begin with a preference model for information walk prediction,
then describe how to build a network of all information walks, and a proximity-based
unsupervised framework for information walk outlier detection.
Given an observed information walk in a directed network, the first task is to predict

the next visited node. To do so we build a numerical preference/attraction score for the
observed part of an information walk (including the last node visited and an overall fea-
ture comprising all past visited nodes) and any possible next-visited candidate. Therefore,
when predicting which node would be more likely to be visited by a walker, we can com-
pute and sort the preference/attraction scores over all candidate nodes. We then pick
out a small number which have a comparatively large score. As a result, this prediction
framework allows for the convenient detection of possible choices from the returned list
(see Fig. 2 for an illustration of the identification process). “Results” section evaluates the
performance of the prediction in terms of a returned candidate list. The definition of a
preference score is a key component of the algorithm.
To formalize the problem, let P denote the set of all chronological node sequences (i.e.,

information walks). For an information walk i ∈ P, pi represents the feature vector of
the observed sequence of nodes at a time point T, ci refers to the last node on informa-
tion walk i before time point T, fi is the first node on information walk i after T (i.e.,
the actual next visited node). Let J represent the set of possible candidates, which could
cover a wide range of nodes, even the whole network except ci, or just a subset of nodes in
the network after filtering to speed up the computation if the network is large. X(pi, ci, j)
denote the preference/attraction score between the last observed node ci, the overall walk
feature pi and a candidate j ∈ J for the next node. We aim to derive an objective func-
tion and train the preference-related parameters to make X(pi, ci, fi) > X(pi, ci, j) for as
many candidates j ∈ J (and j �= ci) as possible. If so, it indicates that a model pre-
dicts the next node on an information walk (i.e., the future direction in a network space)
more accurately.
Diverse groups of network science features, either exogenous (metadata) or endoge-

nous (topological) about the observed walk, may boost the accuracy of information walk
prediction. Our published papers (An et al. 2018a, c) offer groups of such features useful
for building our new preference score model. Table 3 shows a detailed list of features used
in prior walk-prediction analyses.
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Preference/Attraction score

We define a preference score X(pi, ci, j) in the BPR framework, called BPR-IW using the
feature vector pi of the information walk. The other factors in the preference/attraction
score are the last/current node ci of walk i and a node j ∈ J as the candidate:

X(pi, ci, j) = pTi Vβci + pTi Sγj + βT
ci Uγj + wd(ci, j) (1)

where in Eq. 1 the superscript T refers to the transpose operator for a matrix. pi means
the overall feature of the whole observed part of information walk i. βci , γj represent the
feature vector of the last node ci and a candidate node j, respectively. d(ci, j) represents
the distance between ci and j in terms of their profile similarity based on the metadata.
ThreematricesV , S,U about the node-walk interactions will be trained as model parame-
ters, which represent both all possible interactions in real life and the feature interactions
that exist in a theoretical Factorization Machine (Rendle 2010) or Polynomial Regression
(Theil 1992) model. In addition, another parameter w (weights) adjusts the importance
of node profile similarity, which corresponds to the last group of features in Table 3. To
make the matrix operation in Eq. 1 clear, Table 1 shows the dimension of several key
parameters/vectors.
Equation 1 takes multiple factors into consideration when predicting the next visited

node on an information walk. S,V represent the interaction between the initial part of
the walk and the candidate/ground truth node, respectively, while U describes the extent
of matching between the candidate and the last node on the walk which might influence
the decision of the future direction. Network science provides the widely applicable fea-
tures p,β , f , γ , since they can be computed from the topological structure of a network,
regardless of the type of metadata in the network. As the profile distance d relies on the
context (e.g., physician specialty), we distinguish it from the other features.

Learning BPR-IWmodel

Equation 1 defines a preference score X(pi, ci, j) for sorting candidate nodes in J for an
information walk i. When evaluating the ranking of candidate nodes for an information
walk, it is convenient to get the scores for all candidates, and then pick the top-K candi-
dates. In this way, the relative order of the score counts more than the actual values. The
Bayesian Personalized Ranking (BPR) framework (Rendle et al. 2009) defines the objec-
tive function as finding the optimal fitting MAP estimator with the use of regularization
to guide the choice of predictors. The crucial part of this Bayesian procedure is the eval-
uation of the posterior probability of the model parameters conditional on the network
(i.e., the interactions among nodes stemming from patients’ preferences about the next
physician they visit). The procedure is presented mathematically in Eq. 2:

� = argmax
�

∑

i∈Ptrain

∑

j∈J\{ci,fi}
logσ(X̂(pi, ci, fi) − X̂(pi, ci, j)) − λ�

2
||�||2 (2)

Table 1 Dimension of the model parameters/features in Eq. 1

Feature Dimension Note Parameter Dimension Note

p M × 1 Information walk V M × N Walk-node interaction

β N × 1 Last node S M × H Walk-node interaction

f , γ H × 1 Ground truth / candidate U N × H Node interaction

d L × 1 Profile similarity w 1 × L Profile weight
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where σ represents the sigmoid function σ(x) = (1 + exp(−x))−1. Using the sigmoid
function, the gap between two preference scores for two candidate nodes is mapped into
the interval (0, 1) so that the loss function is defined even if the gap diverges to infin-
ity when computing the optimal model parameters. The components of σ , X̂(pi, ci, fi) −
X̂(pi, ci, j), describe the gap in the preference scores between the ground truth of the cur-
rent walk, fi, and another possible candidate, j. Ptrain refers to the training set information
walks. In the objective function (2), � is a general set parameter to be learned in the
training process, such asV , S,U ,w introduced by Eq. 1.We can use several randommatri-
ces/vectors drawn from a multivariate Gaussian distribution as initial values. The values
of the model parameters will be optimized in the iterative training process. As the last
item, λ� regularizes the objective function to avoid overfitting.
According to the size of the dataset in Table 2, the number of pairs of information walks

and candidate nodes O(|Ptrain||J|) is huge (more than 1 billion). In this case, stochastic
gradient descent (SGD) optimizes Eq. 2 efficiently, which updates the set of parameters �

based on the derived gradient in Eq. 3. To update the parameters in each round of SGD
with an information walk i and a candidate node j, the gradients of Eq. 2 for a parameter
θ ∈ � are:

∂
∂θ

(
logσ

(
X̂(pi, ci, fi

)
− X̂(pi, ci, j)) − λθ

2 ||θ ||2
)

= (1 − σ
(
X̂(pi, ci, fi) − X̂(pi, ci, j)

)
∂
∂θ

(
X̂(pi, ci, fi) − X̂(pi, ci, j)

)
− λθθ

(3)

The partial derivative of X̂(pi, ci, fi)−X̂(pi, ci, j)with respect to some parameter could be
computed by Eq. 1. Equation 4 gives the instances of S and U that are defined in Table 1.
Note that due to an offset in the gap of two preference scores, it is not necessary to update
V.

∂
∂S (X̂(pi, ci, fi) − X̂(pi, ci, j)) = piγ T

fi − piγ T
j

∂
∂U (X̂(pi, ci, fi) − X̂(pi, ci, j)) = βciγ

T
fi − βciγ

T
j

(4)

Network of information walks

An information walk not only transmits information across nodes, but also connects the
neighboring nodes in the space of all information walks. Here we define the network of
information walks to model the space of all information walks, in which a node represents
an information walk and two nodes are connected when they share at least one node in
the originating social network.
In the network of information walks, several edge weights distinguish the relationship

between two connected nodes (i.e., information walks), such as the number of distinct
common nodes, the Jaccard index (Jaccard 1901) (size of intersection divided by size of
union) of two sets of originating nodes on two information walks. Figure 1 shows an

Table 2 Size of training, test and candidate sets at different time points in 2011, which are derived
from the TDI dataset

Date of observation T Ptrain Ptest Candidate nodes J

03/01 17.6K 18.7K 16.6K

05/01 51.8K 19.5K 17.3K

07/01 83.7K 16.6K 14.9K

09/01 113.1K 15.8K 14.3K

11/01 142.4K 16.8K 15.1K
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Fig. 1 Three information walks with nodes from A, B ... G, and the corresponding network of information walks

example of the network of information walks. Here α,β , γ are three information walks
with several nodes (A,B, . . . ,G). Since every pair of information walks share at least one
node, the corresponding information walk network is an undirected 3-node clique. For
the edge linking β and γ , the number of common nodes is 2 (nodes E and F), and the
Jaccard index weight is 2/5 = 0.4 because in total there are five kinds of nodes on them.
The network of information walks should be very dense. In the originating social net-

work, node degree refers to the number of directly linked neighbors, but in the network
of information walks, it corresponds to the number of nodes (information walks) that are
connected by the original node, and sets a lower bound of the size of a clique, since other
nodes in the originating social network may extend the clique.

Outlier detection for information walks

As a complimentary task for walk prediction, the outlier detection of information walks
identifies the information walks that deviate from the expected topological structures in
an unsupervised set of information walks via the features derived from the network of
information walks. The target of outlier detection is the whole information walk rather
than a single node or edge on it. We hope that such a detector could provide an early stage
“alert", identifying “abnormal” or favorable novel information walks to improve the safety
of subsequent carried information and the robustness of the network. To implement out-
lier detection, we need to define key features of the network of information walks and use
these to design an algorithmic outlier detector.
An information walk expands node by node. Thus the evolution of an information

walk could be presented by a series of cumulative feature vectors at each timestamp
when the walker visits a new node. The full list of applied features will be introduced in
“Simulation test of outlier detection” section. We present the general algorithmic outlier
detection framework in Algorithm 1, which requires a distance metric function between
any pair of information walks.
Algorithm 1 is an unsupervised proximity-based outlier detection framework. The key

idea is to compute an “outlier-score" for each IW to pick the K information walks with
the largest K scores. The data preparation step refers to Line 1 in Algorithm 1, where we
compute the time series features for every information walk. In Lines 2-10, we compute
the pairwise distance between two information walks with some metric function (intro-
duced later in this subsection) and treat the distance to the Mth nearest neighbor as the
outlier score. Finally, in Lines 11-12, we sort the outlier score to get the Top-K candi-
dates of outliers. Under a time complexity of O

(
n2

)
, Algorithm 1 more easily adapts to

diverse kinds of proximity measures than statistical outlier detection methods that are
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Algorithm 1: Proximity based outlier detection
Data: A set of n unsupervised information walks (IWs). A parameterM to pick up

theMth nearest neighbor for an outlier score.
Result: Pick up K information walks (IWs) as the outliers.

1 Compute the cumulative time series features CFi for each IWi ∈ {1,...,n};
2 Outlierscore ← { } ;
3 for i ← 1 to n do
4 Tmp-array ← [ ] ;
5 for j ← 1 to n do
6 if j != i then Tmp-array.append(Dist(CFi, CFj));
7 end
8 sort(Tmp-array, decreasing);
9 Outlierscore[Tmp-array[M]] ← i

10 end
11 Tmp-array ← sort(Outlierscore.keys(), decreasing);
12 Outlier-walks ← Outlierscore[Tmp-array[1, . . .K]];

reliant on assuming probability distributions of the residuals and models the degree to
which IW is an outlier. A drawback is that the algorithm might be sensitive to the choice
of M when defining the outlier score, making it necessary to tune the parameter M for
each experiment.
Assume we extract P different measures of an ongoing information walk at T timeslots

on the time axis. In total, the feature vector is then a P × T tensor. An equal-weighted
distance function sums up the distance of each measure. Therefore, the Dist function in
Line 6 could be transformed to a distance function between a pair of numerical arrays of
eachmeasure, but their lengths may be different due to the varying lengths of information
walks. Denote the longer array as LA and the shorter one as SA and their lengths as l and
s, respectively. Here we propose or apply five distance metrics to complete Algorithm 1.

• Sliding substring matching (SSM). To match the shorter array SA, enumerate all
s-length consecutive subarrays from LA and take the minimumManhattan Distance
between a subarray in LA and the SA.

• Edit distance/Dynamic Time Wrapping (ED/DTW). Equation 5 describes the state
transition equation for the dynamic programming model, in which d(i, j) is the
distance between the first i units in LA and the first j units in SA. The initial settings
are d(i, 0) = i × λ for i ∈[ 1, l] d(0, j) = j × λ for j ∈[ 1, s]. λ is the penalty factor to
represent the cost of skipping a unit in an array. After the process of dynamic
programming in Eq. 5, the value of d(l, s) is our desired distance.

d(i, j) = min

⎧
⎪⎨

⎪⎩

d(i − 1, j − 1) + abs(LA[ i]−SA[ j] ),
d(i, j − 1) + λ,
d(i − 1, j) + λ

(5)

• Interpolation. Treats LA and SA as several discrete samples from a function of time
in the interval [0, 1], in which the first unit in LA and SA is at zero while the last unit
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is at one. The rest of the non-extreme units are allocated with an equal interval. For
example, if LA =[ 0.1, 0, 2, 0.3, 0, 4, 0.5], the corresponding time intervals would be
(0, 0.1), (0.25, 0.2), (0.5, 0.3), (0.75, 0.4), (1.0, 0.5). To align SA and LA we take the
simple linear interpolation for the corresponding points of LA to get new points that
have the same time-index with SA. Finally, we compute the pairwise Manhattan
Distance.

• Longest common substring (LCS). The LCS method originally aims to find the
longest subsequence common to two strings. In contrast to substrings, subsequences
are not required to occupy consecutive positions within the original sequence. Two
numerical units are treated as equal if their abstract distance is less than the threshold.

• Sliding substring averaging (SSA). Starting from the first node in LA, set a sliding
window of length of l − s + 1 and extract the average of those units in LA covered by
the sliding window. The sliding window moves right one unit each iteration to
generate s values from LA, so that it is able to compute the distance between the
derived values and SA.

Evaluation of walk prediction
Dataset

The data for our analyses are the U.S. Medicare beneficiary insurance claims for a sub-
group of patients over 2007–2011. These data, obtained via a data use agreement by TDI2,
contain the patient-physician visiting records for patients who suffered from cardiovas-
cular disease.With this information we are able to link physicians according to patient ID.
A referral is defined as the event in which two physicians are visited by the same patients
within a short time interval. We then derive a sequence of referrals (An et al. 2018a) for
the same patient, which corresponds to an information walk in the professional network
of physicians. Because a referral sequence may have loops (e.g., A to B to Afor two physi-
cians), some nodes may be revisited. Therefore, the referral sequence corresponds to an
information walk on the physician network rather than a “path” without repeated nodes.
For the set of information walks P in a year, given an observation time point T we build

the training set Ptrain to store the walks ending before T. The test set Ptest includes the
walks that are ongoing at T. Figure 2 illustrates two examples. Since information walk A
terminates before time pointT, it is in the training set Ptrain. At the time pointT, a node on
walk B is still passing information to the next node, so walk B belongs to the test set Ptest .
In A and B, the observed red nodes contribute to the overall information walk feature p.
For a walk in Ptrain, all nodes but the last one belong to the observed part, while the last
node serves as the ground truth f. The candidate set J contains the ground truth f of all
walks in Ptest ; thus it randomly samples a subset of nodes in the whole network.

Fig. 2 At a given time point T, two information walks (A and B) belong to the training and test set, respectively
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The U.S. physician collaboration network derived from the TDI dataset provided 4.66M
information (referral) walks in 2011. The training and test set are defined as information
walks with at least six visits. Table 2 presents the size of training and test sets at several
time-points T, as wells as the candidate node set J. The size of Ptrain increases fromMarch
to November, since it contains all information walks ending before T.
Table 3 groups by the related measures of an information walk p, the feature vector γ of

a candidate that of the ground truth f, the feature vector β of the last node c on an informa-
tion walk. d(ci, j) refers to profile similarity between two physicians. Each group contains
several representatives of the full list explained in our past works (An et al. 2018a, b). We
picked the above measures as they boosted predictive performance in other applications
(e.g., the result of medical treatment along an information walk (An et al. 2018a)). To mit-
igate concerns about reverse-causality and to avoid the possible problem of predicting a
variable with input features in the future, when we extract features of an information walk
in some year (e.g., 2010), we use node centrality measures derived from the network in
the previous year (e.g., 2009).

Baseline methods

In addition to our proposed BPR-IW, themodels/metrics below also generate a preference
score X between a candidate node j and the last node c, so they could sort their available
candidate nodes for a top-K subset as the prediction result.
Most popular (MP). X(c, j) = e(c, j) It takes the edge weight in history between c and a

directly connected neighbor. It could be the number of referrals between two physicians.
However, the range of candidates is limited.
The performance of traditional link predictionmethods are used as benchmarks against

which to compare the new methods. Such methods include Common neighbors (CN)
(Lorrain and White 1971), Preferential attachment index (PA) (Liben-Nowell and
Kleinberg 2007), Adamic-Adar index (Adamic and Adar 2003) and Jaccard index
(Jaccard 1901). Notably, these similarity metrics do not incorporate the other nodes on
the observed part of an information walk, and are only applicable for the neighbors that
interacted with node c before. However, our BPR-IWmodel extends the range of possibly
predicted candidates, even without a direct edge or common connected nodes with the
last node c.

Table 3 Features about information walks and related nodes including applicable network
measures, new metrics defined by our past analysis (An et al. 2018a), and a few from the metadata of
medical treatment records, such as Relative Value Units (RVU) of medical service

Group Measures

Information walk p Number of nodes on it, time range, pairs of mutually connected nodes,
sum of RVU for all visiting, number of visited hospitals, average node
PageRank values

Next node/candidates (j and f ) Clustering coefficient, PageRank, Hindex, number of initiated cross
hospital referral region referrals

Last node c Beyond the features in the group of next node/candidate: time gap
with last occurrence, RVU, a binary flag of multiple occurrences on the
walk, a binary flag of working in the same hospital previous physician
(node)

Metadata for profile similarity d(c, j) Indicators of the same specialty/residency hospital/hospital referral
region, number of referrals in history.

Our paper (An et al. 2018b) shows the full list of applied measures
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Markov Chain (MC) (Rendle et al. 2010). X(c, j) = Prob(c.next = j|c, c.prev) The two-
gram version incorporates the second-to-last node c.prev so as to compute the frequency
of state transition.
Long short-term memory (LSTM). Given the corresponding node sequence of an

information walk, we treat the features of all nodes (in Table 3) as the time series inputs
into a LSTM model (Hochreiter and Schmidhuber 1997). We aim to explore whether the
LSTMmodel could learn the hidden patterns based on the past node-to-node transitions
to yield an output tensor that is very close to the ground truth f. However, the hit-rate of
LSTM is lower than 0.01 under all parameter settings in our experiment. Another paper
(Choi et al. 2016) reported a similar level of failure of LSTM when predicting the next
medical visit.
Transition-based Factorization Machines (TFM) (Pasricha and McAuley 2018).

The TFM model merges the current item, next item and user into a 1 × n vector −→y . It
defines a preference score according to Eq. 6, in which d2 is the Euclidean distance func-
tion,−→w is a weight vector,−→v and−→v ′ represent latent embedding and translation vectors,
respectively:

X
(−→y ) = w0 +

n∑

a=1
waya +

n∑

a=1

n∑

b=a+1
d2

(−→v a + −→v ′
a,

−→v b
)
yayb. (6)

The hit-rate (defined in Eq. 7) of TFM on the TDI referral data is less than 0.01 under all
experimental settings, including an overall−→y with our proposed network measures and a
comparatively plain −→y with three IDs only (walker, current and next node). The majority
of the nodes in the network of physicians have a small node degree (< 4). Therefore, in
such a cold-start environment TFM may not perform as well as that on a dense dataset
(Pasricha andMcAuley 2018) consisting of frequent users and a part of nodes.Meanwhile,
when most of the applied network measures are not categorical, TFM does not make full
use of its advantage of dealing with the features in one-hot encoding. TFM enumerates all
possible pairs of feature interactions, but some of them may not boost the prediction. As
a highlight of TFM, it is better for the latent transition vector −→v ′ to depend on the past
track (i.e., observed walk).
BPR-no-IW. X(c, j) = wd(c, j). As a comparative method to BPR-IW, this model only

takes the item of physician profile similarity in Eq. 1 to show the power of the other
network science measures about an information walk and the related nodes.
As our main purpose is to prove the significance of network science measures for infor-

mation walk prediction, we leave further development of Factorization Machine (Rendle
2010) -based preference models to future work.

Results

For a pair consisting of walk i and its next node fi as the ground truth, BPR-IW or some
baseline model will return a sorted list of K candidate nodes Ri. Here we choose two
evaluation metrics: hit-rate (HR) and mean percentile rank (MPR) defined by Eq. 7. HR
reflects the possibility of presenting the ground truth f to users in the returned list, while
MPR corresponds to the expected efforts a user may take to find the ground truth.

HR = 1
|Ptest |

∑
i∈Ptest 1(fi ∈ Ri)

MPR = 1
HR×|Ptest |

∑
i∈Ptest , fi∈Ri

rank(fi)
K

(7)
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A smaller MPR yet larger HR implies a more accurate predictive model, which indi-
cates that users would see the ground truth on top of the user interface from sorting the
returned candidates in decreasing order according to their preference scores. Since the
hit-rate values of LSTM and TFM are less than 0.01, Figs. 3, 4, 5, 6, 7 and 8 only present
the result of the other successful models. As for the parameters in training process, the
λ� in Eq. 2 is 0.001 and the step size in the SGD updating process is 0.05.
Figures 3 and 4 show the HR and MPR at several time points in 2011 for BPR-IW and

other baselines, under the setting of K = 20 in the returned list. In terms of HR, BPR-IW
beats the others and BPR-no-IW performs the second best. The other baseline methods
get close hit-rate values between 0.3 and 0.4. In addition, BPR-IW and BPR-noIW get the
smallest MPR, which suggests the ground truth f would be located near the top of the
returned list. For most of the models, the different observation time points do not result
in obvious gaps in HR or MPR.
Figures 5 and 6 show the impact of K on HR and MPR on the same day of observation.

Note that in Fig. 6, MPR will be 1.0 for all models if the only returned candidate (K = 1)
hits the ground truth.When K increases from 1 to 20, most of the models predict the next
node better because the HR increases as well. For our proposed BPR-IW model, under
the setting of K = 20, the HR is over 0.7 for the test set Ptest with 10K+ information walks.
For MPR, non-BPRmodels are almost stable when K increases, but BPR-IW and BPR-IW
display a decreasingMPR from 0.4 to 0.2. As a result, it may be more desirable to choose a
slightly larger K for BPR related models so that the walk prediction system could present
more possible candidates to users, including the key node of ground truth f. We compare
those models with different K values since it is relevant to user experience and needs to
be accounted for in the design of a real application, like the number of pages returned on
a webpage in response to a search query.
Figures 7 and 8 show the HR and MPR on 07/01 from 2008 to 2011, respectively. It

seems that all models perform very stable on the same day in those years, which tends to
support that the network structure in the years of 2008-2011 may be steady as well.
Based on two basic features of an information walk, the length and time range, we

implement min-max normalization and classify the test set into five groups based on the
percentile.We compute the recall for the walks whose ground truth f are successfully pre-
dicted by the BPR-IWmodel. Table 4 shows the recall of five groups of information walks

Fig. 3 HR at several time points in 2011, when K = 20
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Fig. 4 MPR at several time points in 2011, when K = 20

Fig. 5 HR with different K on 07/01/2011

Fig. 6 MPR with different K on 07/01/2011
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Fig. 7 HR on 07/01 during 2008-2011, when K = 20

on July 1st, 2011. The stable performance in all five groups under varying size of R sup-
ports that BPR-IW does not adapt to one group (e.g., a longer information walk) much
better than another, at least no obvious difference in terms of information walk length
and time range.
Our initial experiments illustrate that features derived from network science and time

series analysis for the nodes on an information walk greatly boost HR at the cost of only a
slightly larger MPR. We believe it is more desirable and necessary to present the ground
truth node to users than the comparative ranking within the list. Therefore, BPR-IW
performs the best in our experimental settings. The classical link structure based met-
rics do not predict as well as BPR-IW, since they do not consider the feature p of the
whole observed information walk. In addition, they are able to find candidates from the
connected or other nearby nodes only, according to the network in history. The BPR
framework does not predict the next node directly with a state transition probability.
However, the output of relative ranking is enough for the users who do not want to figure
out the quantitative reasons behind the prediction. From the perspective of network
research, we greatly recommend the application of network measures and the derived
information walk features for further related projects. In addition, metadata also pro-
vides important features, since the data-specific features (e.g., physician profile similarity)
appear presumably to help with successful prediction in the BPR-no-IW model.

Fig. 8 MPR on 07/01 during 2008-2011, when K = 20
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Table 4 The BPR-IW recall of five groups of information walks with several K on 07/01/2011

K 0 to 20% 20 to 40% 40 to 60% 60 to 80% 80 to 100%

(a) Length (i.e., number of nodes).

1 0.208 0.202 0.201 0.196 0.174

5 0.462 0.448 0.459 0.436 0.430

10 0.605 0.588 0.601 0.565 0.564

20 0.720 0.710 0.727 0.692 0.690

(b) Time range (i.e., days of the gap between the first and the last physician visiting).

1 0.191 0.207 0.194 0.216 0.215

5 0.445 0.449 0.454 0.459 0.474

10 0.595 0.590 0.584 0.598 0.613

20 0.727 0.718 0.698 0.714 0.711

The rules of group division are information walk length and time range

Patterns in network of information walks
We detect statistically significant (p-value less than 0.05) patterns between a pair or
among several special information walks defined by some structural relationship. The fol-
lowing patterns are derived from the information walks network in the first quarter of
2011. They may suggest hidden patterns in the healthcare system for domain experts to
explain and analyze the effects in further research.

• Citing the notion of path-homotopy from algebraic topology, we focus on a pair of
homotopic information walks as two information walks which share the common
starting and ending nodes in the physician collaboration network. Because of the
existence of two guaranteed common nodes, the homotopic information walks are
more closely connected in the network of information networks than a pair of
non-homotopic walks. Table 5 shows the comparison, in which all the measures are
found to be significantly different by a two-sample t-test.

• “Lifting” refers to a shortcut of a longer information walk. Assuming a longer
information walk contains three consecutive nodes A → X → B, another shorter
walk contains A → B, and the rest of the nodes are the same, we treat the two walks
as a pair of lifting walks. In the first quarter of 2011, there are 76K pairs of homotopic
walks, and the shorter base walks have an average PageRank value of 1.07 × 10−5

while the longer extended walks have an average PageRank value of 1.20 × 10−5.
Meanwhile, when putting the middle node X between A and B in the originating
physician collaboration network, we find a significant difference in the resulting
PageRank centrality of the nodes. The order is X < A < B.

• Information walk composition exists among three groups of information walks. The
first group ends with two nodes A → B, the second one starts with two nodes
B → C, and the third contains the three nodes A → B → C in the middle of the

Table 5 Comparison of three edge weights in the network of information walks, between the edges
connecting homotopic walks and the others connecting two non-homotopic walks

Jaccard index Number of visiting records Sum of RVU

Homotopic pairs 0.552 24.48 45.00

Non-homotopic pairs 0.234 10.28 19.65

The visiting records and RVU refers to the contribution from the common physicians
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corresponding physician (node) sequence. Those three groups of information walks
have significantly different PageRank values in the network of information walks,
which are: the first group 1×10−5, the second group 9.8×10−6, the third 1.09×10−5.

Simulation test of outlier detection
Since the information walks in our physician collaboration network do not have a gold
standard comparator, we evaluate the framework of outlier detection and five distance
metrics on a mixed set of the originating observed information walks and the simulated
outliers. We exploit the training set at a time interval of observation defined by Fig. 2 to
get the neighbor (i.e., directly connected) list of every past node (physician). We then take
all the information walks beginning within one month of the focal observation to sample
from in order to formmixed set. Taking the observation date as 2010-03-01 as an example,
from the IWs beginning in April 2010 we randomly pick up 2500 IWs as the normal cases
and the other 2500 IWs to generate outliers. To simulate an outlier, we keep the original
starting and ending nodes of an IW but randomly replace all the middle nodes with others
from the set of nodes located on a pool of IWs. The analysis period begins in the month
following the observation period to provide the pool of IWs for node replacement. In
this way, for a general test without a specific definition of an outlier information walk,
the replacement operation at least alters the track of the whole information walk to some
degree, but retains the basic source and target nodes.
To apply the five distance metrics between a pair of information walks, we compute

the following network science measures for an ongoing/current information walk at each
step. They are either popular network measures or special measures to describe the
relationship between the ongoing IW and its connected nodes in the network of IWs.
Figure 9 gives an example of a current information walk (C-IW) with four connected IWs.
Figures 10 and 11 illustrate walk-subnetwork and remaining walk-subnetwork, respec-
tively. The difference between these two local networks shows the alteration of the
network itself if the IW is dropped. The comparison metrics are:

(1) Number of connected nodes in the network of information walk. Represent the set
of nodes (walks) with the ongoing IW as the walk-subnetwork.

(2) Number of physicians which are the neighbor of at least one physician on the
ongoing information walk.

(3) Number of physicians which are the neighbor of at least one physician on a walk in
the walk-subnetwork.

Fig. 9 A current information walk (C-IW) consists of four colored nodes. Four different IWs share at least one
node with C-IW. Besides, IW1 and IW3 have another common node
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Fig. 10 The corresponding network of information walks in Fig. 9

(4) Average number of covered physicians: the value of measure (3) over that of
measure (1).

(5) Average Jaccard index weight of those edges within the walk-subnetwork.
(6) Network strength of the walk-subnetwork, in terms of the weight of the number of

common physicians.
(7) Variance of the edge weights in the walk-subnetwork centralization, using the

number of common physicians as weights.
(8) Transitivity of the walk-subnetwork using the binary undirected edge.
(9) Survival rate of edges in the walk-subnetwork if the current IW (i.e. a node) is

removed. Denote the left edges and their connected nodes as the remaining
walk-subnetwork.

Fig. 11 The remaining walk-subnetwork after dropping the current walk (C-IW) from the information walks
network in Fig. 10
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(10) Edge density in the remaining walk-subnetwork.
(11) Size of the largest connected component in the remaining walk-subnetwork.

The evaluation metric is hit-rate (precision), which means the percentage of outliers
in the returned K candidates. Figure 12 shows the performance of five distance metrics
under their optimalM about the choice of a similar neighbor for the outlier score.We tune
the neighboring choice parameterM for each metric to maximize the hit-rate. Under dif-
ferent values of K, ED/DTWperforms better than others, and its optimal value isM = 10.
The simulation test is a proof-of-concept of the application of features derived from the
network of information walks, which suggests the possibility of the unsupervised prox-
imity based information walk outlier detection. The distance metrics might work better
on real outliers. Therefore, to be cautious, we should not judge the best metric based on
the current simulation test. Furthermore, we also have multiple options for sampling nor-
mal cases and outliers, such as the Bootstrap and the Jacknife (Efron 1992). However, in
the simulation test we set a balanced ratio between normal cases and the outliers. The
selected feature set of 11 network measures may be expanded and optimized with feature
engineering or statistical factor analysis in order to correctly detect an outlier in a new
(unseen) dataset.

Conclusions
In this paper, we exploit the sequence of referrals in a physician collaboration network
to solve the problem of next-node prediction on single-track information walks from
a network science perspective, explore the network of multiple information walks, and
implement a simulation test of information walks outlier detection to support the general
idea of an information walk network.
We consider both newly derived information walk features and classical node cen-

trality features to build a BPR-IW model of preference/attraction. The network-based
measures yield a flexible BPR-IW model that identifies more possible candidate nodes
than the traditional static link prediction method, because in BPR-IW it is not nec-
essary for the last observed node to be directly connected with a candidate. BPR-IW
works well on the TDI referral dataset according to a sensitivity analysis which tests
both hit-rate and mean percentile ranking across multiple factors, such as the time point
(within and cross-year) of observation and the number of nodes in the returned list.

Fig. 12 Precision of outlier detection under different Top-K returned walks setting
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BPR-IW could be conveniently applied to other datasets, where network sciencemeasures
will probably successfully model the structures and relationships among a set of items
and nodes.
The network of information walks have several significant patterns (e.g., high cluster-

ing coefficient) and provide several features for the simulation test of outlier detection,
in which the Edit Distance/Dynamic Time Wrapping based metric performs the best
over all metrics in a general proximity based unsupervised framework. Anticipated
future work includes the prediction of real outliers defined by domain experts and
the subsequent deployment of such an intelligent information walk prediction and
detection system.

Endnotes
1One will recall that technically a “path" is a sequence of visits of connected nodes with

no node visitedmore than once, while a “walk" only requires the sequence of visited nodes
be connected.
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