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Abstract

Understanding traffic flow in urban areas has great importance and implications from
an economic, social and environmental point of view. For this reason, numerous
disciplines are working on this topic. Although complex network theory made their
appearance in transportation research through empirical measures, the relationships
between dynamic traffic patterns and the underlying transportation network structures
have scarcely been investigated so far. In this work, a novel Networks in Networks (NiN)
approach is presented to study changes in traffic flows, caused by topological changes
in the transportation network. The NiN structure is a special type of multi-layer network
in which vertices are networks themselves. This embedded network structure makes it
possible to encode multiple pieces of information such as topology, paths, and
origin-destination information, within one consistent graph structure. Since each
vertex is an independent network in itself, it is possible to implement multiple diffusion
processes with different physical meanings. In this way, it is possible to estimate how
the travellers’ paths will change and to determine the cascading effect in the network.
Using the Sioux Falls benchmark network and a real-world road network in Switzerland,
it is shown that NiN models capture both topological and spatial-temporal patterns in
a simple representation, resulting in a better traffic flow approximation than
single-layer network models.

Keywords: Networks in networks, Multi-layer networks, Network dynamics,
Transportation, Infrastructure, Traffic flow, Diffusion, Simulation

Introduction
Mobility and accessibility are essential factors for lifestyle and prosperity. People travel to
satisfy their needs, by carrying out certain activities at specific places such as work, leisure
and learning. The spatial distribution of these activities often leads to a coordination
problem, which can significantly affect the equilibrium between the demand for, and the
supply of transportation. To determine network flow, costs and other aspects of interest,
the satisfaction of a given demand for movements of persons and goods with different trip
purposes, at different times, using various modes of transport, must be ensured in a trans-
port systemwith a given operational capacity (de Dios Ortuozar andWillumsen 2011). As
a result of the dynamic nature between mobility demand and supply, in combination with
the topology and capacity limitation of the underlying network, transportation networks
exhibit atypical dynamic behaviour. Unlike many other networks, network performance
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deteriorates as soon as the number of vehicles in the network exceeds a critical accu-
mulation (Daganzo and Geroliminis 2008; Hoogendoorn and Knoop 2012), i.e. vehicles
block each other and the flow decreases, leading to spillbacks and gridlock effects. This
phenomenon is amplified by the fact that even small (unexpected) failures or damage to
the infrastructure (i.e. changes in topology) can lead to significant disruptions that are
disproportionate to the actual physical damage itself (Vespignani 2010). To prevent such
situations, scientists and engineers are working on the implementation of resilient sys-
tems capable of withstanding failures, natural hazards and human-made disruptions. Part
of the research deals with the quantification of network-related risks, including the mod-
elling of traffic flows after multiple link failures (Erath 2011; Hackl et al. 2018a; Hackl et
al. 2018b).
Traffic models are needed to simulate the current and predict future traffic flows. An

essential component of such models is the so-called traffic assignment process, which
aims to reproduce the pattern of vehicular movements based on certain behavioural rules
(Wang et al. 2018). For example, a common behavioural rule is that travellers choose paths
with minimum travel time (Wardrop 1952) or maximise their utilities (Charypar and
Nagel 2005). In order to satisfy the needs of all travellers, an equilibrium between demand
and supply has to be found, i.e. no traveller wants to change his path. This complex
and computationally intensive mathematical problem is still being actively researched.
To make matters worse, in order to quantify network-related risks, resilience, or optimal
intervention strategies, the traffic assignment problem must not only be solved once but
many times with different network topologies (e.g. see (Erath 2011; Vugrin et al. 2014;
Hackl et al. 2018a; Hackl et al. 2018b; Schlögl et al. 2019)).
While addressing such problems have led to a substantial body of work in areas such

as geography, economics, and transportation research, complex network theory still
plays a minor role. Although complex networks made their appearance in transportation
research through empirical measures, little research has so far been done to investigate
the relationship between dynamic traffic patterns and the underlying structures of the
transportation networks (Barrat et al. 2008).
In this work, the application of a novel Networks in Networks (NiN) approach is pre-

sented. This approach is used to study traffic flow changes caused by topological changes
in the transportation network (e.g. due to multiple link failures) from a complex network
perspective. NiNs are based on a multi-layer approach where each vertex itself repre-
sents a network. This embedded network structure allows encoding multiple pieces of
information such as the topology, paths used and origin-destination information, within
one consistent graph structure (i.e. using only vertices and edges). In combination with a
multi-layered diffusion process, an approximation to changes in traffic flow due to topol-
ogy changes can be made. Specifically, this work advances the state-of-the-art in the field
of complex network science in transportation research as follows.

• Using a modified multi-layer hypergraph it is formally feasible to describe vertices that
are networks themselves. Thereby the relationships in the incidence graph represent
the edges connecting different layers. The edges within the different layers are given
by a connection model, which allows different topologies in the different layers.

• Because each vertex is an independent network in itself, it is possible to implement
multiple diffusion processes. Therefore, it is possible to assign different physical
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meanings to the processes. For example, one process can describe how individual
travellers switch between different paths, while another process describes the
propagation of disturbances through the network.

• The proposed approach allows approximating traffic flow changes due to multiple
edge failures. Using the Sioux Falls benchmark network and a real-world road
network in Switzerland, it is shown that NiN models capture both topological and
spatial-temporal patterns in a simple representation, resulting in a better traffic flow
approximation than single-layer network models.

This work is organised as follows. A brief overview of the modelling, functional-
ity and complexity of transport systems is given in the following section. In addition,
advances in complex network theory regarding transport systems and dynamic processes
are discussed. A general formulation for the NiN representation is presented in the
“Methodology” section. In addition, the application to transportation networks and the
modelling of traffic flow changes are discussed on a general level. Two applications are
presented, the modelling of a small benchmark network and the modelling of a real
network located in Switzerland. In particular, this section is divided into an overview
of the data used, the assumptions made and the implementation of the methodology.
Subsequently, the results and a critical discussion about the results, advantages and disad-
vantages of the method are given. Finally, concluding remarks and suggestions for further
work in this area are presented. The notation used in this work is listed in the appendix.

Background
Transportation networks (preliminaries)

The purpose of transport systems is to balance supply and demand for mobility. The
demand for transport is derived from people trying to satisfy their needs (work, leisure,
health, education) through activities in specific places. Transport supply is the service
provided at a certain point in time. This includes the infrastructure (e.g. road network)
and a set of mobile units (e.g. persons, vehicles, goods). In combination with a set of rules
for operation, the movements of persons and goods can be ensured (de Dios Ortuozar
and Willumsen 2011). In order to predict how the need for mobility will manifest itself
in space and time, a formal representation of the transport system is required. In a math-
ematical sense such systems are often represented as graphics or networks, which are
denoted by G = (V , E) and consist of a set of edges E and a set of vertices V . In this work,
the term infrastructure network is used to refer to networks where only topology and con-
nectivity are considered (Rodrigue et al. 2009), i.e. the network comprises vertices and
edges that form a connected component. If, in addition to topology, flow characteristics,
such as origin-destination demands, capacity constraints, path choice and travel costs, are
taken into account to represent the movement of people, vehicles or goods, the network
is referred to as transportation network.
In a transportation network, the edges represent themovement between vertices, which

in turn represent points in space. An edge e ∈ E connects two vertices vi, vj ∈ V and a ver-
tex connects two or more edges. Edges can be either directed e = (vi, vj) ∈ E , indicating
that vi and vj are directly connected and movement is only possible from vi to vj, or undi-
rected (e = {vi, vj} ∈ E). Important properties of transportation network edges include
edge length, edge cost and edge capacity. The edge length corresponds to the length of the
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road section connecting two vertices. The term edge cost is used to describe the disutil-
ity perceived by the network user for travelling on this edge. It is a composite measure
of all factors known to be important for decision-making. Travel time and direct costs
such as fuel consumption, parking fees and tolls are often taken into account for this pur-
pose. Since transportation networks are physically constrained, it is assumed that each
edge has a maximum capacity, i.e. a maximum rate at which people, vehicles or goods can
travel on an edge during a given period under prevailing roadway, traffic and operation
conditions (Hoogendoorn and Knoop 2012). The movements in a transportation network
correspond to flows with a distinct origin and destination. Origins and destinations can
represent particular locations such as residential buildings, offices, shopping centres, or
specific zones. In the context of transportation networks, origins and destinations are
represented as vertices o, d ∈ V . It should be noted that not all vertices in the network
need to be an origin or a destination. Vehicle movements from origin o to destination d
vertices occurring along edges are represented as paths. A path p ∈ P is considered as
a sequence of edges that ordered so that two vertices are adjacent if and only if they are
consecutive.P therefore denotes the set of all simple non-empty paths inG = (V , E). The
set of od-paths is denoted by Pod ⊆ P .
To estimate the movements in a transportation network, it is necessary to find an equi-

librium between demand and supply, i.e. in the equilibrium situation, the user chooses
the path that he perceives to be the least costly at the time. Economic theory admits that
this equilibrium may never really actually occur in practice, as the system of demand
and supply levels is constantly adapting to cope with internal and external changes.
However, the concept of equilibrium is still valuable to understand movement in trans-
portation networks, assuming that the system is at least near an equilibrium situation. In
order to find this equilibrium, various traffic flow models have been developed in recent
decades. Themost common classification in current traffic flow research is the distinction
between macroscopic and microscopic traffic flow modelling approaches (Hoogendoorn
and Knoop 2012). The macroscopic perspective considers the overall or average state of
traffic, while the microscopic perspective considers the behaviour of individuals inter-
acting with surrounding vehicles. Macroscopic models were the first to be derived by
scientists (Wardrop 1952; Lighthill and Whitham 1955) who studied vehicle flow as an
analogy to the flow of continuous media such as fluids or gases. These models are based
on a limited number of partial differential equations, which reduces the computational
complexity. The disadvantage, however, is that dynamic features cannot be modelled as
accurate as with microscopic models. Microscopic models have been developed to try
to emulate human behaviour in traffic situations. To accomplish this, the models con-
tain different driving conditions to describe typical driving reactions. As each vehicle is
an autonomous entity, microscopic models become very computationally expensive with
increasing system size.
In order to reduce the computational time for both modelling approaches, scholars

have developed various techniques. This includes among others, the improvement of
the optimisation algorithms to find an equilibrium solution (Charypar and Nagel 2005;
Mitradjieva and Lindberg 2013; Gentile 2014); the development of speed-up techniques
for sub-problems of the traffic assignment (e.g. finding the shortest paths) (Geisberger
et al. 2008; Delling et al. 2009; Buchhold et al. 2018) or the utilisation of GPU cards to par-
allelise (agent-based microscopic) traffic models (Song et al. 2017; Heywood et al. 2018).
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Another way to address these problems could be through the use of complex network
approaches.

Traffic on complex networks

Complex networks are based on the ideas of mathematical graph theory in order to gain
insights into the behaviour of complex systems by abstracting information into ordinary
graphs (networks). In these representations, the network comprises vertices connected
by edges, with vertices representing individual elements and edges indicating interactions
or relationships between them. Although this approach is simple in many ways, it allows
the characterisation of the complex system so that traditional graphic-theoretical metrics
can be used and analyses performed. For example, such abstractions have been used to
study growth mechanisms (Barabási and Albert 1999; Clauset et al. 2009), processes of
collective dynamics (Watts and Strogatz 1998), and to illustrate that certain vertices play
a central role in the complex system (Freeman 1977; Wasserman and Faust 1994).
The strength of the complex network paradigm lies in its ability to capture some

of the essential structural features of interacting systems while reducing the details
of both the elements and their interactions. Consequently, the early complex network
literature focused almost exclusively on the structural properties of networks Smith
et al. (2011). This topology-driven analysis can reveal relevant properties of the struc-
ture of a complex system (Albert et al. 1999; Watts and Strogatz 1998) by highlighting
the role of vertices and edges (Bavelas 1950; Freeman 1977) or global network proper-
ties (Taaffe et al. 1973; Cliff et al. 1979). The robust mathematical framework allows the
derivation of analytical solutions even for large complex systems. For example, hierar-
chical network representations are used to study large complex transportation systems
(Gómez et al. 2013; Lim et al. 2015). Thereby, hierarchical models are obtained by succes-
sive clustering of networks, i.e. decomposition of the system into different levels of details
(Ferrario et al. 2016).
While structural properties are still important in constraining the behaviour of a system

(Marr and Hütt 2005), the focus has expanded to an understanding of the relationship
between structure and dynamics that takes place in networks and the impact of this rela-
tionship on network design (Toroczkai 2005). Most technological, biological, economic,
social or infrastructural networks support a number of dynamic (transport) processes,
such as the movement of information packages (Wang et al. 2006), finance and wealth
(Coelho et al. 2005), rumours (Moreno et al. 2004), diseases (Newman 2002), people or
goods. Gradually, these theories have been introduced to the field of transportation. More
and more scholars have conducted research on the characteristics of various transporta-
tion networks, among others those of (urban) road networks (DeMontis et al. 2007; Erath
et al. 2009; Barthélemy 2011; Lin and Ban 2013), railway networks (Latora and Marchiori
2002; Sen et al. 2003), and transit networks (Guo Xl and Lu 2016; Solé-Ribalta et al. 2016).
In addition, current studies use complex networks to analyse traffic time series (Tang
et al. 2013; Yan et al. 2017; Bao et al. 2017).
In the field of complex network sciences, a widely used approach to study the relation-

ship between dynamic processes and the underlying network structures is through the
use of random walks. In such a model, random walkers move in the network and visit
various edges and vertices over time. An extensive overview of the use of random walks
and diffusion on complex networks is given by Masuda et al. (2017). Researchers, using



Hackl and Adey Applied Network Science            (2019) 4:28 Page 6 of 26

this technique, have been able to gain insights into topological features such as vertex
centralities (Brin and Page 1998) or community structures (Newman 2006; Jeub et al.
2015).
In many real transportation systems, however, the assumption of such simple random

walker models may not always be justified, since it is assumed that the walker moves
randomly in the network without considering its origin or destination. For example, in a
diffusion process on a road network, the next position of a vehicle depends only on its
current position (occupied vertex) and the outgoing roads (edges), but not on one of the
previously visited locations. In reality, however, travel in a network has a specific purpose:
a person starts at home and navigates through the network to reach a particular desti-
nation (e.g. work), and then returns home with a high probability (Salnikov et al. 2016).
Consequently, the naive application of (static) network paradigm in modelling dynamic
complex systemsmight lead to wrong conclusions (Rosvall et al. 2014; Scholtes et al. 2014;
Scholtes 2017). One way to address this issue is through the extension to a multi-layer
networks representation.
Multi-layer networks represent complex systems that are formed from several networks

(layers), each of which represents interactions of different nature and connections. Due
to the distinction between the different types of edges and vertices, multi-layer networks
encode significantly more information than conventional single-layer networks (Iacovacci
and Bianconi 2016). In network science, the two most prominent classes of multi-layer
networks are multiplex networks and networks of networks. Networks of networks are
formed by layers composed of different vertices. Edges connecting different networks do
not necessarily indicate dependency relationships. Examples can be found in complex
infrastructure networks such as road networks, railway networks and flight networks,
where each layer represents its own infrastructure. Multiplex networks, on the other
hand, are formed by the same set of vertices connected by edges indicating different types
of interactions. In the context of transport systems, this approach has been used, for
example, for the analysis of flight networks (Cardillo et al. 2013). An overview of other
types of multi-layer networks is given by Boccaletti et al. (2014); Kivelä M et al. (2014);
Bianconi (2018). In all these definitions, it is assumed that a multi-layer network can be
represented as a graph GM, which is an ordered tuple GM = (VM, EM) considering a non-
empty labelled vertex setVM and amultiset EM ⊆ VM×VM of edges. A vertex vα ∈ VM is a
tuple representing vertex v on the layer α ∈ L, where L is the set of layers in the network.

Methodology
Networks in networks

A Networks in Networks (NiN) structure is a special type of multi-layer network in which
vertices themselves are networks, i.e. GNiN = (GNiN, ENiN) is a network with a set of
graphs GNiN acting as vertices and a multiset ENiN ⊆ GNiN × GNiN of edges. A vertex
vβ
i ∈ Gβ is a tuple representing a graph vβ

i := (Gα , Eα), where α < β ; α,β ∈ L are the
layers describing the order of hierarchy in the network. It should be noted that the vertices
for each layer are defined recursively since they are constructed from a previous layer.
The set of vertices GNiN can be interpreted as a modified multi-layer hypergraphHM =

(XM,YM), where XM is a set of basic elements and YM is a set of non-empty subsets
of XM, here denoted as hypervertices.1 Hypervertices are arbitrary sets of vertices and
can contain therefore any number of vertices. In a multi-layer structure, higher-order
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hypervertices are arbitrary sets of lower-order hypervertices, whereby the order indicates
the position in a hierarchical layered structure.

nβ⋃

j=1
yβ
j =

nα⋃

i=1
yα
i with α < β ; α,β ∈ L (1)

where Yα := (yα
i )i∈Iα with index set Iα and nα is the number of hypervertices in layer α.

The same is true for layer β . In the layer with the lowest order, the hypervertices are sets
of the basic elements:

nα⋃

i=1
yα
i = X with α = min{α,β , . . . } ∈ L (2)

The relationships between the different types of hypervertices are described by their
incidence structure. Unlike the classical incidence graph associated with the hypergraph,
the incidence graph for a NiN consists of inter-layer edges, which define the relationship
between hypervertices of different orders. The intra-layer edges, which describe edges
within a layer, are defined by adjacency matrices for each layer. The incidence matrix
between two consecutive layers α < β , α,β ∈ L is given by �Iαβ = iαβ

ij where:

iαβ
ij =

{
1 if yα

i ∈ yβ
j

0 otherwise
with i = 1, . . . , nα ; j = 1, . . . , nβ . (3)

The adjacency matrix of each layer α ∈ L is given by �Aα = aα
ij where:

aα
ij =

{
1 if

(
vα
i , vα

j

)
∈ Eα

0 otherwise
with vα

i , vα
j ∈ Gα . (4)

Considering that hypervertices itself are networks, a transformation into a classical
supra-adjacency matrix (Boccaletti et al. 2014; Kivelä M et al. 2014; Cozzo et al. 2016),
(i.e. the representation of a multi-layer network as a single-layer network), may not always
be possible or intended because information is lost in the transformation process (Kivelä
M et al. 2014).

Connection models

In order to consider the influence of the different lower-order hypervertices on the con-
nection between two hypervertices, connection models are used for the intra-layer edge
assignment (Meester and Roy 1996; Hackl and Adey 2017; 2018). A connection model
M(Gβ , gβ) has two characteristics. First, the set of vertices Gβ which should be connected
and second the so-called connection function gβ , which gives the probability of a direct
link between two vertices vβ

i , and v
β
j on layer β (Meester and Roy 1996). Since the connec-

tion function can be any arbitrary functional relationship between two vertices, it allows
to define the entries of the adjacency matrices for each layer depending on the network
properties of the embedded vertices.
Formally, the multiset Eβ can be defined as a connection model Eβ := M(Gβ , gβ) ={(
vβ
i , v

β
j

)
| g

(
vβ
i , v

β
j

)
; vβ

i , v
β
j ∈ Gβ

}
, with the connection function g : vβ

i × vβ
j → {0, 1},

which is a mapping from the underlying graphs vβ
i = Gαi and vβ

j = Gαj to 0 (not con-
nected) or 1 (connected) with α < β ; α,β ∈ L. In addition, g can be a mapping to R

+
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that indicates the weight of the edge
(
vα
i , vα

j

)
. An overview of several connection func-

tions is given by Dettmann and Georgiou (2016); Parsonage and Roughan (2017); Hackl
and Adey (2018).

NiN structure for transportation networks

The following section presents considerations on how a NiN model can be used for
transportation networks. An important point to consider is the concept of origin and
destination. Therefore, the network representation should contain information of an
origin-destination matrix as well as the path statistics, i.e. how many trips from vi
to vj are taken and which paths are used therefore? To achieve this, a NiN network
with four layers is presented. The first layer (α) consists of the vertices of the infras-
tructure network, where the basic elements correspond to the intersections of the
transport network. In the second layer (β) possible paths of the network are mapped.
These are grouped in the third layer (γ ) according to their origins and destinations.
In the last layer (δ) these origin-destination paths are combined to describe all trips
in the network. A conceptual illustration of a simple transportation network is given
in Fig. 1. The individual layers are described in more detail below, with references
to Fig. 1.

a) c)

b)

Fig. 1 NiN structure for transportation network example. a Visualisation of the underlying infrastructure
network. b Considered paths in the network. c Incidence graph of the NiN model with the associated
adjacency matrices of the hypervertices
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Layer α. The underlying infrastructure network comprises vertices and edges. Vertices
correspond to objects or locations in the physical world such as road junctions or facil-
ities. Edges connecting these vertices represent road sections. The basic elements of the
NiN model are the vertices of the underlying infrastructure network. Based on these ver-
tices, all other layers of the NiN are constructed. For example, the set of basic elements
for the infrastructure network in Fig. 1 is given by X = {

vα
1 , vα

2 , vα
3 , vα

4 , vα
5 , vα

6 , vα
7
}
[Eq. 2].

Layer β . Considered paths P in the network are described in the second layer. Each
path is represented as a hypervertex vβ

i ∈ Gβ , composed of a set of connected basic
elements. The hypervertex vβ

i is a graph that describes a sequence of vertices con-
nected by edges in one direction, so that movement from the first vertex to the last
vertex is possible. Obviously, edges can only be assigned if they are also present in the
underlying infrastructure network. In Fig. 1 five paths are considered. Path vβ

1 , for exam-
ple, connects vertex vα

1 with vertex vα
5 via vα

1 → vα
2 → vα

4 → vα
5 and is defined as

vβ
1 := ({

vα
1 , vα

2 , vα
4 , vα

5
}
,
{(
vα
1 , vα

2
)
,
(
vα
2 , vα

4
)
,
(
vα
4 , vα

5
)})

. The first set represents a subset of
the lower-order hypervertices [Eq. 1]. The relationship between different orders of hyper-
vertices (inter-layer edges) is described by an incidence matrix [Eq. 3] or an incidence
graph, as depicted in Fig. 1. The second set represents the connections among the lower-
order hypervertices (intra-layer edges), represented in Fig. 1 as adjacency matrices [Eq. 4].
Indices of the adjacency matrices are the lower-order hypervertices.
Layer γ . Paths with the same origin and destination are grouped in layer γ . In other

words, each hypervertex vγ
i ∈ Gγ comprises a set of paths vβ

j ∈ Gβ with the same orign
destination vertices vα

o → · · · → vα
d , where vα

o , vα
d ∈ Gα . The connection between the

vertices can be interpreted as the choice a traveller has, in order to switch from the ini-
tially assigned path vβ

i to any other path available between the origin and the destination,
including self-loops where he remains on his initial path. The edge weighting corresponds
to the probability of changing the path, i.e. the adjacency matrix is a direct representation
of the transition matrix. For example, in the situation of an equilibrium between supply
and demand, no one will alter their path choice and therefore only self-loops with weight
1 are observed, as illustrated in Fig. 1. In order to consider the influence of lower-order
hypervertices and their properties (e.g. interrupted or congested paths), connection mod-
els can be used for the intra-layer edge and weight assigment. Thus hypervertex vγ

1 can be
expressed as vγ

1 =
({

vβ
1 , v

β
2 , v

β
3

}
,
{(

vβ
i , v

β
j | g

(
vβ
i , v

β
j

)
; vβ

i , v
β
j ∈ Gβ

)})
, where an edge is

assigned if the criteria of the connection function g are fulfilled (e.g. assign an edge with
weight 1 if vβ

i = vβ
j , otherwise not).

Layer δ. The top layer combines all origin-destination paths, similar to an origin-
destination matrix. In contrast to the classical matrix representation, where each cell
represents the number of trips from the origin (row) to the destination (column), the
hypervertex vδ

i ∈ Gδ comprises all paths vγ
j ∈ Gγ , grouped by their origin-destination

vertices. Furthermore, this lower-order hypervertices contain detailed path informa-
tion vβ

k ∈ Gβ derived from the underlying basic elements vα
l ∈ Gα . Edges in this

layer can have different meanings. In this work, it is assumed that the edges repre-
sent the common road sections between different origin-destination paths. For example
in Figure 1, travellers from vα

1 to vα
5 share three common road segments with the

travellers from vα
3 to vα

7 . The edges and weights can also be assigned using a connec-
tion model (e.g. assign an edge with weight n

(
Eβ|vγi ∧ Eβ|vγj

)
if paths in vγ

i and vγ
j
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share common edges, where Eβ|vγi is the set of edges in layer β associated with hyper-
vertex vγ

i and n(·) is a cardinality operator. In Figure 1, for example, W
(
vγ
1 , v

γ
1
) =

n
({(

vα
1 , vα

2
)
,
(
vα
2 , vα

4
)
,
(
vα
4 , vα

5
)
,
(
vα
5 , vα

6
)
,
(
vα
6 , vα

5
)
,
(
vα
4 , vα

7
)
,
(
vα
7 , vα

6
)}) = 7.)

NiN dynamics for traffic flow changes

Once the NiN structure has been created, dynamic processes on the network can be stud-
ied. Among other things, it is important to understand how the system behaves when
several road sections fail, i.e. how do the affected trips change and does they have an influ-
ence on a global level? To study such behaviour, diffusion processes on two layers of the
NiN model are applied. On layer γ this is used to estimate how the path choices of the
travellers are changing, while on layer δ the strength of the cascading effect is determined.
This process is schematically illustrated in Fig. 2 and described in more detail below.
In the first phase, a set of interrupted edges Ēα ⊆ Eα is removed from the considered

paths vβ
i ∈ Gβ . This interrupts the sequence of vertices connected by edges, so that no

a) b)

Fig. 2 NiN dynamics for traffic flow change example. a Visualisation of the underlying infrastructure network.
b Incidence graph of the NiN model with the associated adjacency matrices of the hypervertices. (1) Change
of the path topology. (2) Update of the edges and weights. (3) Random walker to determine path changes.
(4) Random walker to determine cascading effects. (5) Modification and assessment of not directly influenced
paths. (i), (ii), and (iii) show the network representations of the adjacency matrices, i.e. the Markov chains. (i)
Travellers which original use path vγ

1 have to diffuse to vγ
2 or vγ

3 , also a change between v
γ
2 and vγ

3 is possible.
The strength of the cascading effect is determined in (ii), which influences the traffic flow redistribution in (iii)
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movement from the first to the last vertex is possible, i.e. with the number of edges avail-
able, the path cannot be completed (n(Eα) ≤ n(Gα) − 2). In Fig. 2, for example, it is
assumed that the edge

(
vα
4 , vα

5
)
is interrupted. Hence, path vβ

1 , containing this edge, can
no longer be used to reach the desired destination vα

5 .
As a first consequence, people, vehicles or goods that initially used these paths must

be redistributed to other possible paths. The likelihood of changing to another path is
determined by the weights of the adjacency matrix of vγ

i ∈ Gγ . Using an extension of the
previously introduced connection model, the edge and weight assignment can be done
based on the properties of the lower-order hypervertices (e.g. if the underlying path is
interrupted, assign edges to other paths with equal weights). Since in Fig. 2 path vβ

1 is
interrupted, travellers have either to use path vβ

2 or vβ
3 . Here, it is assumed that these

travellers distribute equally on the remaining paths. Furthermore, travellers from neigh-
bouring paths might also reconsider their path choices resulting in 20% additional path
changes.
The behaviour of changing paths based on an underlying transition matrix can be

described by a diffusion process and modelled with the help of random walkers. In this
context, a randomwalker represents a traveller who randomly decides which path to take,
given some preferences (e.g. edge weights). In the case of an interrupted path, the random
walker remains with zero probability and visits instead another path. This stochastic pro-
cess can be described as a sequence of random variablesX0,X1, . . . ,Xm, whereXm denotes
the position of the random walker in the network at step m. Assuming that each move-
ment simulated in the network is only dependent on the current position, the problem is
reduced to a first-order Markov model:

P(Xm|Xm−1,Xm−2, . . . ,X0) = P(Xm|Xm−1) (5)

Thus, all this information can be captured by the transition matrix �T :

P(Xm = vj|Xm−1 = vi) = �Tij = tij = W (vi, vj)∑
k W (vi, vk)

(6)

measuring the probability that a random walker at vertex vi will go to vertex vj consider-
ing the connection strengths2. These connection strengths indicate the preferences of the
traveller to choose one path over another. If m → ∞ and the Markov chain is ergodic,
a unique stationary distribution πβ can be observed, i.e. πβ �T = πβ . This vector can be
interpreted as a new equilibrium distribution of the selected paths given a set of inter-
rupted paths. Multiplied with the initial observed traffic flows f β

i on paths vβ
i , the traffic

flows f̂ β
i in the interrupted network can be estimated. A simple trajectory of a random

walker on vγ
1 is illustrated in Fig. 2. The walker starts on the interrupted path vβ

1 and
moves to the other paths, where he stays with probability of 80%.
This redistribution of path flows can cause cascading effects since the road sections of

the new paths are also used by others. In order to consider these interdependencies, a sec-
ond diffusion process is modelled in the uppermost layer δ. In this layer, edges represent
the connections between different origin-destination paths, weighted with the number of
common road sections. In this work, it is assumed that this weight indicates how strongly
different origin-destination paths influence each other, i.e. paths which share no common
road sections will not (directly) influence each other, while paths which share almost all
their road sections will have a strong influence on each other. Similar to the previous layer,
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a diffusion process is used to determine the propagation of the cascading effect. The sta-
tionary distribution πγ indicates how strongly other vertices are affected, even if they do
not contain paths with interrupted edges.
In such a case, the diffusion process on layer β is repeated, however, the new distribu-

tion of path flows is a combination of initial distribution and the redistribution, weighted
by the mapped strength of the cascading effects h(πγ ) →[ 0, 1]:

f̂ β
i = f β

i ·
(
h

(
π

γ

j|vβi

)
·
(
π

β
i − 1

)
+ 1

)
. (7)

where f̂ β
i is the estimated path flow, f β

i is the initial path flow, and π
β
i is the flow dis-

tribution of path vβ
i . The influence of cascading effects for vβ

i is determined by the
stationary distribution π

γ

j|vβi
. For example, in Figure 2 at hypervertex vγ

2 a random walker
is initialised, even if no of the underlying paths are interruped.

Application
The application presented in this section is used to demonstrate the usefulness of the
methodology in addressing a specific problem. The application shows the design and
implementation of a NiN model for estimating changes in traffic flow due to edge inter-
ruptions on two road networks. The first road network is the classical benchmark network
of Sioux Falls, which is used within transport research to test, demonstrate and com-
pare methods and algorithms. The second investigated road network is a real-world
example from the region around the city of Chur, the capital of Grisons, the largest and
easternmost canton of Switzerland.
In both cases, the initial traffic flow assignments were performed using a macroscopic

traffic flow model. The networks were modelled as NiN and calibrated with the initial
assignment results. Edges were randomly removed, and the traffic flows were estimated
using diffusion processes as described above. To show the influence of the multi-layer
approach, the same procedure was conducted with a single-layer network (SLN) model.
The results of both modelling approaches were compared with the ground truth observed
from the macroscopic traffic flow model with the same network topologies.
The remainder of this section is structured as follows. First, an overview of the networks

and data used is given, followed by a description of the assumptions made during the
modelling process. Finally, the implementation and simulation process is described in
detail.

Data

Sioux falls

Although the Sioux Falls scenario is not considered realistic, it is used in many publica-
tions. Morlok et al. (1973) first introduced the network as a traffic equilibrium network.
Later, the network was adapted as a benchmark and test scenario in many publications,
including (LeBlanc et al. 1975; Suwansirikul et al. 1987; Meng et al. 2001; Chakirov and
Fourie 2014). A more detailed list of use cases and the original data set is given by (Stabler
et al. 2018).
The network was directed and consisted of 24 vertices and 76 edges, where each vertex

also represented an origin-destination vertex, i.e. the area was divided into 24 zones. All
network data including the vertex labels given in Fig. 3a were taken from (LeBlanc et al.
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a) b)

Fig. 3 The infrastructure networks of Sioux Falls and Chur. a The Sioux Falls network is located in South
Dakota, USA and consists of 24 vertices and 77 edges. Each vertex is associated with an origin and destination
location. The edges are directed, i.e. there is an edge (1, 2) and (2, 1). b The Chur network is located in the
canton of Grisons, Switzerland and consists of 1262 vertices and 3199 edges. The area is divided into 37 zones
which represent the origin and destination locations

1975). Except for the vertex coordinates, which were taken from (Chakirov and Fourie
2014), since the original article does not contain this information. The origin-destination
flows in the original article are given in thousands of vehicles per day with integer values
up to 44, i.e. the origin-destination flows were the values from the table multiplied by 100.
They thus amount to 0.1 of the original daily flows and could, therefore, be considered
as approximate hourly flows. This conversion was initially carried out to compare the
objective values with the articles published in the 1980s and 1990s. The units of free flow
travel time are 0.01 h, but they are often interpreted as being minutes (Stabler et al. 2018).
As an edge cost function the “traditional” BPR function proposed by the Bureau of (1964)
was used:

ce := te(xe) = t0e

(
1 + ae

(
xe
ye

)be
)

(8)

where te is the travel time at edge e given the edge traffic flow xe, t0e is the free flow travel
time, ye the edge capacity, and ae and be are parameters for calibration, here chosen as
ae = 0.15 and be = 4,∀e ∈ E .

Chur

As a real-world example, the road network in the Rhine Valley around the city of Chur,
Switzerland was investigated. An overview of the network is given in Fig. 3b. Only
national, main and secondary roads were considered for the analysis. This corresponded
to about 51 km of national roads, 165 km of main roads and 395 km of secondary roads.
The network was represented as a directed graph with 1262 vertices and 3199 edges.
The information of the Chur road network was obtained from the VECTOR25 dataset

of swisstopo (JD100042). This data set shows a complete national coverage and describes
8.5 million objects with their position, shape and their neighbourhood relations (topol-
ogy) as well as the type of object and other special features. The accuracy of the geodata
is in the range of 3 to 8 m and is available as ESRI shapefile for the Swiss coordinate sys-
tem CH1903/LV03 LN02 (ESPG-Code: 21781). The road sections were described by their
direction, length, free flow speed, capacity and the parameters of the edge cost function.
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For consistency reasons, the same cost function as in the Sioux Falls scenario [Eq. 8] was
used.
The trips in the region were performed between 37 zones, based on judicial districts, as

shown in Fig. 2b. All tripsmade from an origin to a destination zone in a given period were
stored in an origin-destination matrix. Since there was not enough information available
on the distribution of trips for the area of interest, a gravitational distribution model (de
Dios Ortuozar and Willumsen 2011) was used to estimate the trips based on census data
for each zone (e.g. demographics, households, work locations). The obtained gravitational
model was calibrated by the Swiss national traffic model (FOSD 2015), which provided
data for the motorway and main roads. In addition, data from traffic counting stations
in the study area were used to calibrate the initial traffic assignment, by adapting the
estimated origin-destination matrix.

Assumptions

In order to reduce complexity and apply the methodology to real problems, several
assumptions were made during the modelling process. The assumptions and their
justifications are listed below.

1 The objective was to model non-recurring situations such as road works or
interruptions due to extreme weather events (e.g. floods, mud blockades).
Although these events occur unexpectedly, it was assumed that travellers already
had some information about the situation. In other words, it was not the traffic
flow immediately after the event that was taken into account, but the one after a
few days, so that travellers could adapt to the new situation. This also made it
possible to compare the results with the results of the macroscopic traffic flow
simulation, which assume an equilibrium between supply and demand in the
interrupted scenario.

2 It was assumed that interrupted edges were removed entirely from the network,
although it would be possible to consider capacity constraints (see “Discussion”
section). As indicated under assumption number one, the interest was in extreme
events where the effects could also be observed a few days later, so a complete road
closure was chosen to express this severity.

3 It was assumed that there was no mode change, i.e. people who used a car in the
initial configuration also used the car in the modified configuration, and did not
change to another means of transport such as walking or cycling.

4 Due to the high complexity, not all possible paths were modelled. Instead, only the
already selected paths and their k most similar paths were considered. A similarity
was determined using the BPR edge cost function [Eq. 8]. This means that the
paths between origin and destination were evaluated by the travel costs observed in
the baseline scenario. This approach ensured that very unlikely paths did not have
to be considered.

5 Also to reduce complexity, it has been assumed that travellers can make a
maximum of three decisions: (i) they can stay on the path initially chosen, (ii) they
can switch to the next cheaper path or (iii) to the next more expensive one. This
assumption is based on the assumption that travellers know about their paths and
alternatives. In the baseline scenario, which is in equilibrium, there is no incentive
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to change paths, but in the interrupted scenario, travellers can speculate about
using an initially better path with the risk of others using it, or an initially worse
path that might be better under the new configuration. If a traveller is on an
interrupted path, he has only the options (ii) or (iii). If the traveller is also on the
best path in the baseline scenario, he just has the option (iii). The costs of the paths
were determined using Eq. 8.

6 In order to model the cascading effects in the network, only paths where the
original traffic load changed, were used, i.e. edges between pairs of
origin-destination groups where there was no change were weighted by 0 and
therefore were not considered in the diffusion process.

Implementation

Initial traffic flow assignment

The starting point was the simulation result of a classical macroscopic traffic flow model
on an intact transportation network. Path statistics were generated from this data, i.e. the
path flows were simulated and evaluated. Thereby, a path flow represents the quantitative
amount of movements from an origin to a destination on a particular path. In the simplest
case of a static user equilibrium, the traffic assignment problem is presented as follows:

minZ =
∑

e

∫ xe

0
ce(ω)dω (9)

subject to the demand and non-negativity constraints given by
∑

p
f odp = qod ∀p ∈ Pod (10)

f odp ≥ 0 (11)

where xe is the flow on edge e comprised of the sum of flows on the paths sharing edge
e, ce(ω) is the cost on edge e for a flow of ω, f odp is the flow on path p connecting origin o
and destination d and qod is the total traffic demand between o and d.
Substantial research has been carried out on this problem and its extension to more

practical approaches, including the representation of dynamic traffic phenomena such as
queues, spillbacks, wave propagation, capacity drops and so on. In this work, this simpli-
fied approach was used due to the universality of the problem and its simple mathematical
handling. In addition, the simple and commonly used Frank-Wolfe algorithm was used
to solve the optimisation problem (Jayakrishnan et al. 1994; Chen et al. 2002). How-
ever, this does not affect the applicability of the proposed method, as it can be applied
independently of the problem.

NiN setup and failure propagation

According to the proposed methodology, the basic elements in layer α were formed by
the vertices of the infrastructure networks. The network paths in layer β were obtained
from the initial macroscopic traffic flow simulations. Paths with the same origin and
destination are grouped in layer γ .
The contained pathways were ranked by travel costs [Eq. 8] and connected accordingly,

i.e. the path with the lowest travel costs was located at the beginning of the Markov chain,
followed by the path with the second lowest costs, and so on. As described in assumption
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number five, only the neighbouring paths were connected. To take into account alterna-
tive routes that were not used in the initial configuration, additional paths were added to
each origin-destination group. These paths were generated using the Yen’s algorithm (Yen
1970) to calculate the k-shortest loop-less paths for a graph with non-negative edge costs.
These additional paths have been disabled, meaning that such a path could not be visited
in the initial configuration, i.e. the edge weights and the initial traffic flow were set to 0.
In the top layer, δ all origin-destination groups were combined and connected based on
their common road sections.
To initialise the failure propagation a set of edges were randomly removed from the

infrastructure network. Care was taken to maintain the connectivity of the network such
that there were no disconnected origin or destination vertices. Paths that contained these
interrupted edges were disabled by setting the probability to zero that someone would
visit or maintain on this path. With a certain probability, additional paths were enabled.
Based on the new topology of the Markov chain and the (estimated) transition proba-
bilities, the new stationary distributions were calculated. As a result of these changes in
traffic flow, positive edge weights were assigned to edges in layer δ. The second diffusion
process was performed to initiate other redistribution processes at layer γ , as described
in the methodology. This process continued until the traffic flow no longer changed.
Bayesian inference and MCMC methods were applied to estimate the transition prob-

abilities for the diffusion process. This was done by minimising the normalised mean
square errors of edge flows based on the results from the traffic flow simulations per-
formed on the interrupted network topology where on edge was interrupted. For the
parameter estimation (training process) 100 different network configurations were used.

Single-layer network approach

To evaluate the obtained results, a comparison between the proposed NiN model and a
traditional complex network diffusion process on a single-layer network (SLN) was made.
Since the traffic flows are edge properties, the initial topology of the road network has
been converted into a higher-order network of order two (Rosvall et al. 2014; Scholtes
2017; Lambiotte et al. 2018), i.e. intersections were turned into edges and road sections
into vertices (Porta et al. 2006). To consider the failures of the road sections, the incoming
edges of the affected higher-order vertices were removed, i.e. in a diffusion process, the
traffic flow can only flow away from these vertices. On this modified higher-order net-
work, a diffusion process was carried out where the diffusion quantity corresponded to
the traffic flows of the removed road sections. In other words, the travellers move away
from the interrupted road sections. Finally, the new traffic flow configuration wasmapped
back to the initial road network to allow a comparison with the NiNmodel and the results
of the traffic flow simulations.

Technical implementation

For reasons of rapid development and comparison, all the models were programmed in
pure Python and executed on a single core. (Consequently, a considerable reduction of the
computation time is to be expected by using compiled languages such as C++ and utilising
parallel computing.) The simulation runs were conducted on a single Intel Core i7-4770
CPU 3.40Ghz, 16GBDDR2 PC running on Linux 64 bit operating system (Ubuntu 16.04).
A conjugate direct Frank-Wolfe (CFW) algorithm (Mitradjieva and Lindberg 2013), was
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implemented to solve the traffic assignment problem [Eq. 9]. The convergence criterion
was set to a relative gap of 10−4. The network modelling for the NiN and the higher-order
networks was done with the python package cnet.

Results and discussion
The results of the previously defined applications are discussed in this section in order to
help illustrate the applications of the NiN model and map out the next steps for research.
The presented approach allowed the estimation of the traffic flow by utilising modified
multi-layer hypergraphs tomodel vertices themselves as networks. This allowed encoding
multiple pieces of information such as the topology, paths used and origin-destination
information, within one consistent graph structure.
Both the Sioux Falls scenario and the Chur scenario were both evaluated with a NiN

model and an SLN model. As ground truth, the results of a macroscopic traffic flow sim-
ulation were used to determine the errors of the traffic flow estimation. In order to assess
the behaviour in case of edge failure, 1 to 15 random edges were removed from the infras-
tructure network. With the help of diffusion processes, the traffic flow changes of both
approaches were estimated and compared with the (exact) result of the traffic flow simula-
tion. In the Sioux Falls scenario, the relative deviations of the traffic flows were compared.
This was not possible in the Chur scenario, therefore, the relative differences were used
for the analysis. In both scenarios, it could be shown that the NiN model provides better
estimates than the SLN model.
In the remainder of this section, the two scenarios and their results will be discussed

in more detail, followed by a general discussion about the observations and future
improvements.

Sioux falls scenario

Due to the design and size of the Sioux Falls scenario, traffic flows were observed
on each road section in the initial configuration. Figure 4a illustrates the initial flow
by the varying line width, which can also be interpreted as an impotence measure,

a) b)

Fig. 4 Traffic flow estimation of the Sioux Falls scenario. a The Sioux Falls network where the initial traffic flow
defines the edge width. The half-arrows indicate the direction of flow. Relative errors between the NiN model
and the results of the traffic flow simulations are colour-coded. Overestimations of the traffic flows are
coloured red, underestimations blue. b Boxplot and violin plot of the relative errors for the flows and costs of
the Sioux Falls scenario
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i.e. higher flows indicate more critical connections. The average relative error between
the NiN model and the macroscopic traffic flow model [Eq. 9] is colour-coded, with
positive (red) values representing overestimation and negative (blue) values represent-
ing underestimation. Figure 4a shows the average relative error for a scenario where a
single edge was randomly removed. It can be observed that the flow near the centre
(e.g. near the vertices 10, 15, 16, 17, 19) is well estimated (less than 2.5%). In addi-
tion, the estimates for edges with a high initial traffic flow are just as good (e.g. Edge
(20, 18)). Edge (5.6) shows the highest overestimation at 6.5%, while Edge (2.1) underes-
timates the traffic flow by 4.1%, resulting in both edges having a low initial traffic flow.
The average total relative flow error for all scenarios in which an edge was randomly
removed is −2.7% (σ = 0.064), and 95% of the estimated values are in the +13.4% and
−15.9% ranges, as shown in Fig. 4b. Since the implemented cost function [Eq. 8] con-
siders the estimated traffic with the performance of be = 4, the cost estimate shows
higher uncertainties, i.e. 95% of the cost estimates are in the range between +46.7%
and −56.6%.
If the NiN model is compared with the SLN model, there are hardly any deviations if

only a few edges are randomly removed. However, if several edges are removed, the SLN
model begins to underestimate the traffic flow (see Table 1 and Fig. 5). This is caused by
the redistribution of the traffic flow due to the diffusion process. Since the traffic flow is
not constrained by an origin and destination pair, travellers can diffuse to all edges in the
network, which assigns traffic flows more evenly over the whole network. In contrast, the
traffic flow in the NiNmodel can only be redistributed to other paths with the same origin
and destination, so that traffic in the network cannot spread too far. However, an over-
or underestimation can occur if too many or too few travellers are assigned to the new
paths or if paths are taken which were not considered by the k-shortest paths. Figure 5
also shows that the distribution of the relative error is more symmetrically allocated for
the NiN model than for the SLN model, which tend to underestimate the traffic flows.

Table 1 Average relative errors and standard deviations of the Sioux Falls scenario when multiple
edges are removed

No. of rem. edges SLN model NiN model

mean std. mean std.

1 −0.036 0.077 −0.027 0.064

2 −0.054 0.107 −0.040 0.097

3 −0.063 0.126 −0.046 0.115

4 −0.073 0.148 −0.050 0.130

5 −0.082 0.170 −0.057 0.149

6 −0.092 0.181 −0.060 0.161

7 −0.100 0.194 −0.066 0.172

8 −0.108 0.207 −0.070 0.178

9 −0.116 0.223 −0.072 0.187

10 −0.118 0.247 −0.072 0.193

11 −0.121 0.259 −0.073 0.203

12 −0.127 0.276 −0.076 0.201

13 −0.141 0.280 −0.083 0.212

14 −0.141 0.288 −0.083 0.212

15 −0.142 0.295 −0.084 0.213
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Fig. 5 Violin plot of the relative errors for the Sioux Falls scenario when multiple edges are removed. In red
(left) the kernel density of the SLN model is shown, while in green (right) the kernel density of the NiN model
is shown. The number of removed edges ranges from 1 to 15, corresponding to a removal of 1.3% to 19.7%
of the edges in the network. Dotted lines within the densities represent the 25% and 75% quantiles,
respectively, while the dashed lines represent the median values

Chur scenario

In contrast to the Sioux Falls scenario where traffic flows occurred on every road section,
the Chur scenario had road sections that were not used in the initial traffic configuration.
To compare deviations from the true value of zero, instead of the relative error measure,
the relative difference measure was used, which compared the difference between two
values to their average magnitude:

dr(xe, x̂e) = 2
x̂e − xe

|x̂e| + |xe| (12)

This is a signed expression, positive when the estimated edge traffic flow x̂e exceeds
the observed edge traffic flow xe and negative when xe exceeds x̂e. Its value always lies
between −2 and 2, i.e. if a flow is assigned to an edge where the initial flow is 0 the rel-
ative difference is 2. By using absolute values in the denominator, negative numbers are
handled in a reasonable way.
Both Figs. 6 and 7 clearly show that an SLN model approach to estimate traffic flow

changes in a real-world network leads to misrepresentations of the actual traffic flow by
assigning flows to edges which are not in use. In other words, travellers were assigned to
edges, which were not part of feasible paths between the desired origin and destination
locations. The NiN model showed no such behaviour, as travellers were only allowed to
change their paths while retaining their initial origin and destinations.
In particular, this overestimation can be observed in the city centres of Chur and

Domat-Ems, using the SLN model. Access roads and side roads are wrongly estimated.
Since the original macroscopic traffic flow model is a regional model, i.e. no traffic flow
is assigned to these secondary roads. This could change if a more detailed model is used
(e.g. microscopic model).
Increasing the number of removed edges also led to an overestimation of traffic flow

in the NiN model, as shown in Fig. 6b. Instead of exploring and accounting new paths
between the origins and destinations, the NiN model assigned more flows to the existing
paths. This could be due to the model calibration, which was done on a network where
only one edge was randomly removed and not several edges.
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a) b)

Fig. 6 Traffic flow estimation of the Chur scenario. a The Chur network where the initial traffic flow defines
the edge width. Relative differences between the SLN model and the NiN model respectively and the results
of the traffic flow simulations are colour-coded. Overestimations of the traffic flows are coloured red,
underestimations blue. Dark red edges (i.e. a value of 2) indicate a traffic flow assignment on edges that do
not carry traffic. b Histogram for the Chur scenarios where 15 edges were randomly removed. The bin at 0
shows the correctly assigned traffic flows, while the bin at 2 shows the flow assignment to edges that should
not have any traffic flow. In contrast, at −2 the bin illustrates an underestimation of traffic flow, where certain
traffic flow is observed, but the model estimate is 0

Discussion

In both scenarios, the NiN model performed better than the SLN model. This can be
attributed to the fact that the NiN model takes into account the path statistics and the
origin and destination locations in addition to the network topology. This was clearly
shown in the Chur scenario where the SLN model had assigned traffic flows to roads
where none should be. Consequently, if one wants to investigate dynamic processes on
transport networks using a complex network approach, this should be taken into account,
otherwise, it could lead to wrong conclusions.
Since the NiN model is able to encode multiple information, more data has to be pro-

vided to create such a model. While an SLN model only requires the network topology,

Fig. 7 Violin plot of the relative differences for the Chur scenario when multiple edges are removed. In red
(left) the kernel density of the SLN model is shown, while in green (right) the kernel density of the NiN model
is shown. The number of removed edges ranges from 1 to 15. Dotted lines within the densities represent the
25% and 75% quantiles, respectively, while the dashed lines represent the median values. Due to the kernel
density estimation, overestimates are presented continuously around the value of 2, while in reality, this
corresponds to a point distribution, as shown in Fig. 6b
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a NiN model also requires path statistics. This is a particular problem for historical net-
works where such data is no longer available. However, due to increasing digitalisation
(GPS tracking, telephone data, Twitter data) and advancing development in traffic mod-
els, more and more such data is nowadays available for research (e.g. Song et al. (2010);
Tang et al. (2015); Jurdak et al. (2015)).
The introduced NiN model represents the first step to represent complex dynamic

processes on transport networks using complex network approaches. For example, the
decision of which path to take is reduced to a simple diffusion process instead of solv-
ing a complex optimisation problem. Naturally, this approach does not provide the same
accuracy as classical traffic flow models, but it allows general statements to be made with
relatively simple means, e.g. showing the cascading effects of several edge failures in the
network.
In this example, some assumptions were made to reduce the complexity of the prob-

lem. However, this also led to a reduction in accuracy and applicability. In future work,
some of these assumptions could be relaxed. For example, it was assumed that interrupted
edges were removed entirely from the network. However, it would be possible to consider
capacity reductions similarly as the cascading effects were studied, i.e. instead of remov-
ing the edges, a path diffusion process is performed, and the traffic flow corresponding
to the capacity reduction is redistributed. This implementation would represent a more
realistic representation of the real weld and thus significantly extend the application area
of the model. In addition, it was assumed that travellers could only make three choices: (i)
they could stay on the path initially chosen, (ii) they could switch to the next cheaper path
or (iii) to the next more expensive one. This simplifies the estimation of the parameters
but limits reality. Especially in the context of real observations, it would be interesting to
see how travellers behave in a disturbance and what alternative paths they take.
If real-world observations are not available, another improvement would be the exten-

sion to an underlying microscopic traffic flow modelling approach (e.g. agent-based
approach), to reproduce the real-world behaviour of the daily path of individuals in an
urban environment. Thereby individual agents choose activities at different locations.
Sequences of activities are generated and equilibrated based on a co-evolutionary algo-
rithm that alters the agent’s behaviour from iteration to iteration. The objective is to find
optimal routes, modes and departure times in order to maximise the total utilities of the
agents’ daily activity schedules (Chakirov and Fourie 2014; Horni et al. 2016). In con-
trast to the aggregated path flows from a macroscopic point of view, where each path is
assigned to an individual agent. The setup of the NiN would be similar, but the underlying
model would provide additional details.

Conclusions
Understanding traffic flow in urban areas has great importance and implications from an
economic, social and environmental point of view. For this reason, numerous disciplines
are working on this topic. Although complex network theory made their appearance
in transportation research through empirical measures, little research has so far been
done to investigate the relationship between dynamic traffic patterns and the underlying
structures of the transportation networks.
In this work, the application of a novel Networks in Networks (NiN) approach is pre-

sented to study changes in traffic flow caused by topological changes in the transportation
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network, from a complex network perspective. The NiN structure is a special type of
multi-layer network in which vertices are networks themselves. This embedded network
structure makes it possible to encode multiple pieces of information such as topology,
paths, and origin-destination information, within one consistent graph structure. Since
each vertex is an independent network in itself, it is possible to implement multiple diffu-
sion processes with different physical meanings. In this way, it is possible to estimate how
the travellers’ paths will change and to determine the cascading effect in the network.
To test the capabilities and gain insights into real-world systems, the model was applied

to two complex infrastructure systems, the Sioux Falls benchmark network and a real-
world road network in Switzerland. The networks were modelled as NiN and calibrated
with initial traffic flows from a macroscopic model. Edges were randomly removed, and
the traffic flows were estimated using diffusion processes. To show the influence of the
multi-layer approach, the same procedure was conducted with a single-layer network
(SLN) model. The results of both modelling approaches were compared with the ground
truth observed from themacroscopic traffic flowmodel. In both scenarios, theNiNmodel
performed better than the SLN model. Especially for the real-world network, the NiN
model gives better results, since in addition to the network topology also path statistics
and the origin and destination information were taken into account.
The work presented here is the first step towards a better understanding of complex

dynamic processes in transport networks using approaches from complex network the-
ory. Naturally, this approach does not provide the same accuracy as classical traffic flow
models, but it allows general statements to be made with relatively simple means. In addi-
tion, NiN’s uniform graph structure offers a new perspective on the problem of traffic
assignment that goes beyond classical approaches. For example, while classical traffic flow
models evaluate the (user) equilibrium by solving an optimisation problem, the proposed
method uses a (path) diffusion process instead. This is computationally more efficient
and should be explored in future research. Furthermore, the presented approach is lim-
ited to the estimation of traffic flow changes caused by multiple edge failures, given an
initial traffic flow configuration. Future research should focus on further developing this
approach to address relevant issues such as mode changes, temporal changes, spillbacks
and gridlock effects.

Nomenclature
G network graph
E set of edges of the network
V set of vertices of the network
e edges in the network

v, o, d vertices in the network
o origin vertex
d destination vertex
p specific path in the network
P set of all nonempty paths

Pod set of all od-paths
L set of layers

α,β , γ , δ layers of the network
G set of graphs
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X set of basic elements
Y set of hypervertices
n number of vertices
y hypervertex
I set of indices
�I incidence matrix
iij entry of the incidence matrix
�A adjacency matrix
aij entry of the adjacency matrix
M connection model
g connection function
	e edge length
ce edge costs
ye edge capacity
fp path flow

n(·) cardinality operator
Ē set of interrupted edges
X random position in the network
m number of steps
�T transition matrix
tij entry of the transition matrix
W weight function
π stationary distribution
te edge travel time
xe edge traffic flow

ae, be parameters
qod traffic demand between o and d

ω incremental traffic flow
σ standard deviation

dr(·, ·) relative distance operator

Endnotes
1 In a classical single-layer hypergraph XM usually refers to hyperedges, which are finite

sets of basic elements (vertices) representing their relationships (connections). In the
scope of a multi-layer hypergraph, the vertices of each layer are defined as the hyperedges
of the previous ones. To avoid confusion in terminology, such higher-order elements are
referred to as hypervertices or vertices in this work.

2A division by
∑

k W (vi, vk) is needed to normalise the values such that
∑

j W (vi, vj) = 1.
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