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prediction between entities is important for developing large-scale ontologies and for
KG completion. Transk and TransR have been proposed as the methods for such a
prediction. However, Transk and TranskR embed both entities and relations in the same
(or different) semantic space(s). In this research we propose a simple architecture
model with emphasis on relation prediction by using a Multi-Label Deep Neural
Network (DNN), and developed KGML. KGML embeds entities only; given subject and
object are embedded and concatenated to predict probability distribution of
predicates. Since the output of KGML is the probability distribution in [0, 1], output can
be classified as positive and negative by using the threshold of 0.5. Since the output of
the existing method TransE is the score in [0, 00), the threshold value must be
calculated each time. Experimental results showed that predictions by KGML are more
accurate than those by Transk and TransR. KGML is more accurate than DKRL which
uses both KG triples and entity descriptions for learning. KGML is more accurate than
PTransk in and its learning speed is faster than PTransE. The code of KGML is available at
https://github.com/yo0826jp/KGML.
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Introduction

Ontology learning is one of the important topics for developing the Semantic Web. In gen-
eral, there are many entity pairs where the relations between them are unknown (Kavalec
and Svatek 2003; Weichselbraun et al. 2010). If we can predict such relations accurately, we
can augment a given ontology. Since many Semantic Web data (such as Google’s Knowl-
edge Graph) are already available, techniques for predicting relations between entities are
important for developing large-scale ontologies.

The goal of our research is to predict relations between two given entities in Knowl-
edge Graph (KG) accurately. KG is a kind of semantic network, and each triple in KG
is composed of three entities (a subject, a predicate, and an object). A subject and an
object are entities, and a predicate is the relation between the entities. Suppose (Tokyo,
is-capital-of, Japan) is an example of such a triple. We would like to predict “is-capital-of”
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when “Tokyo” and “Japan” are given. For this purpose, we propose a method for predict-
ing a predicate from a subject and an object by using a Deep Neural Network (DNN), and
developed KGML.

Outline
Freebase, Wordnet and Wikidata are used as the datasets of our experiments. The
following experiments are performed:

“Comparison with previous methods” section comparison with previous methods

“Learning speed” section Learning speed

“Hyperparameter « and prediction accuracy” section Hyperparameter « and predic-
tion accuracy

“Failure analysis” section Failure analysis

“Embedding dimension and prediction accuracy” section embedding dimension and
prediction accuracy

“Embedding dimension and computational time” section embedding dimension and

computational time

As the results of our experiments, KGML is more accurate than TransE (Bordes et al.
2013) and TransR (Lin et al. 2015) for predicting a predicate from given subject and object.
Although KGML learns from KG triples only, its prediction accuracy is better than that
of DKRL (Xie et al. 2016) which uses both KG triples and entity descriptions for learning.
KGMLss prediction accuracy is better than that of PTransE (Lin et al. 2015) in its accuracy
and its learning speed is faster than PTransE. We also propose a method for finding appro-
priate embedding dimensions in KGML. KGML is an improved version of our previous
method RDFDNN (Yohei et al. 2017).

Previous methods for predicting relations

TransE

TransE (Bordes et al. 2013) embeds both entities and relations in the same vector space.
Based on vector operations of entities and relations, TransE predicts ¢ from given /4 and
[, and predicts / from % and t. It generates the vector space that satisfies the following
equation:

dh+1,t) =0, (1)

where d is the function of Euclidean distance between two given vectors.
TransE obtains vector representation of entities and relations by minimizing the
following objective function L by gradient descent:

L= Z Z max(y +d(h+1,t) —d(W +1,¢),0), @)
(hl,t)eS (W Lt)eS

where y is the margin for training, S is the set of triples in the dataset, Séh Lo is the set of
random sampled triples, E is the set of entities, and Séh Lo 1 defined as follows:

(i = (W LOI € EY0{(h, 1)t € E}. 3)

S;h ) contains a small number of positive triple, but many are negative triple because
Knowledge graph is a sparse data set.
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TransR
TransR (Lin et al. 2015) is the extension of TransE, and it has an ability to learn 1-to-N
relations, which is not possible for TransE. 1-to-N relation means that there are more than
one ts for a given pair of / and /, such as (John, likes, pizza) and (John, likes, hamburger).
In the case of TransE, learning 1-to-N relations is not possible because there is only one
vector that satisfies d(i + /,t) = 0. In the above example, both pizza and hamburger are
represented as the same vector, which is the problem of TransE.

In the case of TransR, / and t are mapped by means of the transformation matrix M;
which is unique to / and then vector operation is performed in order to avoid the above
problem. TransR generates a vector space that satisfies the following equation:

d(hM; + 1, tM;) = 0, (4)

where M; is the transformation matrix corresponding to relation /. TransR accepts vector
representations of the entities obtained by TransE as its initial values, and it minimizes the
following objective function L by gradient descent in order to obtain vectors and matrices
corresponding each relation:

L= 33 > max(y+duy+1Lu)—dlM +1LEM),0), (5)
(hlt)eS (W Lt)eS

where y is the margin for training, S is the set of triples in the dataset, S’ is the set of
random sampled triples, /; = hM; and ¢; = tM;. S’ contains a small number of positive
triple, but many are negative triple because Knowledge graph is a sparse data set.

DKRL

Description-Embodied Knowledge Representation Learning (DKRL) (Xie et al. 2016) is a
method for learning the embedding of KG taking advantages of entity descriptions. Since
it learns embedding from both KG triples and external entity descriptions, prediction
of novel entities with descriptions only (zero-shot scenario) is possible. DKRL employs
two encoders (continuous bag-of-words (CBOW) model and deep convolutional neural
model) to represent semantics of entity descriptions. Input to DKRL is the representation
of keywords in the explanation of entities learned by word2vec, and its output is the rep-
resentation of entities. Representations of entities and relations obtained by TransE are
used as the initial values of DKRL. DKRL performs learning by minimizing the following
L by stochastic gradient descent:

L= Y > max(y +dh+1Lt—dH +1,t),0), 6)
(hlLt)eS (W,lt)eS

where y is the margin, S is the set of triples in given dataset, S’ is the set of random
sampled triples, E is the set of entities in the dataset, and R is the set of relations in the
dataset, respectively. S’ is defined as follows:

S ={H,Lolh € EYU{h 1)t € E}U {1, 0l € R}. (7)

S’ contains a small number of positive triple, but many are negative triple because
Knowledge graph is a sparse data set.
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PTransE
Path-based TransE (PTransE) (Lin et al. 2015) regards relation paths as translations
between entities for representation learning. PTransE obtains vector representation of
entities and relations by minimizing the following objective function L by gradient
descent:

L =EW,Lt)+E(hPht),t), (8)

where E(h, 1, t) is the same as TransE’s objective function and P(k,¢) is a set of paths
between & and t. E(h, P(h, t), t) is the inference correlations between relations with multi-
ple step relation path triples, which is defined as follows:

1
E(h,P(h,t),t) = ~ > Rplh t)E(h,p, 1), )
pEeP(hY)
where R(p|h, t) indicates the reliability of the relation path p given the entity pair (4, £)
and Z =P} ,pg R(plh, t) is a normalization factor.

Other approaches

Our attempt for obtaining low dimensional embeddings is related to DeepWalk (Perozzi
et al. 2014) and LINE (Tang et al. 2015). However, these approaches focus on simple net-
works composed of only one type of relation, while our target is KG triples composed of
several types of relations.

Ristoski et al. propose RDF2Vec (Ristoski and Paulheim 2016), which embeds KG
graph based on graph walk and Weisfeiler-Lehman Subtree KG Graph Kernel. The
goal of RDF2Vec is to obtain general-purpose low dimensional embeddings for arbi-
trary data mining algorithms, and experimental results show their superiority over other
basic methods (Naive Bayes, k-Nearest Neighbors, C4.5, SVM, Linear Regression, and
Mb5Rules) for the tasks of classification and regression. On the other hand, the goal of our
paper is to predict entity relations accurately.

Wang et al. propose a method for incorporating inference rules into embedding mod-
els for accurate predictions (Wang et al. 2015). Physical and logical rules are employed
in order to impose constraints on candidate facts. Wang et al. also propose a method
for ranking relations between entities (Wang et al. 2016). Relations highly correlated to
each other are detected first, and then multi-task learning is performed in order to cou-
ple the predictions of the relations. Guo et al. propose rule-enhanced relation learning
(Guo et al. 2016). The method uses rules to refine the results obtained by previous embed-
ding methods such as TransE. Xiao et al. propose a generative model for knowledge graph
embeddings (Xiao et al. 2016). The model focuses on multiple meanings of a relation, and
it has abilities of detecting latent semantics for a relation. Xie et al. propose a method
called Type-embodied Knowledge Representation Learning (TKRL) (Xie et al. 2016) to
take advantages of hierarchical entity types in KG. Although these approaches are rather
different from ours, our work on relation prediction can be integrated to these approaches
for the goal of KG completion.

Although KG is a type of multiplex network, there is also a method of link predic-
tion with a small multiplex network compared to KG. Xu et al. propose MTNE (Xu
et al. 2017), MTNE improves the embedding using common parts between layers after
enforcing the entity for each layer. De Bacco et al. propose MULTITENSOR (De Bacco
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et al. 2017) a method for link prediction of multiplex networks by tensor decomposition.
Matsuno et al. propose a method MELL (Ryuta and Tsuyoshi 2018) that introduces a layer
vector and expresses the features of layers to link prediction by embedding. These meth-
ods are designed with an emphasis on relation prediction in a small network compared to
KG. For example, 7153 triples are present in the dataset that these methods use in exper-
iments, with the largest number of triples. On the other hand, 151,442 triples exist even
if the triple number is the smallest among the KGs targeted in this study. For this reason,
it is difficult to predict using these methods in a large-scale network such as KG from the
question of learning time. On the other hand, if we use the method proposed this time,
we can also predict the relationship in a small network targeted by these methods. There-
fore, in order to examine how effectively the proposed method works in datasets other
than KG, it can be compared with KGML.

Proposed method:KGML
Since the output of the existing method is the score in [0, 00), the threshold value must
be calculated each time. We propose a more practical relationship prediction method by
creating a model with a fixed threshold. Multi-label DNN and multi-class DNN are the
candidates of the models that can use a fixed threshold. In relation prediction, there can
be multiple relations between two entities. For example, (“Tokyo’, “is-capital-of’, “Japan”)
and (“Tokyo’, “is-city-of’, “Japan”). Multi-label DNN has one or more postive outputs,
while multi-class DNN has only one positive output. Therefore, we employ multi-label
DNN for relation prediction.

The structure of KGML is shown in Fig. 1. When % and ¢ of a KG triple (/,1,¢) are
given as inputs, KGML will output /. Rectangles are layers of DNN, and arrows are the

| Input: Subject ‘ ‘ Input: Object ‘

| entity_voc ‘ ‘ entity_voc l

Embedding Embedding

dim1

Y

Concatenate e Simple concatenate of
o Simple concatenate of subject vector and
‘ dim1*3 ‘ object vector.
o Element-wise product of subject vector and
object vector.

\ Dropout1 (0.3) |

[ dim1* 3 |
‘ Densel (relu) ‘ e Dense layer with activation function relu
| dim2* 1.5 |
[ Dropout2 (0.1) | Example
| dim2* 1.5 |
* * :Transform between layers.
Dense2 (relu)
Name of layer Jlayer
Dropouts (0.1)

e Dense layer with activation function sigmoid.

| Dense 3 (sigmoid) : Predicate

| relation_voc ‘

Fig. 1 The structure of KGML
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transformation between layers. Its inputs are one-hot codes of / and ¢, and its output is
the probability distribution of the n-hot codes of /. One-hot code is a sequence of bits for
representing entities. For example, the following vector of length # (whose i-th bit is 1 and
others are 0) is the representation of i-th entity among # entities.

(oo...01o...o) (10)

entity_voc and relation_voc are the numbers of entities and relations, respectively. dim1
is the embedding dimensions of entity. dim2 is a hyper parameter to determine dimen-
sion of layer Dense2 and Dense3. Embedding is the transformation from KG entities to
their vector representations. The length of the transformed vector is called embedding
dimension.

As shown in Fig. 1, there are eight hidden layers in KGML: Embedding, Dropoutl,
Densel, Dropout2, Dense2, Dropout3 and Dense3. Densel and Dense2 are the dense layers
for activation by Relu function, and Dense3 is the layers for activation by sigmoid func-
tion. Concatenate is the composition of the embeddings of % and t. We employ simple
concatenation of two embedding vectors and element-wise multiplication of two embed-
ding vectors for the concat together. Embedding is the layer for transforming an entity to
its embedding. The two Embedding layers share weights and biases. L2 normalization is
used for the layer of Embedding. Dropout1, Dropout2 and Dropout3 are dropout layers to
suppress overfitting.

The architecture of KGML is determined based on experiments. KGML has 3 dense
layers. When it was reduced to 2, the expressive power is lacking, and the prediction
accuracy decreased. When the number is increased to 4, the prediction accuracy is hardly
improved, and the learning time is greatly extended because the model is complicated.
The dimensions of each layer were determined based on experiments. The dropout rate
of the dropout layer was determined based on experiments. The prediction accuracy was
higher if we made one higher and make the others smaller than equalizing the dropout
rates of the dropout layer.

Since the output of KGML is the probability distribution of one-hot representation of
relation /, the following two objective functions are used as the objective function for
learning KGML:

Lpce(h,t, ) = — Z lilOgP(h, t);
i€relation_voc
- Y. (A —Ilogl—P(ht)), (11)

ierelation_voc

Lawbce(h, t, ) = — Wpos Z lilogP(h, t);

i€relation_voc

Wieg Y (1—1I)log(1 — P, 1)), (12)

i€relation_voc

where
Lierelation_voc b (13)

Wpos = ;
p relation_voc

and

Wieg = 1 — Wpos. (14)

Page 6 of 17
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Sis the set of triples in training data of knowledge graph, relation_voc is the set of relations
in knowledge graph, P(#, t) is the output of KGML when % and ¢ are given as its inputs, /
is the binary representation of training data and i is the integer index that satisfies 0 < i <
relation_voc. Ly, is binary cross entropy. Binary cross entropy is the loss function used
in multi-label classification. L ,pc. is dynamic weighted binary cross entropy. We add two
weights w05 and Wy, into binary cross entropy for adjust imbalance between the number
of positive samples and the number of negative samples. wy,s and w;,¢, are calculated for
each training triple. In training with L., we expect that the recall improvement takes
precedence over the improvement in precision. KGML use the following loss function as
the objective function:

Lyce(h, t, 1) = aLgypee(B, t, 1) + (1 — o) Lpce (1, 8, D), (15)

where « is a hyper parameter in [ 0, 1]. « is a balancing parameter between L z,5ce and L.
We expected that decreasing « increases precision and decreases recall. Lgypc. is a loss
function that emphasizes recall. Since the knowledge graph is a sparse data set, the value
of wyes becomes large and the value of w;,.; becomes small. When using the loss function
of Lyypee, prioritizing the output of the positive example to 1 over giving the output of
the negative example closer to 0 is given priority. As the optimizer of the above objective
function, Adam (Kingma and Ba 2015) is used.

Existing methods such as TransE, TransR, DKRL and PTransE use negative sampling
for learning. Negative sampling uses one randomly generated negative sample for each
positive sample of training data. Therefore, the existing method has the same number
of positive and negative samples. We are not able to introduce the « method proposed
in KGML into the existing method because there is no imbalance between positive and
negative samples in existing methods. In KGML an imbalance occurs between the positive
and negative examples because all triples (4, /', t) are used as a negative examples for each
positive sample (%, /, ¢) in train data. [’ is relation that satisfies [ # [’ and triple (4,7, t) is
not in train data.

KGML embeds entities only; subjects and objects are embedded and concatenated to
predict probability distribution of predicates. If we can embed both entities and relations
accurately, the embedding can be used for entity prediction and relation prediction. Since
entity embedding is enough for predicting relations, KGML focuses on entity embedding.
Although KGML cannot predict an object from a predicate and a subject, it has abilities
of predicting a predicate accurately from a subject and an object.

Evaluation

Dataset

In our experiments, we have used the FB15k, WN18, WD40k and WD40k_nl, which
are the samples of the following four datasets. Details of FB15k, WN18, WD40k and
WD40knl are shown in Table 1. FB15k and WN18 are the same as the ones used in the
experiments of previous research (Bordes et al. 2013; Lin et al. 2015). In addition to FB15k
and WN18, we created WD40k and WD40k_nl from wikidata (Vrandeci¢ and Krotzsch
2014). In Table 1, densityis defined by the following equation:

#training triples + #validation triples + #testing triple

density = (16)

relation_voc X entity_voc X (entity_voc — 1)
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Table 1 Details of FB15k, WN18, WD40k and WD40k_nl

FB15k WN18 WD40k WDA40k_nl
Original data Freebase Wordnet Wikidata wikidata
Number of entities (entity_voc) 14,951 40,943 40,000 40,000
Number of relations (relation_voc) 1,345 18 568 568
Number of triples for training 483,142 141,442 193,043 193,043
Number of triples for validation 50,000 5,000 19,461 19,461
Number of triples for testing 59,071 5,000 19,370 13,456
Density 1980 x 1070 5019 x 107° 2.551 % 107/ 2.551 x 107/
9% Test Linked 80.9 94.0 305 0.0

Original datasets of FB15k, WN18, WD40k and WD40k_nl are as follows:

Freebase (Bollacker et al. 2008) (FB15k)
A large collaborative online knowledge base.
Wordnet (Miller 1995) (WN18)
A large lexical database of English.
Wikidata (Vrandeci¢ and Krotzsch 2014) (WD40k and WD40k_nl)
A large collaborative online knowledge base. Relations of wikidata are abstracted

and organized based on Freebase’s relations.

FB15k, WN18 and WD40k contain triplets in the training set that are simply the inverse
of triples contained in the test set (Dettmers et al. 2018; Toutanova et al. 2015); a hypo-
thetical example would be the training set containing (Japan, has-capital, Tokyo) and the
test set containing (Tokyo, is-capital-of, Japan). It called test set leakage. In addition, since
there is a knowledge graph that includes (Japan, has-capital, Tokyo) but does not include
(Tokyo, is-capital-of, Japan). In this reason, experiments with data set with test set leakage
has significance. The causes of test set leakage are triples (/1,/,t) that satisfy the follow-
ing. (h,1,t) is included in the test set, and (i, ', ¢) or (¢t,7,h) is included in the training
set. However, I’ means a relation different from /. As the last row (% Test Linked) of the
Table 1 shows, such triples occupy 80.9% of the test set of FB15k (Toutanova and Chen
2015). It is less compared to 30.5% in WDA40k. For this reason, in this study, we made the
data set WD40k_nl from WD40k. WD40k_nl is the WD40k’s test set minus triples that
can cause testset leakage. WD40k_nl doesn’t include test set leakage.

Criteria for Evaluation

We have implemented KGML using keras and TensorFlow. Keras (https://keras.io) is a
Python-based library executable on TensorFlow and Theano. Training of DNN by keras is
done using CuDNN library on GPU. We use Python, keras and TensorFlow for the imple-
mentation. The CPU used in our experiments is 28 x Intel Xeon E5-2680 V4 Processor and
4 x Tesla P100 for NVLink-Optimized Servers. We used a super computer TSUBAME3.0
in Tokyo Institute of Technology.

We evaluated the results by Hits@k, Precision and Recall. We used Hits@k for compar-
ison with existing methods. For Hits@k, after 50 epochs of training, # and ¢ of a triple in
the test data are given to KGML as input, and its output [ is evaluated by Hits@k, whose
value is one if the correct answer is included in top-k plausible outputs, and is zero other-
wise. All test data are used and results are averaged for evaluation. As with experiments
in TransE, we used two settings, Raw and Filterd (Filt). In Raw setting, evaluation is done
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by normal Hits@k. In Filt setting, if the model answered wrong relation /,, for given enti-
ties /2 and ¢, and the triplet (%, [y, t) is in training triples set, the answer [, is ignored and
next answered relation for given entities /1 and ¢ is evaluated.

In the link prediction in the knowledge graph, the positive example is extremely small
compared with the negative examples. For this reason, metrics like AUC and accuracy
had a problem that the score was too big. For example, the AUC scores of PTransE and
KGML exceeded 0.99 for both datasets. We used metrics that evaluate with emphasis on
small positive examples such as hits@1 that focus on only the top one.

Setting for comparison

For the comparison of accuracy with previous methods, we set the parameters as diml =
100, dim2 = 100 for FB15k, WN18, WD40k and WD40k_nl and ¢ = (0.0,0.5, 1.0) for
FB15k, WN18, WD40k and WD40k_nl. These parameters are empirically determined
through experiments using training set and validation set. For failure analysis, we set
the parameter as diml = 100,dim2 = 100, « = 1.0 for WD40k. For the exper-
iments of embedding dimension and accuracy, parameters diml and dim2 are set as
each of 2, 4, 6, 8 and 10 for FB15k. For the experiments of relations between embed-
ded dimension and computational time, diml is set to 60, 120, 180, and 240, and
dim2 is set to 20, 40, 60, and 80 for FB15k. We traind KGML by 50 epochs. Learn-
ing rate Ir for optimizer adam gradually decreased. / decreased for every 10 epochs as
follows: 0.001, 0.00033, 0.0001, 0.000033, 0.00001. The learning rate, dim1 and dim2 are
empirically determined by experiments using validation sets.

We have compared KGML with TransE, TransR and PTransE implemented by previous
research (Lin et al. 2015). For TransE, the learning rate is set to 0.01, y is set to 1, and
embedding dimensions are set to 50 for FB15k, and 100 for WN18 and WD40k, respec-
tively. For TransR, the learning rate is set to 0.001, y is set to 1, and embedding dimensions
are set to 50 for FB15k, and 100 for WN18 and WD40k, respectively. For PTransE, the
learning rate is set to 0.01, y is set to 1, and embedding dimensions are set to 100 for
FB15k, WD40k and WD40k_nl Path size of PTransE is 2-step and setting is ADD setting.

When /4 and t are given, TransE computes d(t — /, [) for all possible relations and selects
the relation / of its minimum value as its prediction. This is because the vector space
satisfying d(¢ — h,[) = 0 is generated in TransE, so the relation / that takes the minimum
value of d(t — h,1) for given & and ¢ is expected to constitute a valid triple (4,1, £) rather
than other relations.

When / and ¢ are given, TransR computes d(¢M; — hM;y, [) for all possible relations and
select the relation [ of its minimum value as its prediction. This is because the vector
space satisfying d(tM; — hM;, [) = 0 is generated in TransR, so the relation / that takes the
minimum value of d(tM; — hM;, [) for given 4 and t is expected to constitute valid triple
(h, 1, t) rather than other relations.

Comparison with previous methods
For the comparison of accuracy with previous methods, we set the parameters as diml =
100, dim2 = 100 for FB15k, WN18 and WD40k and @ = (0.0, 0.5, 1.0) for FB15k, WN18
and WD40k.

The codes and FB15k dataset available at https://github.com/xrb92/DKRL are used for
the comparison with DKRL. We use the same parameters as in (Xie et al. 2016) for our
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experiments, and evaluated by Hits@k. Experiments of DKRL are performed only for
FB15k dataset because entity descriptions are not available for WN18 dataset and WD40k
dataset.

Table 2 is the results of comparison with the FB15k, WN18, WD40k and WD40k_nl
datasets, respectively. As shown in these figures, KGML is more accurate than TransE
and TransR in all datasets. There is a large difference between the prediction accuracy
of KGML, TransE and TransR at the results of FB15k and WD40k data. In the following
discussion, we will discuss the results of FB15k and WD40k data. The reason for the
large difference between the prediction accuracy of KGML, TransE and TransR is that
the numbers of relations in FB15k (1345) and WD40k (568) are much more than that in
WN18 (18). Prediction of relations is harder when the number of relations is much more.

Comparing the prediction accuracy of PTransE and KGML in WD40k and WD40k_nl
shows that there is almost no difference. Prediction accuracy is improved in all row
settings. From following results, the influence of test set leakage is extremely small for
PTRansE and KGML.

Column FB15k in Table 2 shows the results of KGML, TransE, TransR, DKRL and
PTransE. Although DKRL uses both KG triples and entity descriptions for learning,
KGML is more accurate than DKRL. We can claim that KGML is widely applicable for
accurate prediction of entity relations even when entity descriptions are not available.
KGML is slightly better than PTransE with predictive accuracy, and KGML is superior in
the learning speed of the model. We will discuss about this in “Learning speed” section.
Column WD40k in Table 2 shows the results of KGML, TransE, TransR and PTransE.
Some relations in FB15k are unified in WD40k. For example, there are “members of the
sports team” and “members of the cabinet” separately in FB15k, but these are unified as
“member of” in WD40k. In WD40k, the descriptive text of each entity is so short that
it is impossible to perform experiment with DKRL. Compared with FB15k, TransE and
TransR have significantly lower prediction accuracy in WD40k. This is because WD40k
is a sparse network compared with FB15k, so that TransE and TransR cannot do enough
learning. For PTransE and KGML, the accuracy is improved because WD40k has a smaller
number of relation and PTransE and FB15k can learn efficiently from less data. In KGML,
the pattern of entity can be found by sharing the embedding layer of head entity and tail
entity. Hits@10 scores of PTransE at all dataset and hits@10 scores of KGML at all dataset
both exceeded 0.99. For this reason, we did not consider PTransE and KGML at 4its@10.

Table 2 Hits@1

hits@1
Method FB15k WN18 WD40k WD40k_nl

raw filt raw filt raw filt raw filt
Transk 0.651 0.843 0.586 0.586 0.201 0.205
TransR 0421 0.502 0713 0.714 0.0951 0.0981
PTransk 0.695 0.936 - - 0.858 0.890 0.863 0.893
DKRL 0.685 0872
KGML (o = 1.0) 0.725 0.943 0.975 0.980 0.873 0.907 0.907 0.908
KGML (e = 0.5) 0.725 0.933 0972 0.977 0.877 0911 0910 0911
KGML (& = 0.0) 0.667 0.963 0975 0979 0.879 0914 0914 0916

Underlining in the table means the best accuracy in each method
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Consider the hits@1 score of KGML in each dataset. The score at WN18 is high
compared with the score at FB15k and the score at WD40k. relation_voc of WN18 is
considerably smaller than relation_voc of FB15k and relation_voc of WD40k. This means
that the smaller the value of relation_voc, the larger the hits@1 score. The value of
relation_voc of WD40k is smaller than the value of relation_voc of FB15k, but the score
ofhits@1 is about the same. This is because WD40k is sparser in density than FB15k.
Training is more difficult in sparse data sets. Hits@1 score gets lower if the dataset
is sparse. Hits@1 of KGML depends on the value of «. We will discuss about this in

“Hyperparameter « and prediction accuracy” section.

Learning speed

Learning speed

In “Comparison with previous methods” section, we perform learning of 50 epochs for
KGML and 1000 epochs for PTransE. It takes 27 s for one epoch in KGML and 6.5 s
for one epoch in PTransE. KGML takes 1343 s for training and PTransE takes 6509 s for
training. This means that KGML’ learning speed is faster than PTransE.

Convergence speed of learning

We compared the convergence speed of learning of KGML and PTransE. In this experi-
ment, we perform learning of 50 epochs for KGML and 1000 epochs for PTransE in order
to compare the convergence speed with the same length of time. We introduce conver-
gence degree C which increases as learning converges. C is expected to be within the
range [0, 1] but sometimes C > 1 because loss of objective function in learning pro-
cess becames smaller than loss of objective function in the last epoch. We defined the

convergence degree C in epoch e as follows:

_ Loss(elast)

C@ = Loss(e) (17)

where Loss(e) is loss of objective function in epoch e and Loss(ej ) is loss of objective
function in the last epoch. Convergence degree C increases as learning converges because
the value of loss of objective function Loss(e) decreases as learning converges.

Figure 2 shows the learning convergence of KGML and PTransE in WD40k. The X-axis
is time for learning, and the Y-axis is convergence degree C. The larger the value in the
Y-axis is, the more learning converges. Figure 2 shows that learning of KGML converges
more quickly than learning of PTransE. This is because KGML does not use paths for
learning, so it does not need much computation.

Further experiment of KGML

In “Hyperparameter « and prediction accuracy” section, we use diml = 100, dim2 = 100
and the used datasets are FB15k, WN18 and WD40k. In “Failure analysis” section, we use
diml = 100, dim2 = 100, « = 1.0 and the used dataset is WD40k. In “Embedding dimen-
sion and prediction accuracy” section and “Embedding dimension and computational
time” section, we use o = 1.0, and the used dataset is WD40k.

We evaluate results by Recallss; and Precision. In FB15k, WN18 and WD40k, since
the number of training data is larger than the number test data, there is a problem that
over-fitting can not be detected when evaluating by Recall. We evaluate the result with
Recalls.s; instead of Recall:
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Fig. 2 Convergence of learning in WD40k

o

TPtest
TPtest + FNtest’
where TPy is number of true positive in test data and FNy is number of false negative
in test data. Threshold for the output is 0.5.

We can not evaluate previous methods with Recall;.s; and Precision because previous

Recall;oss = (18)

methods has not fixed threshold. In principle the median score of the score distribution
the other methods generate can be used to set a cutoff for define the threshold of existing
methods. The WD40k source used in this study, wikidata, contains approximately 18,000
relationships. In order to perform cutoff using the median score of the score distribution,
it is necessary to perform all 18,000 calculations. We think there are practical problems in
making predictions for all 18,000 relationships. Since comparison with existing methods
has already been made at hits @ 1, this section evaluated KGML only.

Hyperparameter « and prediction accuracy

Table 3 shows change in Recalls.s; and Precision when hyperparameter « is changed. We
change the hyper parameter « as (1.0, 0.5, 0.0) and we observe the change of Recall;s; and
Precision. In WN18, Recally.s; and Precision does not change even if « is changed. This is
because WN18 has a small number of relations and relation prediction is not so difficult.
In FB15k and WD40k, decreasing « increases Precision and decreases Recalless. As shown

Table 3 Recalles; and Precision

FB15k WN18 WD40k
Method Recallyest Precision Recalliest Precision Recalliest Precision
KGML(a = 1.0) 0.981 0.848 0.974 0978 0913 0.897
KGML(e = 0.5) 0.986 0.809 0973 0.976 0.899 0.908
KGML(e = 0.0) 0.829 0.964 0974 0978 0.880 0912

Underlining in the table means the best accuracy in each method
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in Eq 15, we expected that decreasing « increases precision and decreases recall. The
result of case study is as we expected.

In Table 2, the smaller «, the higher hits@1. It is because the Precision is more important
than Rcalls; for high hits@1 score. For example, there is only one positive data in test
data and it is predicted as 0.49. In Recall;s, 0.49 is negative because 0.49 < 0.5 and score
is 0. In hits@1, if there is no output lager than 0.49, score is 1 because hits@1 is ranking

evaluation.

Failure analysis

KGMLs false positive predictions can be classified to the following four categories.

e A: deceived by majority cases
e B:structurally similar

e C: complete failure

For this failure analysis, 100 triples of KGML failures are randomly sampled. Then the
triples are manually evaluated and classified into the above three categories in order to
obtain the results in Table 4.

As shown in Table 4, the most frequent failure is type C, complete failure. As an example
of type C, KGML’s prediction of relation between “Norway” and “Eurocontrol” is “place of
death’, while its correct answer is “member of”. This kind of misprediction can be removed
easily, because “place of death” can not be relation between nation and organization if we
use filtering by meta knowledge.

The second most frequent failure is type A, deceived by majority cases. One of the
examples is the prediction of the relation between “Yvelines (location)” and “Bailly (loca-
tion)” The correct answer should be “contains administrative territorial entity’, but the
prediction by KGML was “shares border with”. “shares border with” is the most frequent
one for the relation between tow locations.

The least frequent failure is type B, structually similar. Structually similar means that the
abstract representation of relation A is the same as the abstract representation of relation
B. This failure means that KGML recognizes structural similarity between relations. As
an example of this type, KGML predicts the relation between “Generalissimo (word)” and
“Brockhaus and Efron Encyclopedic Dictionary” as “residence’, while its correct answer
is “described by source” “residence” and “described by source” can be paraphrased as “in”.
From the above failure analysis, we can say that even when KGML failed, more than half
of its failed prediction are complete failure but easy to remove. Other failed prediction
are valid in some sense (in types A and B).

Embedding dimension and prediction accuracy
For the dataset WD40k, we set parameters dim1 and dim2 as each of 4, 8, 12, 16 and 20,
and observed the Recalls.s; and Precision of KGML.

Table 4 Types and the numbers of failed predictions

Type Number of failures
A 25

B

C 66

Underlining in the table means the best accuracy in each method



Onuki et al. Applied Network Science (2019) 4:20 Page 14 of 17

Figures 3 and 4 are the results when dim1 and dim2 are set to each of 4, 8, 12, 16 and
20. In Fig. 3, The X-axis is dim1, and the Y-axis is Recalls. In Fig. 4, The X-axis is dim1,
and the Y-axis is Precision. Results of the same dim2 with five different values of dim]1 are
drawn in a line. As shown in Figs. 3 and 4, dim?2 is more important for the accuracy of
KGML than dim1.

Embedding dimension and computational time
For the dataset WD40k, we set parameters dim1 and dim2 as each of 4, 8, 12, 16 and 20,
and observed the the computational time of KGML.

Figure 5 shows the computational times of KGML for different embedding dimensions.
The X-axis is dim1, and the Y-axis is the computational time per one epoch (seconds).
As shown in the figure, the value of dim2 is not relevant to the computational time of
KGML. Only the value of dim1 is relevant to the computational time. As shown in Table 1,
entity_voc >> relation_voc in WD40k, which is the reason that dim1 is relevant to the
computational time of KGML because dim1 is the embedding dimensions of entity.

Discussion

As shown in “Comparison with previous methods” section, KGML is more accurate than
previous methods for the prediction of relations between two given entities. The dif-
ference of accuracy with FB15k and WD40k is bigger than that with WN18, so we can
conclude that prediction is harder when there are more possible relations.

As shown in “Hyperparameter o and prediction accuracy” section, decreasing o
increases Precision and decreases Recallyss. In KGML, although there is a trade-off
relationship between Precision and Recallseg, it can be controlled by hyper parameter «.

As shown in “Embedding dimension and prediction accuracy” section, dim2 is more
important for the accuracy of KGML than dim1. As shown in “Embedding dimension and
computational time” section, decreasing dim1 shortens the learning time. From the above,
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in order to achieve high prediction accuracy with short training time, hyperparameters
dim]1 and dim?2 should be searched as follows:

1. Set the parameter dim]1 as halves of those in previous methods as initial setting.
2. Set the parameter dim2 = dim1l

w

Until prediction accuracy is saturated, set them as twice of previous values, keeping
diml = dim?2.

Time per epoch(sec.) in WD40k
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Fig. 5 Computational time of KGML for different embedding dimensions
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4. While prediction accuracy does not decrease, fix dim2 and set dim1 as the half of

previous value.

The reason for setting parameters as half or twice of previous values is that the range of
possible embedding dimensions is fairly wide, so repeated bipartitioning will be desirable
for finding better parameters with less trials.

In this research, the parameters diml and dim2 of KGML were determined as fol-
lows. According to step 4 of the method of determining dim1 and dim2, when dim1 was
reduced from 100 to 50, the prediction accuracy was greatly reduced. For this reason,
dim1 has never been halved, and then dim1 and dim2 are equal.

Conclusion

In this paper, we propose KGML for predicting relations of KG from two given entities.
KGML is more accurate compared with TransE and TransR. KGML is more accurate to
DKRL which uses both KG triples and entity descriptions for learning. KGML is more
accurate to PTransE in and its learning speed is faster than PTransE. The characteristics
of KGML are as follows.

® Decreasing « increases Precision and decreases Recallyes:
e Bigger dim?2 for better accuracy
e Smaller dim1 for less computational time

The followings are left for our future work: prediction of ¢ from given / and / is not easy
for KGML, while it is possible for TransE and TransR.

There are attempts for generating semantic topic networks (Osborne and Motta 2015)
and for evaluating computational semantic analysis systems (SIGLEX 2017). Relation
prediction by KGML is the first step to contribute to the community of the Semantic Web.
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