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Abstract
We apply recent innovations in network science to analyze how correlations of stock
returns evolve over time. To illustrate these techniques we study the returns of 30
industry stock portfolios from 1927 to 2014. We calculate Pearson correlation matrices
for each year, and apply multilayer network tools to these correlation matrices to
uncover mesoscale architecture in the form of communities. These communities are
easily interpretable as groups of industries with highly correlated stock returns. We
observe that the flexibility, or the likelihood of industries to switch communities,
exhibits a statistically significant increase after 1970, and that the communities evolve
in ways consistent with changes in the structure of the U.S. economy. We find that
these patterns are not explained by changes in average pairwise correlations or
industry market betas. These results therefore underscore the potential for using
multilayer network tools to study time-varying correlations of financial assets.

Keywords: Stocks, Industries, Networks, Clustering, Modularity, Community structure,
Flexibility

Introduction
Correlations of asset returns are central to our understanding of financial markets. How-
ever, the high dimensionality and time-varying nature of correlation matrices poses
challenges for both estimation and interpretation. A large set of tools exists to address
these issues (Kenett et al. 2015; Uechi et al. 2014; Musmeci et al. 2015; Song et al. 2012),
but it remains difficult to answer simple intuitive questions about which groups of assets
are highly correlated with each other, and how these groups change through time. For
instance, Dynamic Conditional Correlation (DCC) models (Engle et al. 1992) allow for
estimation of changing correlation matrices, and principal components analysis reduces
the dimensionality of return correlation matrices (Connor and Korajczyk 1993). However,
neither of these technique yields results that allow for an intuitive understanding of which
assets share a high degree of correlation at a given point in time.
Network science provides methods for reducing the high-dimensionality of a correla-

tion matrix to yield easily interpretable summaries. The approach can be used to assess
structure within the correlation matrix that exists over a range of topological scales,
from the local pattern of correlations relevant to a single asset to the global pattern of
correlations between all assets. At the intermediate scale, tools from network science
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can be used to assess so-called mesoscale architecture in the correlation matrix (Tilak
et al. 2011; Pollet and Wilson 2010; Yang et al. 2014; Coats and Fant 1993). In general,
these mesoscale techniques allow for the representation of a high-dimensional structure
which falls between the microscale, which in our context would be the full correlation
matrix, and the macroscale, such as a single number representing the average correlation
across the entire matrix1. The mesoscale network structure of a correlation matrix can
be characterized by a variety of features, with the most common and well-studied being
the presence of communities or modules, which can be thought of as clusters of highly
correlated assets.
Network models in finance have a long history, going back several decades (Odom and

Sharda 1990). Despite their consistent utility, network-based tools are most often applied
to studying the business relations of firms (e.g., (Boss et al. 2004) or (Diebold and Yilmaz
2014)), or the impact of shocks on the financial system (JBookstaber and Kenett 2016;
Korniyenko et al. 2018). More recently, similar tools have been applied to analyze stock
comovements (Raddant and Kenett 2016; Tilak et al. 2011; Achard et al. 2008) and how
their dynamics may relate to volatility in financial returns (Aste et al. 2010; Isogai 2016),
or to cluster dynamics in the foreign exchange market (Fenn, et al. 2009). Here we expand
upon the contributions of these prior studies by utilizing network tools to characterize the
evolution of mesoscale architecture (Jalili and Perc 2017) in correlation matrices, which
we represent as an ordered multilayer network.
Specifically, in this paper we use recent developments in network science that have

taken tools to identify, extract, and characterize the mesoscale architecture of networks
and extended those tools into the time domain (Mucha et al. 2010; Holme and Saramaki
2015; Zalesky et al. 2014). This approach is particularly useful for assessing dependencies
in complex financial data sets (Musmeci et al. 2017; Fenn et al. 2010). To demon-
strate how the statistical tools to uncover mesoscale network reconfigurations can be
applied to financial markets, we use them to study the relationships between 30 differ-
ent industries’ stock returns over the last 88 years. The estimation yields a time series of
highly-correlated industry groups, or communities. The identified communities change
over time, demonstrating nontrivial dynamics in the mesoscale structure in the industry
stock return correlation matrix. The communities we identify are also intuitive and adjust
in response to changes in the underlying structure of the U.S. economy. We find that the
community structure is constant for the first 38 years of our sample, with a large commu-
nity of manufacturing industries and intermediate goods industries forming the dominant
block. This dominant community is accompanied bymany smaller ones, including several
composed of just a single industry.
Around 1970, these communities begin to change. In the context of our method, the

associated networks become more flexible as the communities shift and reorganize in
ways that reflect changes in the structure of the U.S. Economy. As an example, many
industries that produce intermediate goods leave the manufacturing community, and
join first an information technology community in 2000, and then an energy producing
community by 2010. Also of note, prior to 1970, Finance and Banking is assigned to a com-
munity with both Utility and Telecommunications firms, suggesting that financial firms
behaved more as a consumer utility. However, for all years after 1990, Finance and Bank-
ing is assigned its own community reflecting the finance sector’s increased independence
and importance in the U.S. economy.
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An important contribution relative to the existing applications of mesoscale techniques
to financial data is that our method also allows for statistical inference. By generating a
bootstrapped null model we are able to show that the flexibility of the network structure
has increased over time by a statistically significant amount, suggesting a more dynamic
structure of industry returns in the latter half of the sample. Critically, these intuitions
about the dynamic nature of financial assets are not possible using more standard mea-
sures of changes in stock market correlations. Specifically, we do not see a trend in
the average correlation across industries, nor do we find that our communities are well
described by their market beta, suggesting that simply relying on changing exposures to
a single principal component would not uncover these results. Following a description
of the approach used to analyze the mesoscale network architecture present in our data
source’s time-dependent correlation matrices, we present the results of the analyses per-
formed, followed by a discussion of the findings and the implications of these techniques
for the field.

Mesocale network architecture in time-dependent correlationmatrices
Initially, the study of network models of real-world systems predominantly focused on
models that considered each relationship between two system parts and summarized that
relationship in a single value. However, many systems are characterized by different sorts
of relationships between system parts, or relationships that vary over time. The multi-
plicity of potential edges between two nodes called for new tools. To address this rather
pervasive complexity, recent work in the field of applied mathematics has begun focusing
onmultilayer networks, which provide a framework that can be used to understand collec-
tions of networks in which the structure of individual networks are interdependent (Kivela
et al. 2014). We use this approach to represent the time-dependent correlation matrices
as an ordered multilayer network. Note that we use the word ordered to reflect the fact
that each correlation matrix has a location in time, and those locations are ordered from
earlier time to most recent time.
One useful way in which to study ordered multilayer networks reflecting the tem-

poral progression of internode interaction patterns is to identify and characterize the
network’s mesoscale architecture. One common mesoscale architecture studied in the
literature is that of modular architecture (Fortunato 2011): the presence of clusters of
nodes that have denser connectivity to other nodes in the same cluster than to nodes
in other clusters (Newman 2006). Such modular architecture – and its reconfiguration
over time – can be identified using data-driven clustering techniques developed for
network representations of relational data (Mucha et al. 2010). A particularly common
approach that has proven useful in the context of diverse complex systems is the cluster-
ing technique known as multilayer modularity maximization. This approach extends the
modularity maximization technique for static networks into the temporal domain, allow-
ing the investigator to detect dense clusters of nodes whose constituencies can change
over time.
Here we utilized this multilayer modularity maximization approach, and we opera-

tionalize the technique by using a Louvain-like locally greedy algorithm to maximize a
multilayer modularity quality function for ordered multislice networks. This procedure
assigns the 30 industries in the network to time-evolving communities by maximizing the
modularity quality index:
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Q = 1
2μ

∑

ijlr

[(
Aijl − γlPijl

)
δlr + δijωjlr

]
δ
(
gil, gjr

)
, (1)

where Aijl is the weighted adjacency matrix of the network, γl is the structural resolution
parameter that tunes the number of modules to which the algorithm is sensitive, Pijl is
the adjacency matrix of an appropriate null model, wjlr is the temporal resolution param-
eter which tunes the time scale of the dynamics to which the algorithm is sensitive, gil is
the community i in time layer l, gjr is the community j in time layer r, and δ is the Kro-
necker delta (Blondel et al. 2008). Due to the known near-degeneracies of the modularity
landscape (Good et al. 2010), we maximized this quality function 100 times (Mucha et
al. 2010). Following prior work (Bassett and Porter, et al. 2013), we chose γ and ω to be
constants, and set their values to unity. To confirm robustness of our results to reason-
able variations in this choice, we confirmed our main findings at both γ = ω = 0.95 and
γ = ω = 1.05.
After performing multilayer modularity maximization, it is often of interest to extract

summary statistics from the resulting partitions of network nodes into time-evolving
communities. Such statistics can address diverse features of the network reconfigura-
tion, including the stationarity of the communities, the variability of the communities,
and time-dependent functions of community size, among others. Based on prior studies
of multilayer network models of time-varying correlation matrices, we chose to summa-
rize the nature of module reconfiguration over time by calculating the network flexibility
(Bassett et al. 2011). Network flexibility is equal to the number of times that a node
switches module allegiance over the set of time windows, divided by the number of pos-
sible times that a node could change module allegiance. Note that the number of possible
times is equal to the number of time windows minus 1. Flexibility is then normalized by
dividing by the number of modules observed.

Null model construction and statistical testing

When implementing community detection techniques in the context of real-world data,
it is important to keep in mind that these techniques always produce a solution, and it
is the investigator’s responsibility to evaluate the validity of that solution. To assess the
statistical significance of the patterns we identify in the data, we compare the empirically
derived statistics to those expected in an appropriate dynamic network null model. The
null model we elect to consider is constructed by permuting the order of layers in themul-
tilayer network uniformly at random (Bassett and Porter, et al. 2013). We maximize the
multilayer modularity quality function of this null model network, and obtain associated
values of the quality index Q.
Asmentioned in the previous section, to confirm robustness of our results to reasonable

variations in the choice of γ and ω, we compared the community assignments obtained
at these values to those obtained at γ = ω = 0.95 and γ = ω = 1.05 (Bassett and Porter,
et al. 2013). Specifically, to compare community assignments, we calculated the z-score of
the Rand coefficient (Traud et al. 2011). To compare two partitions α and β , we calculate
the z-score of the Rand index

zαβ = 1
σwαβ

(
wαβ − MαMβ

M

)
, (2)
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where M is the network’s total number of node pairs, Mα is the number of pairs that
are in the same module in partition α, Mβ is the number of pairs that are in the same
module in partition β , wαβ is the number of pairs that are assigned to the same module
both in partition α and in partition β , and σwαβ is the standard deviation of wαβ (as in
(Traud et al. 2011)).
Using the formulation above, we can assess the similarity between any two partitions.

Next, we define themean partition similarity z to be the mean value of zαβ over all possi-
ble partition pairs for α �= β . We observed that the community assignments obtained at
γ = ω = 1 were statistically similar to those obtained at γ = ω = 0.95 and γ = ω = 1.05.
Specifically, we observed that the z-score of the Rand coefficient was consistently greater
than 1.96 (p < 0.05): to be exact, z = 22.46 between γ = ω = 0.95, and z = 235.75
between γ = ω = 1.05. These findings indicate that the results that we report are robust
to reasonable variation in parameter choices.

Applications for industry portfolios
Our primary focus for this analysis is industry portfolios of stock returns. While our
methods are very general, and could in theory be used for any set of financial assets,
including individual firms, we view our focus on industry portfolios as a natural appli-
cation of our methodology for several reasons. The first reason is that using diversified
portfolios reduces the noise coming from firm-specific shocks, allowing us to uncover
information about the structure of the macroeconomy. The second reason is that using
portfolios of stocks in a given industry allows for straightforward economic interpreta-
tion of our communities. For instance, if one were to generate communities of individual
stocks, these communities would require a second step of analysis to understand what
common characteristics link stocks in each community.
However, there are some limitations inherent to this approach. The most notable is that

the results will be sensitive to the initial classification of stocks to various industries. We
therefore proceed using a standard set of industry portfolios (French 2016). Nevertheless,
it is important to note that our findings may represent changes in the relation between
industries, or changes in the composition of firms classified to a given industry.

Constructing correlations

Using Ken French’s Data Library, we obtain daily stock return time series over 88 years
(from July 1, 1927 and ending on December 31, 2014) for 30 different industry portfolios
(French 2016). These industry portfolios are constructed as the value weighted average
returns for a set of firms in a given industry. The industry classifications are based on
firms’ 4-digit SIC codes as assigned by COMPUSTAT. For instance, the returns to the
industry “beer” in 1995 are calculated as the value-weighted portfolio return of all firms
classified with 4-digit SIC codes 2080-2085 in 1995. These industry portfolios are stan-
dard in the finance literature, and so we view them as a natural testing ground for our
methodology.
Using these returns, we then construct correlation matrices – or weighted undirected

networks or adjacency matrices – in which network nodes represent industries, and net-
work edges represent the Pearson correlation coefficient between financial returns in
pairs of industries. We construct these matrices for each calendar year in our sample,
giving us 88 individual correlation matrices2.
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Fig. 1 Community Assignments: Data and Null Model. The left hand plot shows community assignments for
the 30 industry portfolios over the 88 years from 1927 to 2014. This structure is constant prior to 1960, but
shows substantial changes in the latter half of the sample. The right hand plot shows a representative run of
the “null model”. The null model is constructed by randomizing the order of the 88 sample years, and is
constant over the entire sample

Mesoscale network architecture in time-dependent correlation matrices

To determine whether the time-dependent correlation matrices of industry stock returns
displayed mesoscale architecture, we performed a network-based clustering technique
known as community detection (described earlier) using our 88 yearly correlation matri-
ces. The quality with which communities (or modules) could be observed was quantified
by the modularity quality index Q, and the statistical significance of these modules was
determined by comparing the empirically derived Q to that expected in an appropriate
dynamic network null model. We observed that the Q values of the real data were signifi-
cantly greater than those of the null model (permutation testing: p = 4.2 × 10−118). This
result indicates that time-dependent correlation matrices of industry stock returns dis-
play strong modular architecture, with industries in one cluster having a high correlation
with industries in that same cluster and a low correlation to industries in other clusters.
Figure 1 shows the identified communities of industries both for the data and for a rep-

resentative null model network. The left hand panel shows the community structure in
the data. This structure is constant prior to 1960, but shows substantial changes in the lat-
ter half of the sample. The right panel shows the community structure for a representative
null model network. This structure is constant over the entire sample.

The evolution of industry correlations

After revealing significant modular structure in these correlation matrices, we next
turned to asking how that modular structure changed across our sample. Figure 2 shows
the network partitions at 6 different points in time. One of the most striking patterns in
the data is that the composition of communities is constant over the first 38 years of the
sample. From 1927 to 1964, the detection algorithm allocates the 30 industries to the same
10 modules in each year. Several industry portfolios are allocated to their own unique
modules, including Personal and Business Services (Servs), Tobacco Products (Smoke),
Beer and Liquor (Beer), and Restaurants and Hotels (Meals), as well as the Other Indus-
tries (Other) portfolio, which takes all industries not readily classified into the other 30
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Fig. 2 Snapshots of Community Assignments from the Data. This figure plots snapshots of industry
communities every 10 years for the 1960 to 2014 sample. Note that the community structure was constant
before 1960. Lines indicate a pairwise correlation of industry returns greater than 0.7. Darker lines indicate a
stronger connection. By 1970 the communities begin to change modestly, with increasing movement
through the 80s, 90s, and 00s

portfolios. This industry is unique in that it stays in its own module for the entirety of the
sample.
The largest module over this period contains 10 industries including Automobiles and

Trucks (Autos), Aircraft, Ships, and Railroad Equipment (Carry), Construction and Con-
struction Materials (Cnstr), Transportation (Trans), Fabricated Products and Machinery
(FabPr), Electrical Equipment (ElcEq), Oil and Natural Gas (Oil), Business Supplies and
Shipping Containers (Paper), Steel Works (Steel), and Chemicals (Chems). These mostly
manufacturing industries form a dominant block in the correlation structure prior to
1965. The next two largest communities include consumer goods industries, with one
containing Clothing (Clths), Textiles (Txtls), Wholesale (Whlsl) and Printing and Pub-
lishing (Books), and the other containing Household Goods (Hshld), Food Products
(Food), Recreation (Games), Retail (Rtail), and Business Equipment (BusEq). The last
two communities include one with Coal Production (Coal), and Mining (Mines), as well
as one with Telecommunications (Tlcm), Utilities (Util), and the Financial and Banking
Industry (Fin).
By 1970 these communities begin to change, with only modest changes at first. Oil and

Natural gas join the community with Coal andMining to create a clear energy sector. This
community expands to include Steel Works in 1980. By 1990, following the rising share of
the financial industry in the U.S. economy throughout the 1980s, the Financial and Bank-
ing Industry has been left in its own community, as Telecommunications and Utilities
have migrated to the Household consumer module. A similar observation was reported
by Di-Matteo et al. (2009) publication describing the central role that the Financial sec-
tor plays in the hierarchical organization of financial market sectors, and a year later by
Kenett et al. (2010) in their publication revealing that Financial sector stocks were found
to be the most influential in the correlation profile of the New York Stock Exchange sys-
tem. It is interesting to note that it was later found that this centrality decreased in the
years leading up to the financial crisis (Aste et al. 2010).
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More changes can be seen by 2000. With the rise of information technology, the
Services Industry is joined by Telecommunications and the intermediate goods produc-
ing industries of Electrical Equipment, Fabricated Products, Steel Works, and Business
Equipment to form a dominant community. This marks the end of the large manufactur-
ing block as the largest community, a role it held for the prior 70 years. The information
technology community however proves short-lived, as by 2010 many of the interme-
diate goods industries have joined the energy producing sector corresponding with a
period of volatile global oil prices and the rise of onshore U.S. production of shale oil
and natural gas. While not shown, this structure has remained constant through the
end of our data (2014).

Community flexibility

To statistically quantify the degree of network module changes in this system, and to
prove that those changes are not expected in an appropriate dynamic network null model,
we calculated a network statistic known as flexibility. Flexibility describes the frequency
with which industries switch modules over time (as described earlier). Figure 3 shows our
results. The top panel in the figure plots our estimate for the overall flexibility, which is
the total number of community changes through time. The estimated value for the real
data is plotted as well as the distribution of this value for the null model networks. We
observe that network flexibility was significantly greater in the real data than in the null
model networks (t-test with α < 0.05: p = 2.5×10−4). These statistical tests indicate that
the temporal variation in mesoscale network structure that we observe in industry stock
returns is non-trivial.
We can also calculate flexibility for each time period (averaged over industries), and

examine the presence of flexible versus rigid time periods (middle panel of Fig. 3). We
observed that flexibility has substantially increased over time, and that this increase is sta-
tistically significant relative to a null model which randomizes industries within each time
period. Finally, we can calculate flexibility for each industry to determine which indus-
tries are flexible, and which industries are rigid. We find that relative to the Null Model,
the most flexible industries are Pharmaceuticals, Oil and Gas, Wholesale, and Business
Equipment.
It is important to note, however, that changes within industry sectors may also impact

the perceived flexibility of the industry over time. For example, information services was
not a significant portion of the Personal and Business Services industry sector for the
first several decades of the data set, but in recent years has become a major constituent
of the economy. The same can be said for computers, which today constitute a significant
portion of the Business Equipment industry sector, though that was not the case in 1927.
Therefore, our estimates of flexibility may capture either changes in the relations between
industries, or changes in the internal compositions of firms within an industry.

Discussion of other statistical methods
Our method of community detection is able to reveal time variation in the correlation
of industry stock returns. Estimating correlations between financial assets is a central
problem in financial markets, but the high dimensionality of correlation matrices makes
the problem quite difficult. The most common method for estimating changes in cor-
relations is the DCC method of (Engle et al. 1992). However, DCC quickly becomes
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Fig. 3 Flexibility of Communities in Multilayer Networks. a The box plot shows our estimate of the distribution
of flexibilities for the entire data set, which is the total number of community changes through time. b The
flexibility of the annual null matrix is 0, so all of the industries in the data set are more flexible than their
counterparts in the null model, though one standard deviation below the mean for some of the industries
fell below 0. The differences observed between the network and null matrix flexibilities were highly
significant (p = 2.5 × 10−4). These statistical tests indicate that the temporal variation in mesoscale network
structure that we observe in industry stock returns is non-trivial. c The quarterly flexibilities are much more
variable in both the network matrix and the null matrix. Some industries in the network matrix are more
flexible than their counterparts in the null matrix e.g., Pharmaceuticals, Oil and Gas, Wholesale, and Business
Equipment, and others are less flexible. The differences observed between the network and null matrix
flexibilities were also highly statistically significant (p = 8.4 × 10−5)

computationally infeasible as the number of assets increases, and is more typically used
in contexts where there are only two assets. For instance, for our data we found that
the standard DCC estimation technique failed to converge when using either daily or
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monthly return data. Moreover, while this technique can yield time-varying correlation
matrices among a few assets, the economic meaning of these matrices is not easily
interpretable.
Index models (Sharpe 1963), often implemented via principal components analysis

(Connor and Korajczyk 1993), allow for a reduction of the dimensionality of stock return
correlations. Unfortunately this technique, as applied to stock returns, yields estimated
principal components are not easily interpreted in terms of their economic content. The
exception to this is the first principal component, which is typically very close to the
return to the aggregate market portfolio. Market betas are then roughly equivalent to
loadings on this first principal component, and are a key statistic for capturing risk in
financial markets. One potential concern is that our method is simply sorting industries
based on their market beta, and that calculating rolling market betas would be enough
to uncover the patterns we find. Another concern is that the increased flexibility over
the latter half of the sample is simply driven by an increase in the overall correlation
of industry returns, which is a proxy for the variation explained by the first principal
component.
To address these concerns, we construct two intuitive measures for each year. The first

is simply the average pairwise correlation across all industries constructed using daily
returns. The second is the average industry market beta of each community in each year.
Figure 4 shows the results. The first panel shows that there is no discernible trend in over-
all industry correlation over our period. While industries do become less correlated on
average in the 2000s, this correlation rises in the period since the global financial crisis.
This finding suggests that our changes in community flexibility are not being driven sim-
ply by changes in overall industry correlation. The second panel of the figure shows the
average market beta of each community within each year. While there are differences in
market beta across communities, these differences are not persistent. For instance, con-
sidering the first half of the sample in which our community structure is completely stable,
we see that the betas of individual communities is highly volatile. These findings suggest
that time-varying loadings on the first principal component of returns will not be enough
to explain our findings.

Conclusion
In this study, we exercise recently-developed tools from the field of network science to
characterize financial returns in the stock market. Over the course of 88 years from
July 1, 1926 to December 31, 2014, we demonstrate that 30 common industries change
in their patterns of return correlation with one another. We study these changes using
an ordered multilayer network representation of the data, and apply a dynamic com-
munity detection technique to reveal clusters of industries (or modules) that change in
their composition over time. We demonstrate that these tools can be used to quantify
a novel statistic to describe the dynamics of industry return correlations – flexibility –
which has steadily increased from 1926 until 2014. Moreover, we show that the com-
munities have evolved in ways that reflect the changing structure of the U.S. Economy.
Finally, we show that these insights are not revealed using aggregate correlations or
changing market betas. Taken together, these results underscore the potential for using
network science tools to better understand mesoscale collective dynamics in financial
markets.
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Fig. 4 Aggregate Correlation and Industry Betas. The top panel plots the average pairwise correlation of all 30
industries for each year in the sample. We observe that there is no discernible trend in overall industry
correlation over the period that we study. The bottom panel plots the average industry market beta for each
community in each year. While there are differences in market beta across communities, these differences are
not persistent, suggesting that time-varying loadings on to the first principal component of returns are not
sufficient to explain our findings

While the results of the analysis of industry returns in this study are interesting in
their own right, this study also highlights the potential utility of these techniques for
understanding time-varying correlation matrices of asset returns. It is plausible that
this dynamic network-based approach could have important applications for portfolio
analysis and our understanding of financial risks.

Endnotes
1 For example, computing the column and row mean to identify the general level of

comovement across the whole system yields the global network connectedness. This
statistic has been used to study the global banking system (Diebold and Yilmaz 2014).

2 These correlations are nearly all positive, but a small number (458 of the 79,200) are
negative. Sincemost of these negative correlations are close to zero, we proceed by setting
all negative correlations equal to zero.
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