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Abstract

Social structures and interpersonal relationships may be represented as social networks
consisting of nodes corresponding to people and links between pairs of nodes
corresponding to relationships between those people. Social networks can be
constructed by examining actual groups of people and identifying the relationships of
interest between them. However, there are circumstances where such empirical social
networks are unavailable or their use would be undesirable. Consequently, methods to
generate synthetic social networks that are not identical to real-world networks but
have desired structural similarities to them have been developed. A process for
generating synthetic social networks based on assigning human personality types to
the nodes and then adding links between nodes based on the compatibility of the
nodes’ personalities was developed. Two new algorithms, Probability Search and
Compatibility-Degree Matching, for finding an effective assignment of personality types
to the nodes were developed, implemented, and tested. The two algorithms were
evaluated in terms of realism, i.e., the similarity of the generated synthetic social to
exemplar real-world social networks, for 14 different real-world social networks using 20
standard quantitative network metrics. Both search algorithms produced networks that
were, on average, more realistic than a standard network generation algorithm that
does not use personality, the Configuration Model. The algorithms were also evaluated
in terms of computational complexity.

Keywords: Social networks, Network generation, Network metrics, Personality
compatibility, Probability search, Compatibility-degree matching

Introduction and motivation
Social network analysis is the study of social structures and relationships. Built from

the theoretical foundation of graph theory, social networks are formal mathematical

structures, consisting in their simplest form of nodes corresponding to actors or

agents, where actors or agents may be individual people or identifiable groups of

people, and links between pairs of nodes corresponding to relations between them,

where relations may be any type of contact or connection between the actors or agents

the nodes represent (Knoke and Yang, 2008) (Scott 2000).

The study and use of social networks often begins from and depends on empirical

social networks. Empirical social networks are obtained directly from the real-world

group or organization they represent, by the process of investigators identifying the
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people in the group or organization of interest and determining if the relationships to

be represented in the network exist between them. Empirical social networks obtained

by observation are valuable, but there are issues with them. Empirical social networks

can be difficult and expensive to obtain, especially if the process for doing so is manual,

and consequently relatively few in number and less than comprehensive in covering the

range of possible social networks. They may not be available in the size, in terms of num-

ber of nodes or links, that an investigator needs. And while obtaining social networks from

social media or other digital sources is much easier today than in the past, such empirical

networks can be vulnerable to malicious recovery of private information from them using

de-anonymization methods (Narayanan et al, 2011) (Narayanan and Shmatikov, 2008).

Synthetic social networks, generated algorithmically rather than obtained empirically,

can mitigate these issues. Given effective social network synthesis methods, a user

could produce a set of synthetic social networks, individually non-identical but collect-

ively with specific desired structural characteristics, including size. A set of multiple so-

cial networks could be used to systematically test a network analysis or visualization

tool (Staudt et al., 2017), and would allow the deliberate introduction of deviations

from the defining characteristics of the class of social networks for testing purposes

(Tsvetovat and Carley, 2005). In addition, synthesizing social networks is an approach

to anonymization, which may protect the privacy of the individuals represented in an

empirical social network (Narayanan and Shmatikov, 2009). Researchers may use the

synthetic social networks without privacy concerns and freely share them with other re-

searchers to allow repeatable experiments (Zhou et al., 2008).

However, an arbitrary or random graph is unlikely to be suitable as a synthetic social

network for any particular application. To be useful a synthetic social network must “ap-

proximate certain qualities or parameters found in the empirical data” (Tsvetovat and

Carley, 2005). In other words, a useful synthetic social network must possess the structural

characteristics expected for the class of social networks it is intended to exemplify, without

being simply a copy of one of those networks. For brevity, a synthetic social network with

the structural characteristics of a desired class of social networks, perhaps as measured by

suitable quantitative network metrics, will hereinafter be described as realistic.

A number of synthetic social generation methods exist; several important ones will be

described later. Broadly speaking, the existing methods are based on replicating structural

characteristics of an exemplar network. Our goal in this work was to examine whether a

network generation method based instead on personality compatibility between nodes

(where the nodes are assumed to correspond to persons) could be effective. Social net-

works based on personality compatibility can be of significant interest to organizations that

must organize teams of persons to interact and work effectively, especially in challenging

circumstances. We sought to develop a capability to synthesize personality-based social

networks for future space exploration missions and colonies. In such missions, crew com-

patibility will be essential, so a capability to model social network formation and camarad-

erie within such circumstances could be very useful to mission planners and analysts.

Given the large number of people participating in online social networks, such as

Facebook and Twitter, it is unsurprising that much current social network research

tends to focus on large networks. Often, web based networks are scale free and the

thousands of links and nodes tend to result in similar metrics. The research presented

in this article is focused on relatively small networks with 10 to 100 nodes. The
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real-world networks used as exemplars are drawn from a wide range of organizations,

ranging from an accounting firm to a monastery.

Two algorithms able to automatically synthesize realistic social networks using per-

sonality compatibility are described and compared in this article. The algorithms are

given as input a set of nodes of the desired size. The algorithms then assign, using dis-

tinctly different methods, a personality type to each node that can be used as the basis

for stochastically generating links between the nodes. Link generation between a pair of

nodes depends of the relative compatibility of the personalities assigned to the two

nodes. Personality type compatibilities are encoded in a personality compatibility that is

an input to the generation process. Because link generation is stochastic given a per-

sonality type assignment to the nodes, multiple non-identical social networks can be

generated as needed from a single assignment once a suitable assignment has been

found. The algorithms have been shown to generate synthetic social networks that are

significantly more realistic, in terms of their structural properties as measured by a

range of standard graph metrics, than social networks generated using a standard net-

work generation algorithm that does not use personality, the Configuration Model. The

generation process has been demonstrated to work with multiple personality compati-

bility tables, and is thus adaptable to different personality type models.

The remainder of this article is structured as follows: Section 2 provides background

information about social network analysis. Section 3 is a brief survey of important re-

lated work. Section 4 explains the social network synthesis algorithms developed in this

research. Section 5 describes the software implementation of the three algorithms and

discusses their execution. Section 6 reports the results of testing and comparing the al-

gorithms, including quantitative measures. Finally, Section 7 states the conclusions of

this work and suggests possible future work.

Background
This section provides background information on graph theory and social network ana-

lysis, and explains the metrics that were used to measure networks’ structural similarity.

Social network analysis

The details vary by specific application, but in their simplest form, in a social network the

nodes may correspond to people in a group, organization, or population of interest. The pres-

ence of a link connecting two nodes represents some relationship, such as kinship, friendship,

collaboration, or information exchange, between the people corresponding to the nodes the

link connects. For example, social networks are used to represent social distance in (Li et al.,

2018) and information spreading in (Bouanan et al., 2018). The study of the structural prop-

erties of such social networks can provides insight into the group, organization, or population

it represents. As an example, Fig. 1 shows a real world social network found to exist within a

corporate law firm in the northeastern United States (Lazega 2001).

Classes of social network

Not all social networks have the same structural characteristics and properties. Social

networks that represent communications in terrorist organizations might be expected

to differ in structure and activity from those that represent collaborations in a scientific
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community. A set of social networks that represent instances of some well-defined cat-

egory of group of organization will be termed a class. Some examples of classes of so-

cial networks are listed in Table 1; several of the examples in the table are based on

(Easley and Kleinberg, 2010). The examples in Table 1 are all social networks, but intui-

tively they are not the same in terms of structure.

Note that in the last example in Table 1, the nodes of the social network correspond

to organizations, not individual people. That example is included in order to draw at-

tention to this distinction. This work focuses on social networks where the nodes cor-

respond to people. The potentially different structure of an organizational-node

network as compared to a people-node network will become of interest later.

A particular social network may be an element of one class, but not of another, by

virtue of its structural properties. Therefore, two operations are of interest: (1) Mem-

bership; given a social network, how can it be tested for membership in a particular

class of social networks? (2) Generation; given a description or example of a particular

class of social networks, how can a synthetic social network that is a member of that

class be generated? This work focuses on the second operation.

Fig. 1 Friendship within a law firm (Lazega 2001)

Table 1 Classes of social networks (Easley 2010)

Group or organization Nodes Possible link(s)

Terrorist organization People Communications
Recruitment

High school student body People Romantic relationship
Athletic teammates

Social club People Friendship
Sponsorship

Employees of a corporation People Exchange of email
Supervisory authority

Regional or national populace People Relatedness
Transmission of infection

Financial system Banks Interbank loans
Currency exchanges

O’Neil and Petty Applied Network Science            (2019) 4:19 Page 4 of 49



Data structures and attributes for social networks

In the implementations described later, social networks were stored internally using ad-

jacency matrices (Gersting 2014). More sophisticated data structures for social net-

works are available, but the networks used in this work were relatively small and

simple adjacency matrices were sufficient. As for the attributes of the networks, two

are important. First, networks may be weighted or unweighted. This work is concerned

solely with the absence or presence of links, and therefore only unweighted networks

were used. Second, networks may be symmetric or asymmetric. Links in symmetric net-

works typically represent mutual or two-way relationships, whereas links in asymmetric

networks represent one-way relationships. This work is concerned solely with mutual

relationships, and therefore symmetric networks were used.

Social network metrics

In this context, metrics are numerical measurements of a social network’s structure. A

wide range of different metrics are available. Graph theory provides a number of abstract

metrics, sometimes known as graph invariants, that quantify some aspect of a network’s

structure without attaching any specific semantic meaning to the metric’s values. Exam-

ples include maximal degree, girth, or vertex chromatic number (Bang-Jensen and Gutin,

2008). Social network analysis has defined additional metrics that are intended to measure

something about the network that has semantic meaning in the context of the social ap-

plication of the network. These metrics include centrality (Scott 2000), reciprocity (New-

man 2010) (Scott & Carrington, 2011), and clustering coefficient (Easley and Kleinberg,

2010). Finally, overarching empirically-derived structural properties common to categories

of networks, such scale-free and cellular, may apply to social networks (Tsvetovat and Car-

ley, 2005). All are intended to measure in an objective and quantitative way some aspect of

a network’s structure that may be useful for a particular application. The intent is that realis-

tic synthetic social networks would have metric values similar to those of the real-world so-

cial networks they were intended to mimic, without having identical structures.

Many network metrics have defined, and clearly not all could be used in this work.

From those available, 20 were carefully selected to assess the similarity of real-world

and synthetic social networks in this work. That selection was made in part based on

the motivation of studying the social networks of future space colonies. Thus metrics

that characterize information flow, integration of individuals into the network, level of

camaraderie indicated by clustering, and level of influence among the individuals are of

interest. Because this work used only undirected symmetric networks, only metrics

suitable for those networks were considered.

The metrics selected include both standard metrics of graphs’ structural characteris-

tics (nodes, links, components, degree, radius, and eccentricity) and metrics considered

to be relevant to social network structure, per (Rapoport 1957) (Freeman 1978) and

(Bonacich 2007). In the former category, the number of nodes, links, and components,

the network’s radius and eccentricity, and the nodes’ degrees fundamentally

characterize a network’s structure.

In the latter category, metrics found useful to study team structure and interaction

were of special interest. Global clustering coefficient, average clustering coefficient, Gini

coefficient, and number of communities provide some insight to the tight knit groups
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and the distribution of nodes among the communities. Average betweenness serves as

a basis of comparison for maximum betweenness to identify the information brokers or

potential bottle-necks in the network. Likewise, average closeness serves as a basis of

comparison for minimum closeness to identify the nodes that are at the heart of com-

munities. Mean path length, network radius, average eccentricity, and network diam-

eter are geodesic distances that can be used estimating the rate of information flow

across a network. Eigencentrality indicates the level of influence that a node may exert

on other nodes. In some similar applications, clustering, path length, betweenness,

closeness, and diameter were used in a study of information sharing and collaboration

in small groups (Manso and Manso, 2010), betweenness was used in a study of inter-

action in programming teams (Gloor et al., 2011), density and diameter were used in a

study of authorship collaboration (Gajewar and Das Sarma, 2012), eigencentrality was

used in a study of leadership in social groups (Bullington 2016), and Gini coefficients

have been used as a measure of inequality of participation in digital health social net-

works (van Mierlo et al., 2016). Table 2 lists and defines the metrics used.

Personality models

In 1923, Jung described distinct human personality types based upon his clinical observa-

tions (Jung 1971). Using Jung’s ideas, in 1944 (Myers, 1962) developed a structured ap-

proach to identifying personality types and published a manual describing a personality

typing process that later became known as the (Myers & McCauley, 1985) Type Indicator

(MBTI) (Smathers 2003). In the MBTI typing scheme, each person is categorized on four

“dichotomies” or dimensions, held to correspond to different aspects of personality. Two

“preferences” or values are possible on each dichotomy, yielding a total of 16 different per-

sonality types. The four dimensions and their two preferences each are:

� Attitude (inward or outward focus); Extraversion (E) or introversion (I).

� Perceiving (information gathering) function; Sensing (S) or Intuition (N).

� Judging (deciding) function; Feeling (F) or Thinking (T).

� Lifestyle preference; Perceiving (P) or Judging (J).

Table 3(a) shows the estimated proportion of the United States population who would be

categorized into each preference, with each dimension considered separately (Marioles et al.

1996; Mitchell, 1996). Table 3(b) shows the result of calculating a proportion for each person-

ality type, based on the dimensions’ proportions. A detailed description of the 16

Myers-Briggs types is beyond the scope of this article; for details see (Keirsey 1998). The im-

portant ideas here are that each person may be categorized as having one of the 16 types and

that the likely compatibility of two people may be estimated from their personality types.

Critics of the MBTI personality model point to apparent problems. Metzner et al.

suggested that the “rigid” dichotomies of the Jungian personality types constitute a

“conceptual straight jacket” and proposed a reformulation of the dichotomies as pairs

of primary and inferior psychological functions (Metzner, Burney, and Mahlberg, 1981).

Additionally, McCrae and Costa commented that the MBTI lacks a neuroticism factor,

perhaps because emotional instability was not part of Jung’s type definitions, and it ap-

pears that Myers and Briggs believed that each personality type was positive. The lack
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of a negative factor may make the interpretation of MBTI results easier to accept. How-

ever, it could also allow the omission of information that would be useful to employers,

coworkers, counselors, and individuals (McCrae and Costa, 1989).

Nonetheless, the MBTI model is used and accepted at the U. S. National Aeronautics

and Space Administration, the organization from which this work’s motivating applica-

tion is drawn, e.g., (Nelson and Bolton, 2008). It is also widely used in industry in the

United States, including 89 of the Fortune 100 companies (Grant 2013), for applica-

tions that include increasing self-awareness to support decision analysis (Malik and

Zamir, 2014) (Weiler 2017), improving team performance by explaining communica-

tion styles (Choo, Lou, Camburn, et al., 2014), identifying correlations between per-

formance and personalities (Felder 2002) (Felder 2005) (Kiss, Kun, Kapitány, and Erdei,

2014) (Furnham and Crump, 2015a) (Furnham and Crump, 2015b), and identifying

Table 2 Social network metrics used in this research

Metric Definition

Nodes Number of nodes in the network; here denoted n.

Links Number of links in the network; here denoted m.

Components Number of disjoint sets of connected nodes in a network.For a connected
network, the value of this metric is 1.

Network density Number of links in the network divided by the number of possible
links n · (n – 1) / 2; here denoted p.

Average degree Average, or mean, of the nodes’ degrees.

Standard deviation degree Standard deviation of the nodes’ degrees.

Global clustering coefficient Ratio of closed nodes of vertices to connected triplets of nodes.

Average clustering coefficient Average of the nodes’ local clustering coefficients;the latter is the ratio of actual
links to neighborsto possible links to neighbors for a given node.

Number of communities Number of clusters in the network

Cluster Gini coefficient Inequality of distribution of nodes among communities

Mean path length Mean of the number of links in the shortest path betweeneach pair of nodes.

Average betweenness Mean of the nodes’ betweenness centrality values, which is the number
of shortest paths between pairs of node that pass through a node.

Maximum betweenness Maximum of the nodes’ betweenness centrality values.

Average closeness Mean of the nodes’ closeness centrality values, which is the sum of the path
lengths between the node and all other nodes.

Minimum closeness Minimum of the nodes’ closeness centrality values.

Average eigencentrality Mean of the nodes’ eigencentrality (also known as eigenvector centrality); the
latter is a measure of the number of links each of a nodes neighbors have.

Minimum eigencentrality Minimum of the nodes’ eigencentrality.

Network radius Minimum of the nodes’ eccentricities; the latter is the maximum length of the
shortest paths from a node to all other nodes.

Average eccentricity Mean of the nodes’ eccentricities.

Network diameter Maximum of the nodes’ eccentricities.

Table 3 Personality type frequencies in the U. S. population (Marioles et al. 1996)

(a) (b)

E 0.463 I 0.537 ENTJ 0.045 ESTJ 0.097 INTJ 0.053 ISTJ 0.112

N 0.319 S 0.681 ENTP 0.033 ESTP 0.070 INTP 0.038 ISTP 0.081

T 0.529 F 0.471 ENFJ 0.040 ESFJ 0.086 INFJ 0.047 ISFJ 0.100

J 0.581 P 0.419 ENFP 0.029 ESFP 0.062 INFP 0.034 ISFP 0.072
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correlations between professions and personalities (MH, 1977) (Freeman 2009) (Jafrani

et al., 2017) (Rosati, 1993) (Capretz, 2002) (Cohen et al, 2013) (Loffredo et al, 2008)

(Moutafi et al, 2007) (Emanuel, 2013).

Other personality models exist. Arguably among the best known is the Five Factor or

OCEAN model. After analyzing correlations among 35 personality traits, Tupes and Chris-

tal identified five personality factors: Surgency (Extraversion), Agreeableness, Dependability

(Conscientiousness), Emotional Stability (versus Neuroticism), and Culture (Openness)

(Tupes and Christal, 1992) (John and Srivastava, 1999). Goldberg referred to these factors

as “The Big Five” (Goldberg 1990). McCrae and Costa interpreted the factor Culture as

Openness to experience (McCrae and Costa, 1987). Ruston and Irwing rearranged the first

letters of the factors to form the mnemonic OCEAN (Rushton and Irwing, 2008).

Personality compatibility

The National Aeronautics and Space Administration (NASA) defines Team Risk as the

risk associated with a decrease in performance and behavioral health due to inadequacy of

a team’s cooperation, coordination, communication, and psychosocial adaption

(DeChurch et al., 2015). “Currently, NASA has no formalized process to compose mission

teams from a scientific perspective, but this is an identified need for future exploration

missions” (Landon 2015). Anania asserts that “crew compatibility on an interpersonal

level will need to be a major factor in order to ensure optimal communication and coord-

ination within the team” (Anania et al., 2017). Brandley and Herbert applied MBTI to

their study of Information Systems teams and found that a team’s personality type com-

position is partially related to performance (Bradley and Hebert, 1997).

Personality compatibility may play a significant role in link formation in real-world

social networks. Back asserted that “personality differences influence social relation-

ships”, but noted that social network research rarely considers the effects of individual

personalities (Back 2015). With that in mind, the algorithms described here both make

use of inferred personality types for the people represented by the network’s nodes and

base the probability of a link forming between two nodes on the compatibility of the

personality types associated with those nodes.

Table 4 is such a personality compatibility table for the MBTI personality types. The

rows and columns are the 16 MBTI personality types. Each entry in the table is the

probability of a link forming in a social network between two nodes if the nodes’ associ-

ated personality types are those of the entry’s row and column. Note that the table is

symmetric, i.e., the two entries for two personality types are the same regardless of

which type is on the row and the column. Table 4 was constructed from the personality

type descriptions in (Keirsey 1998); the process for doing so is detailed in Appendix 1.

Homophily and heterophily can be modeled as likelihoods of link formation among

personality types. In Table 4, values on the diagonal of the table represent a level of

homophily because cells on the diagonal are the intersections of rows and columns

identifying the same personality type. Values in the cells other than the diagonal repre-

sent some level of heterophily because those cells are at the intersections of rows and

columns that identify different personality types.

MBTI was used in this work because of its wide application in practical settings.

However, the social network generation algorithms presented later do not depend on
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any particular personality compatibility table or even on a particular personality model. Any

personality model that satisfies the following two criteria could be used: (1) it has personal-

ity types that are discrete, or could be discretized; and (2) it provides, or enable the develop-

ment of, a quantitative measure of the relative compatibility of different personality types

that can be encoded as a personality compatibility table. In fact, a different personality table

was used in the early stages of this work, with similar results to those reported here.

Related work
This section briefly reviews selected prior work related to generating graphs and social

networks.

Real-world social networks

Social network analysis research requires real-world social networks to use as input data. First

developed in the early 1980s, UCINet is a social network analysis application that calculates a

variety of network metrics (Freeman 1988). UCINet includes functions for discovering cohe-

sive subgroups in a network (Borgatti et al., 2014). An associated archive of social networks,

represented as adjacency matrices, is maintained in the UCINet format (Freeman, 2009)

(Freeman, 2016).

Table 5 lists the real-world social networks used in this research as source data; they are

from the UCINet archive. In all but one of the networks, the nodes of the network corres-

pond to individual people and the links to a relationship of some kind between them.

(The exception is the Schwimmer Taro Exchange Network., where the nodes correspond

to Orokaiva households within the Papaun village Sivepe and the links represent the mu-

tual exchange of gifts, such as cooked taro (Schwimmer, 1979) (Schwimmer 1973).)

The real-world social networks used in this research include both symmetric and

asymmetric and both unweighted and weighted networks. The new network synthesis

algorithms to be described produce symmetric unweighted networks. Therefore the

Table 5 Real-world social network data sets used in this research

Real-world social network Source Nodes Symmetric Weighted

Robins Australian Bank (Pattison et al., 2000) 11 no no

Roethlisberger & Dickson Bank Wiring
Room

(Roethlisberger and Dickson,
1939)

14 yes no

Thurman Office (Thurman 1979) 15 yes no

Sampson Monastery (Sampson 1969) 18 no yes

Krackhardt Office CSS (Krackhardt 1987) 21 no no

Krackhardt High-Tech Managers (Krackhardt 1987) 21 yes no

Schwimmer Taro Exchange (Schwimmer 1973) 22 yes no

Webster Accounting Firm (Webster 1993) 24 yes yes

Zachary Karate Club (Zachary 1977) 34 no no

Bernard & Killworth Technical (Bernard et al., 1982) 34 yes yes

Bernard & Killworth Office (Bernard et al., 1982) 40 yes yes

Krebs Fortune 500 IT Department (Advice) (Chen 2007) 56 no yes

Krebs Fortune 500 IT Department (Business) (Chen 2007) 56 no yes

Lazega Law Firm (Lazega 2001) 71 no no
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real-world networks were converted to symmetric and unweighted if necessary before

being used as exemplar networks. The conversions were done in the obvious ways; if

an asymmetric network had directed link(s) in either or both directions between two

nodes, the converted network had an undirected link between those nodes, and if a

weighted network had a weighted link of any weight between two nodes, the converted

network had an unweighted link between the nodes.

Current trends in social network analysis include social networks developed from

massive data sets captured from online social media and communities, such as FaceBook,

Twitter, and Wikipedia; (Mislove et al., 2007), (Crandall et al., 2008), (Kwak et al., 2010),

(Catanese et al., 2011), (Yang and Leskovec, 2015), and (Grandjean 2016) are examples.

Common interests in careers, pastimes, politics, popular culture, and societal trends serve

as the motivation for joining groups within these online communities, so personality types

may be one of many factors determining how links form in real-world social networks.

However, according to Krebs social networks expressed as connections via Facebook and

LinkedIn can be misleading because site members may try to connect with as many

people as possible and others acquiesce to the creation of apparent links with no real con-

nection. “Two people might show to be connected but they really are not – one person

was too embarrassed to turn down a ‘friend request’ from a total stranger. These ‘false

positives’ tend to pollute the data of these social networking services” (Krebs 2008).

Existing models for generating synthetic social networks

Generating synthetic social networks that are more realistic than random graphs, such

as those generated by the classic Erdős-Rényi G(n, p) algorithm, also known as the ran-

dom graph model (Erdős 1959) (Erdos and Rényi, 1960), requires attention to the prop-

erties of social networks that distinguish them from random graphs. Since 1960, several

social network generation models have been developed. A selection of existing social

network generation models that consider or exploit various structural characteristics of

networks includes the following; each will be described following the list:

� Random graph model (Erdos and Rényi, 1960)

� Configuration model (Bollobás 1980) (Milo et al., 2003) (Newman 2003) (Viger and

Latapy, 2005)

� Exponential random graph model (Holland and Leinhardt, 1981) (Frank and

Strauss, 1986) (Wasserman and Pattison, 1996)

� Stochastic block model (Holland et al., 1983) (Nowicki and Snijders, 2001)

� Small world model (Watts and Strogatz, 1998)

� Preferential attachment model (Barabási and Albert, 1999)

� Popularity Similarity model (Papadopoulos et al., 2012)

� Chung-Lu graph model (Chung and Lu, 2002)

� Degree correlation dK series (Mahadevan et al., 2006)

� Block two-level Erdős Rényi model (Seshadhri et al., 2012)

� Replication of complex networks model (Staudt et al., 2017)

In random graphs, the nodes’ degrees tend to follow a Poisson distribution

(Bollobás 1998). This can be unrealistic; real-world networks’ node degree

O’Neil and Petty Applied Network Science            (2019) 4:19 Page 11 of 49



distributions are more often non-Poisson and heavy-tailed. The configuration

model extends the random graph model to address that inconsistency (Bender and

Canfield, 1978) (Bollobás 1980) (Molloy and Reed, 1995) (Molloy and Reed, 1998)

(Newman et al., 2001) (Milo et al., 2003) (Newman 2003) (Viger and Latapy,

2005). In the configuration model, network generation is initialized with both the

number of nodes n and a specific degree sequence K = {k1, k2, …, kn}, where ki is

the degree of node vi. The degree sequence K may be random variates drawn from

a suitable distribution (checked to ensure that Σ ki is even), or more simply, the

actual degree sequence of a real-world network serving as an exemplar of the class

of networks to be generated. Given n nodes a degree sequence K, links are added

by randomly connecting each node vi to ki other nodes, with each link uniformly

possible. This produces networks with a realistic degree distribution, but if a single

exemplar is used for multiple synthetic networks, all the generated networks will

have the same node degrees.

The exponential random graph models (ERGM), also known as the p* model, as-

sembles a network from subgraph structures, such as stars, triangles, paths, and

cycle patterns (Wasserman and Pattison, 1996) (Snijders 2002) (Robins et al.,

2007). Holland and Leinhardt developed an exponential family of probability distri-

butions for directed graphs, which derived from empirical observations of stars

(nodes with multiple links), isolates (nodes without links), and their triad census

(the sixteen possible configurations of a directed triad) (Holland and Leinhardt,

1977) (Holland and Leinhardt, 1981). Frank and Strauss developed a family of dis-

tributions for directed and undirected Markov graphs wherein there existed de-

pendence among the links (Frank and Strauss, 1986). Snijders applied Monte Carlo

Markov Chains to estimate network metrics such dyads, undirected and directed

two paths, and directed and undirected triangles (Snijders 2002). Hunter distin-

guished between ERGM and p* by associating the maximum pseudo-likelihood es-

timation (Wasserman and Pattison, 1996) with p* and maximum likelihood

estimation (Geyer and Thompson, 1992) with ERGM (Hunter 2007).

Among the existing methods, the stochastic block model (SBM) may have the

most similarity to the new methods developed in this work, and so we describe it

in a bit more detail. The SBM can be used to generate networks and to detect

communities within large scale networks (Holland et al., 1983) (Anderson et al.,

1992) (Faust and Wasserman, 1992) (Newman and Girvan, 2004) (Bickel and

Chen, 2009) (Fortunato 2010) (Decelle et al., 2011) (Abbe 2017). The set of ac-

tors or agents involved is first partitioned into B communities or clusters known

as blocks. This partitioning is often done by manual analysis, based on observa-

tion or data. Tightly interacting groups of actors are placed into the same group.

A B × B preference matrix W specifies the probabilities of link formation both

within and between the blocks (Nowicki and Snijders, 2001). The probabilities

may be provided manually or by automated analysis of the source data. The

on-diagonal entries in W specify the probabilities of links forming between nodes

in the same block, whereas the off-diagonal entries in W specify the probabilities

of links forming between nodes in different blocks. If the on-diagonal probabil-

ities are higher than the off-diagonal probabilities, then the intra-block link dens-

ity will be higher than the inter-block link density; such a network is known as
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assortative. Conversely, if the off-diagonal probabilities are higher than the

on-diagonal probabilities, then the resulting network will have a higher

inter-block link density; such as network is known as disassortative. In an SBM

implementation, the number of nodes in each block may be stored in an integer

vector with B entries. If the blocks are assumed to be disjoint, the sum of the

vector’s entries is the total number of nodes in the network. To generate a syn-

thetic network, the probability of link formation in W between each pair of nodes

is used to stochastically determine if a link is formed between those nodes.

The small world model starts with a one dimensional regular ring lattice where

each node has links to its k nearest neighbors (Watts and Strogatz, 1998) (Strogatz

2001). Several iterations of random rewiring produce a network with a desired

density. For each node, rewiring involves stochastically determining whether an

existing link is deleted or a new link is formed between the current node and an-

other randomly selected node.

The preferential attachment model starts with a small set of nodes and then

adds nodes and links in an iterative process based upon the connectivity of the

nodes (Barabási and Albert, 1999) (Barabási, 2003). The number of nodes in the

initial set determines the maximum degree for new nodes. In each iteration, or

“time step”, a new node is added to the network and then links from the new

node to the existing nodes are stochastically added, up to the maximum degree.

The process depends upon the existing nodes’ current connectivity, which is cal-

culated as k =m · (t / ti)
1/2 where m is the node’s current degree, t is the current

iteration (or time step), and ti is the initial time step when the node was added.

The probability of link being added from the new node to existing node i is ki /

(Σ k) where ki is the connectivity of node i and (Σ k) is the sum of the connect-

ivity of the other existing nodes. New nodes, and links from them to existing

nodes, are iteratively added until the network has the desired number of nodes.

This process produces a scale-free network.

The Popularity Similarity model bases the probability of link formation on

hyperbolic distances between nodes (Papadopoulos et al., 2012). In this model,

the network grows as nodes are added at successive time steps. Older (earlier

added) nodes tend to be popular because they have had more time to connect to

other nodes. To model similarity, new nodes are randomly placed on a circle; a

node’s birth time determines the radial coordinate rt = ln(t). Two nodes, with

polar coordinates (rs, θs) and (rt, θt), have an approximate hyperbolic distance

xst = rs + rt + ln(θst/2) = ln(stθst/2) where s and t are the nodes’ respective birth

times. This hyperbolic distance serves as a convenient metric that represents both

radial popularity and angular similarity.

The Chung-Lu model uses an exemplar degree sequence to set the probability of

link formation between two nodes. For a pair of nodes, the link formation prob-

ability is proportional to the product of corresponding degrees in the sequence

(Chung and Lu, 2002).

The degree correlation dK series model uses probability distributions for node

degree correlations for subnetworks of size d to generate networks. A generated 0

K-graph reproduces the average node degree of an exemplar network. A 1 K-graph

reproduces the degree distribution of an exemplar network. A 2 K-graph
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reproduces the joint degree distribution and a 3 K-graph reproduces similar inter-

connectivity among triangles as an exemplar network (Mahadevan et al., 2006).

The Block two-level Erdős-Rényi model introduces community structures by generat-

ing a set of independent networks and then randomly linking nodes among the com-

munities (Seshadhri et al., 2012). Typically, algorithms that implement this model

include input parameters for nodes and density and the algorithm returns a network

with the number of links based upon the density.

(Staudt et al., 2017) describes the replication of complex networks (ReCon)

model that generates scalable synthetic social networks based on an exemplar net-

work. An objective of ReCon is to generate networks of different sizes, up to 32

times larger than the exemplar. The ReCon algorithm first detects communities in

the exemplar network using the parallel Louvain method. It then generates a work-

ing graph as a disjoint union of x copies of the exemplar, where x is a scaling fac-

tor. For each detected community in the working graph, the algorithm preserves

the degree distribution and rewires the intra-community links through random

edge switching. After rewiring the intra-community links, it rewires the

inter-community links and generates links among the copies of the network (Staudt

et al., 2017). In this work a realistic replica of an exemplar social network was de-

fined as a network that has similar metric values as the exemplar. The metrics that

were compared to the exemplar included sparsity, i.e. number of links versus num-

ber of nodes, the degree distribution’s Gini coefficient, maximum degree, average

clustering coefficient, diameter, number of connected components, and number of

communities. ReCon produces replicas that are realistic under this definition be-

cause it preserves the exemplar’s community structure and node degrees.

Comparison to the current work

In contrast to the algorithms reported later, with only one exception the existing

social network generation methods do not use any actual or inferred attributes of

the persons represented by the nodes to determine or influence the generation of

links between the nodes. The exception is the stochastic block model, which uses

a group attribute associated with each node to determine the probability of link

formation with other nodes within the same group. None of the prior methods

use personality type or compatibility, as is done in this work, to produce syn-

thetic social networks. This idea was hinted at in (Staudt et al., 2017), which de-

scribed a potential application of synthetic social networks as showing

interactions that are “determined by implicit psychological and social rules”, but

those “rules” were not used to generate networks.

The desirable features of a synthetic social network generation algorithm include

parsimony (i.e., few parameters), speed of execution, and network realism. Realism,

in particular, is a very important characteristic of synthesized social networks. Real-

ism in social networks has been defined in terms of network structural features,

dynamics, and evolution (Staudt 2017). The similarity, or lack thereof, of metric

values between a synthetic network and a real network is understood as a measure

of realism. (Chakrabarti et al., 2004) (Leskovec et al., 2010). A quantitative assess-

ment of realism is central to the current work.
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Synthesizing social networks based on personality compatibility
This section explains the new personality-based synthetic social network generation al-

gorithms developed in the current work. The section begins with placing the new algo-

rithms in the context of the overall process used for network synthesis; the details of

the individual algorithms in the process will follow the overview.

Synthesis process overview

Figure 2 shows the algorithms and dataflow in the network synthesis process. That

process starts with a real-world social network T, which serves as an exemplar of

the class of social networks to be generated. (In this work, T is any of the fourteen

real-world networks listed in Table 5). Network T is input to three different algo-

rithms. The two algorithms developed in this work, Probability Search (PS) and

Configuration-Degree Matching (CDM), each construct an assignment A of person-

ality types to the nodes of T. Both employ heuristic methods to find A, albeit in

completely different ways. The resulting personality type assignment A is then in-

put to a network generator algorithm (GNAC), which generates a set of synthetic

social networks (denoted P for the PS algorithm or M for the CDM algorithm),

using the personalities in A and the compatibility information in personality com-

patibility table C.

The challenge is to find a personality type assignment A which, when the GNAC al-

gorithm is used with personality compatibility table C, will produce realistic synthetic

social networks. A personality type assignment that produces realistic synthetic social

networks will be referred to in this context as effective.

Fig. 2 Algorithms and dataflow in the network synthesis process
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Real-world exemplar network T is also be input to a standard network generation algo-

rithm, the Configuration Model (CM). CM also generates a set F of synthetic social net-

works based only on the structure of T and without using and personality compatibility

information.

The three sets of synthetic networks are then input to a process that calculates the net-

work metrics listed in Table 2 and compares them to the exemplar T.

Generating networks from a personality type assignment

Synthetic social networks are generated by an algorithm that considers personality

compatibility by using a personality compatibility table C (e.g., Table 4) and a

personality assignment A to the nodes of the network. The network generation algo-

rithm is denoted the G(n, A, C) (GNAC) algorithm, where n is the number of nodes, A

is an assignment of personality types to the n nodes, and C is a personality compatibil-

ity table that includes the personality types in A. Given an assignment A of personality

types to nodes and a compatibility table C, as many synthetic social networks as needed

can be generated using the GNAC algorithm. They will likely differ due to the random-

ness in the algorithm, but they will be related in that all were produced using the same

assignment A and compatibility table C.

The GNAC algorithm first determines the degree sequence of an exemplar net-

work T. The degree sequence is used to initialize a link budget for each of the nodes

in the synthetic network. The algorithm then randomly selects two triads of nodes

in the synthetic network as candidates for triangles. The personality types assigned

to the triads’ nodes by A and the personality compatibility table C are used to find

the probability of link formation between each pair of nodes in the triads, and the

probabilities for each triad are summed. The triad with the larger sum is then con-

verted into a triangle by connecting all unlinked pairs in the triad and the link bud-

gets of any newly linked nodes are decremented. This procedure repeats until the

number of triangles in the synthetic network is the same as the number of triangles

in the exemplar network.

Producing the desired number of triangles typically does not completely deplete the

link budgets of all of the nodes. For the nodes with remaining link budgets, the algo-

rithm randomly selects pairs of those nodes. If the pair is not linked, then a link is

formed and the nodes’ link budgets are decremented. When a pair of nodes with

remaining link budgets that are not already connected cannot be found, then the algo-

rithm randomly selects nodes that have no remaining link budget. If the randomly

selected node and a node needing a neighbor are not connected, the algorithm ran-

domly adds a link between the nodes with a probability determined by the nodes’

assigned personality types and the compatibility table C. The process repeats until the

sum of all nodes remaining link budgets is 0, at which point the synthetic social net-

work is returned.

In the following pseudocode, T is an exemplar network, A is a personality assign-

ment, C is a compatibility table, S = (V, E) is a synthetic network and u and v are nodes

in the network. At three points in the gnac function links may be added to the network.

The addlink function, shown first, is called by the gnac function; it adds a link between

nodes u and v if they are not already connected.
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The overall computational complexity of the GNAC algorithm is O(n4). To see this,

consider first the function addlink; it does not loop over the nodes or edges and so is

O(1). The GNAC algorithm itself begins with some housekeeping that includes an

O(n log n) sort of the nodes’ degree sequence (line 3). The first main loop (lines

7–25) is over the triangles of T. A network with n nodes may have as many as

C(n, 3) triangles; C(n, 3) = n!/(3!(n – 3)!) ∈ O(n3). Within that loop, the do while

loop (lines 8–11) may execute an arbitrary number of times, but on average is

O(1). The set membership tests (line 19) are O(1) if the edge set is stored in a

suitable data structure, such as an adjacency matrix. All of the remaining computa-

tion in the first main loop is also O(1). Thus the second main loop is O(n3). Find-

ing all the potential dyads the first time (line 27) is O(n2). There are potentially as

many as C(n, 2) such dyads; C(n, 2) = n!/(2!(n – 2)!) ∈ O(n2). The second main

loop (lines 28–33) iterates once for each of the O(n2) dyads, and in each iteration

it again finds all potential dyads O(n2), thus the second main loop is O(n4). The

third and final main loop iterates at most once for each node, i.e., O(n) iterations. Each

iteration scans O(n) nodes to find those with remaining link budgets, so the third main

loop is O(n2). Thus the complexity of the GNAC algorithm as a whole is O(n4).

Probability search algorithm

The Probability Search (PS) algorithm is based on the idea that the probability of a

given social network being generated algorithm from a given personality type as-

signment A and personality compatibility table C can be calculated. That calcula-

tion can be done in either of two ways that differ in whether or not nodes are

assumed to be distinguishable. For this work, it is assumed that the nodes are

uniquely identified and are thus always distinguishable from each other. This as-

sumption is appropriate for many social network applications, where nodes corres-

pond to specific known persons. The implication of uniquely identified nodes is

that a different network, with the same connection structure (i.e., isomorphic in

graph theory terminology) but connecting different specific nodes, would not be

equivalent as a social network because different people would be connected.

The probability of the network will be calculated using a simple extension of the

Erdős-Rényi G(n, p) algorithm. In the G(n, p) algorithm the probability of link for-

mation p is constant for the entire network. In the PS algorithm’s probability cal-

culation the constant p is instead replaced for each pair of nodes with the

probability of a link forming between those nodes, given a personality type assign-

ment A and a personality compatibility table C. Let p(i, j) be the probability given

in C of a link being present between two nodes i and j for the personality types

assigned to nodes i and j by A. The probability of a network G = (V, E) being

formed is therefore given by Eq. (1); we will call this the network probability.

P Gð Þ ¼
Y

i; j ϵ V ;i≠ j

p i; jð Þ if i; jf g∈E
1−p i; jð Þ if i; jf g not∈E

�
ð1Þ

Given an exemplar network T and a compatibility table C, the network probabil-

ity can be used to search for the personality type assignment A that has the high-

est probability P(T) of producing the exemplar. Once found, that personality type
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assignment can be used by the GNAC algorithm to generate synthetic networks

that are likely to be similar to the exemplar.

In theory, the optimum personality type assignment, i.e., the assignment that has

the highest possible probability of producing the given exemplar network T, could

be found by methodically generating every possible personality type assignment

and calculating P(T) for each one. Unfortunately, this is not practical for any but

the smallest networks. If a personality type scheme has k different personality types

and exemplar network T has n nodes, there are kn different possible type assign-

ments. For the MBTI personality type scheme using in this work k = 16, thus for

even the smallest real-world exemplar network used in this research, the Robins

Australian Bank network with 11 nodes, there are 1611 ≈ 1.76 · 1013 possible

personality type assignments. Calculating P(T) for that many assignments at the

rate of one per millisecond would require over 500 years. Thus an exhaustive

search is impractical.

Instead, the new Probability Search (PS) algorithm performs a heuristic search

through the space of possible personality type assignments. After generating an ini-

tial personality type assignment randomly, it iteratively changes the assignment,

one node at a time. To do so, it uses node probability, a quantity similar to

network probability, but calculated for a single node. Given a network G, a

personality compatibility table C, and a personality type assignment A, the node

probability of a single node i in G is given by Eq. (2).

P ið Þ ¼
Y

j ϵ V ;i≠ j

p i; jð Þ if i; jf g∈E
1−p i; jð Þ if i; jf g not∈E

�
ð2Þ

At each iteration, the PS algorithm selects a node i, either the node with the

smallest node probability P(i) under the current personality type assignment (with

probability 0.95), or a random node (with probability 0.05). It then calculates P(i)

for that node i for each of the possible personality types, holding the network

structure and other nodes’ personality types fixed. The personality type that gives

the highest node probability P(i) is assigned to node i. This process repeats until

the overall network probability improvement achieved in an iteration is less than a

threshold, subject to a required minimum number of iterations. Finally, to prevent

non-productive repetitive changes to the same node’s personality type, when a

node’s personality type is changed it is added to a list of nodes excluded from

adjustment in the next iteration and remains in that list for a certain number of

iterations. The improvement threshold, the minimum number of iterations, and the

number of iterations a node remains on the excluded list are all parameters to the

algorithm. (For the results reported here, the values 0.0001, n · k · 1000, and ⌈n /

10⌉ respectively were used for those parameters. Those values were found

empirically.)

In the following pseudocode for the PS algorithm, V is a set of nodes, E is a set

of links, C is a personality compatibility table, A is a personality type assignment,

n is the number of nodes, and k is the number of different personality types. In

the pseudocode, two subroutines (functions) precede the main logic of the PS

algorithm.
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The overall computational complexity of the PS algorithm is O(n3). To see this, con-

sider first the functions vprob and gprob; vprob loops once over the n elements of V

(lines 3–9), and so is O(n), whereas gprob has two nested loops (lines 3–11), each over

the n elements of V, and so is O(n2). The main body of PS begins with some O(1)

housekeeping (lines 2–9) and an O(n2) call to gprob. The main loop (lines 10–49) exe-

cutes O(n) times. Within the main loop, the search for the lowest probability vertex

(lines 15–23) begins with an O(n) call to vprob (line 16), then loops over the available

nodes O(n) times; within that loop is an O(n) call to vprob, thus this portion of the

main loop is O(n2). Next the search for the highest probability personality type (lines

25–35) calls gprob once, and then enters a while loop that iterates k times, each time

calling gprob, which is O(n2). Because k is a constant and not a function of n, this por-

tion of the loop is O(n2). The last part of the while loop includes two operations on the

excluded list (lines 37 and 39) which can be accomplished in amortized O(1) time if im-

plemented as a deque, and another O(n2) call to gprob. Thus the complexity of the

main loop, and PS algorithm as a whole, is O(n3).

Compatibility-degree matching algorithm

The Compatibility-Degree Matching (CDM) algorithm first determine the degree sequence

of a given exemplar network T. It then generates a personality type assignment A in accord-

ance with an empirical distribution based the frequency of each personality type in the U. S.

population (Table 3). The columns of personality compatibility table C provides an overall

compatibility of each personality type. The CDM then orders the personality types by over-

all compatibility and the nodes of the exemplar network T by decreasing order of degree.

Using those two orderings, the CDM personality types to the nodes so that the personality

types with the highest overall compatibility are assigned to the nodes with the highest de-

gree. In the pseudocode, personality type assignment A is a vector of size n.

The overall computational complexity of the CDM algorithm is O(n log n). The n

nodes are sorted (line 3), which is O(n log n). The summing of the compatibility values

(lines 4–6) is O(k2), where k is the number of personality types, and the sort of the
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sums (line 7) is O(k log k), but for most networks k < < n. The assignment of personal-

ity types (lines 8–10) is O(n) and the sort of the assigned types (line 11) is O(n log n).

The final loop (lines 12–14) is O(n). Thus the complexity of the CDM algorithm as a

whole is O(n log n).

Configuration model algorithm

In order to assess the effectiveness of the personality-based algorithms (PS and CDM), they

were compared to an existing network generative model that was not personality-based. Two

were considered for the role of baseline. Because of its abstract representation of popularity,

the Popularity Similarity model (Papadopoulos et al., 2012), as implemented in the R package

NetHypGeom (Alanis-Lobato et al., 2016), was examined. However, perhaps because of that

model’s orientation to large scale-free networks, the implementation sets certain bounds on

its input parameters; in particular, the average degree must be ≥2 and the scaling exponent

must be ≥2 and ≤ 3. Of the fourteen real-world networks to be used as exemplars in this work

(see Table 5), only one (Zachary Karate Club) had values for these metrics that satisfied both

of these bounds; the other thirteen had an average degree < 2, a scaling exponent either < 2

or > 3, or both. Thus the exemplars to be used did not seem well suited to the capabilities of

the Popularity Similarity model, or its implementation.

On the other hand, the Configuration Model (CM), which was described earlier, produces

synthetic networks based upon the degree sequence of an exemplar network, and does not

consider personality. Because it is based on degree sequence, is usable with the exemplars.

Furthermore, it is considered by some to be a standard basis of comparison: “Following the

works of Barabási et al., the degree distribution has become accepted as the most fundamental

network characteristic… [I]t has become a standard to compare network quantities to a

null-model where the degrees of the network (the degree sequence) is fixed and everything else

random” (Barrenas et al., 2009).

Implementation and execution
This section describes the software implementation of the algorithms and supporting

functions. It also discusses their execution.

Implementation of the algorithms

The two new algorithms for finding effective personality type assignments (PS and CDM), as

well as the network generator GNAC algorithm, were implemented in the R language. R is an

open-source programming language and environment with powerful and extensive features

for data analysis, data visualization, and statistical computing (R Core Team 2016). R also in-

cludes a full range of general purpose programming language features, including control

structures, mathematical operations, and file input/output. It should be noted that for

medium and large networks, the network probability value P(G) computed by the PS algo-

rithm can become quite small, as it is the product of n(n – 1)/2 probabilities, all of which are

≤1. A computer implementation of P(G) meant to handle medium and large networks must

take care to avoid numeric underflow. In our implementation, we used the R gmp (GNU

Multiple Precision) package for arbitrary precision arithmetic.

As already mentioned, CM is an existing algorithm for generating synthetic social networks.

A prior implementation of CM in the R language is available in the R igraph package, which
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is a collection of R functions for network analysis and visualization (Csárdi and Nepusz,

2013). In that package function sample_degseq produces networks using CM. That function

was used for this work without modification.

Execution of the algorithms

Because R is an interpreted language, R programs often execute more slowly than comparable

programs written in a compiled language. In addition, the two algorithms to find effective per-

sonality type assignments (PS and CDM) both involve numerous iterations, especially the PS

algorithm. Consequently, the algorithms’ run times during testing and analysis were some-

times quite lengthy. To keep the executions manageable, the programs were run on super-

computers provided and supported by the Alabama Supercomputer Authority. Typical run

times for the two algorithms were highly dependent on the number of nodes in the exemplar

graph; for the PS algorithm the run times ranged from a few minutes for the smallest

real-world network (Robins Australian Bank, 11 nodes) to several hours for the largest

real-world network (Lazega Law Firm, 71 nodes). Although the algorithms’ implementation

code was not parallelized, scripts were used to initialize and initiate multiple instances of the

programs to execute concurrently.

Results
This section reports the results of testing and comparing the PS and CDM algorithms with

the Configuration Model. The comparison is in terms of quantitative measures of the gener-

ated social networks’ realism.

Realism is measured by the absolute difference between the mean metrics of the synthetic

networks and the network metrics of the exemplar real-world social network. The metrics

used to measure realism are listed in Table 2. Smaller absolute difference is preferred. Abso-

lute differences between the metrics of the exemplar real-world social network and the mean

metrics of the synthetic networks were calculated for networks generated by the PS and

CDM algorithms and compared to networks generated by the CM algorithm.

As an example of the results, Table 6 presents a comparison of the realism metrics for the

assignments found by the PS and CDM algorithms for only one of the real-world exemplar

networks, Bernard & Killworth Technical. (For brevity, this section presents the results for

only one of the exemplars in Table 6; the complete set of results are presented in Tables 9, 10,

11, 12, 13, 14, 15,16, 17, 18, 19, 20, 21, 22 in Appendix 2.) In the table, column 1 shows the

name of the metric and column 2 shows that metric’s value for the exemplar social network.

Columns 3–6 apply to the synthetic social networks generated by the CM algorithm, collect-

ively denoted F; column 3 shows the mean metric value for the networks generated by the

CM algorithm, column 4 show the absolute difference between that mean value and the ex-

emplar metric value, column 5 shows the L1 norm for that metric, and column 6 shows the

L2 norm for that metric. Columns 7–10 show the same for the synthetic networks generated

by the PS algorithm, collectively denoted P, and columns 11–14 show the same for the syn-

thetic social networks produced the CDM algorithm, collectively denoted M. In columns 4–6,

8–10, and 12–14, the cells’ content is set in bold type to show at a glance the PS- and

CDM-generated networks’ realism compared to the CM-generated networks’ realism. Bold

indicates that the PS or CDM networks’ mean metric value was closer to the exemplar than

the CM networks’mean metric value.
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As can be seen in Table 6, for the Bernard & Killworth. Technical exemplar network both

the PS and the CDM algorithms produced more realistic synthetic social networks than the

CM algorithm over the majority of the network metrics.

Table 7 summarizes the overall realism results. Two realism comparisons were made: PS

versus CM and CDM versus CM. Both are reported in the table. A total of 280 metric values

(14 real-world social networks · 20 metrics) were calculated for each of the comparisons. The

columns labeled with an algorithm’s abbreviation (PS, CDM, CM) show the number of met-

rics where that algorithm’s metric values were closer to the exemplar that the other algorithm

in the comparison, and a column labeled “=” shows the number where the two algorithms’

metric values were equally close. In the PS versus CM comparison, the values of 142 of the

280 metrics (~ 50.7%) for the PS networks were closer to the values of the exemplar network

than those of the CM algorithm, and another 31 values (~ 11.1%) were equally close; the CM

networks values were closer to the exemplar on only 107 (~ 28.2%) of the metrics. In the

CDM versus CM comparison, the values of 140 of the 280 metrics (50.0%) for the DCM net-

works were closer to the values of the exemplar network than those of the CM algorithm,

and another 35 values (~ 12.5%) were equally close; the CM networks values were closer to

the exemplar on only 105 (~ 37.5%) of the metrics.

A simple hypothesis test of proportion confirms that both PS and CDM come closer to

the exemplar than CM more often that can be expected from random chance. For PS versus

CM we treat each of the 280 metrics as a binomial trial. A closer metric value in a

PS-generated network is counted as a success, a closer metric value in a CM-generated net-

work is counted as a failure, and equal metric values are omitted from the sample. In a

right-tailed test the hypotheses are H0: p = 0.50 and H1: p > 0.50, so the statistical assump-

tion is that PS is not better than CM. The level of significance is set to α = 0.05. The sample

data is r = 142 and n = 142 + 107 = 249. The results are test statistic p = 0.570281,

z = 2.218035, and p-value = 0.01326, which is < α, thus we reject the null

hypothesis and conclude that PS outperforms CM. The same test applied to

Table 7 Realism results summary

Exemplar Real-World Social Network PS vs. CM CDM vs. CM

PS CM = CDM CM =

Robins Australian Bank 15 4 1 14 5 1

Roethlisberger & Dickson Bank Wiring Room 9 10 1 9 9 2

Thurman Office 13 6 1 14 5 1

Sampson Monastery 10 8 2 7 9 4

Krackhardt Office CSS 9 10 1 10 9 1

Krackhardt High-Tech Managers 11 8 1 9 9 2

Schwimmer Taro Exchange 5 14 1 5 14 1

Webster Accounting Firm 9 9 2 9 9 2

Zachary Karate Club 9 8 3 10 8 2

Bernard & Killworth Technical 13 5 2 13 5 2

Bernard & Killworth Office 11 6 3 11 6 3

Krebs Fortune 500 IT Department (Advice) 9 8 3 10 7 3

Krebs Fortune 500 IT Department (Business) 7 9 4 8 7 5

Lazega Law Firm 12 2 6 11 3 6

Total 142 107 31 140 105 35
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CDM versus CM has r = 140 and n = 140 + 105 = 245. The results are test statistic

p = 0.571429, z = 2.236068, and p-value = 0.01264, which is again < α, thus we

again reject the null hypothesis and conclude that CDM outperforms CM.

To support the quantitative realism results at an intuitive level, Fig. 3 presents an example

visual comparison of a real world social network with a randomly generated network and two

networks that were generated using a personality compatibility table. Figure 3a shows the

Robins Australian Bank social network (Pattison et al., 2000). Figure 3b shows a network that

was generated using the random G(n, p) algorithm. That network has the same number of

nodes and network density as the exemplar real world social network. Figure 3c shows a syn-

thetic social network generated using an assignment of personality types found by the PS algo-

rithm. Figure 3d shows a synthetic social network generated using an assignment of

personality types found by the CDM algorithm. In the figure, node communities found by the

walktrap.community function in the R igraph package are depicted with bounding boxes

around them. A visual inspection of the networks in the reveals what appear to be more real-

istic communities within Fig. 3c and d.

Conclusions and future work
This section states the conclusions of this work and suggests possible future work.

Conclusions

The PS and CDM algorithms differ from most prior work on generating synthetic social

network in a significant way. Most prior algorithms do not consider the attributes of the

nodes, or of the people or entities the nodes represent, when adding links; instead they are

Fig. 3 Visual comparison of the real world and synthetic social networks
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based on retaining or replicating some of the structural characteristics of the exemplar net-

work in the synthetic networks. For example, CM is given a degree sequence, which may be

the actual degree sequence of the real-world network serving as an exemplar (Newman

2003). In contrast, the PS and CDM algorithms use the attributes of the nodes, in particular

the personality types assigned to them, as the primary driver of their calculations.

From the quantitative results, it is evident that both the PS and the CDM algorithms,

which use personality compatibility information, generate more realistic synthetic social

networks than the CM algorithm, which does not. The PS and CDM algorithms are

quite similar in terms of realism. However, the CDM algorithm is much more compu-

tationally efficient, requiring substantially shorter execution times for large networks.

Either PS or CDM could be used with small to medium exemplars; for exemplars with

more than ~ 40 nodes, PS becomes impractical, at least in its current implementation.

Close examination of the results in Table 6 show that the PS and CDM both performed

worst on the Schwimer Taro Exchange exemplar. It is unlikely to be a coincidence that in

that network only among the fourteen exemplars the nodes correspond not to individual

people, but to households, which is intuitively not as good a fit with personality-based algo-

rithms. Thus PS and CDM, or future enhancements of them, should be considered when

the nodes correspond to individual people and personality compatibility is expected to have

a significant effect on whether two people have the relationship that a link represents.

Future work

Because the PS and CDM algorithms both produce personality assignments that are then

input to the GNAC algorithm to generate synthetic social networks, we make two conjec-

tures that motivate future work. First, we conjecture that any method to find an effective

personality type assignment A could be combined with the GNAC algorithm to synthesize

realistic social networks. Second, we conjecture that the method does not depend on a sin-

gle personality type scheme, such as the MBTI scheme used in this work. Rather, we believe

that any personality type scheme from which a personality compatibility table is available or

can be inferred could be combined with the PS and CDM algorithms to generate realistic

synthetic social networks. For example, a similar table construction process could be applied

to the OCEAN personality type model, with the additional preliminary step of discretizing

continuous scales for each personality factors into a finite number of discrete values or

intervals.

In this work all of the social networks were treated as symmetric and unweighted. As an

obvious generalization, applying these methods to asymmetric and/or weighted social net-

works is an opportunity for future work. Because multiple metrics generated in a single ex-

periment are analyzed, the multiple comparison problem may be present, and suitable

methods to compensate for it could be employed. Finally, the assumption in the PS algo-

rithm that the nodes can be distinguished could be changed to consider networks that con-

nect the same personality types in the same way, as opposed to connecting the same nodes

in the same way, as equivalent. (This is analogous to color isomorphism in graph theory

terms.) Changing the assumption would change the formula for calculating the network

probability P(G).

Finally, according to (Aiello et al., 2012), there has been considerable research aimed at

predicting the overall evolution of social networks, but very few attempts to predict future
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connections of individual people within such networks. Within an organization, managers

may wish to create a new project team or work group. The methods developed in this work

could be applied to simulating the potential formation of social networks within the team

or group, given a set of personality types and a compatibility table. We speculate that gener-

ating synthetic social networks using individuals’ personality types has the potential to lead

to a predictive or semi-predictive capability to anticipate the future social network that

could emerge in a team or group. If such a capability was sufficiently reliable, managers

could use its predictions when considering personnel assignments. This idea requires of

careful validation, perhaps by comparing predicted social networks to actual social networks

for existing teams or groups.

Appendix 1
Constructing a personality compatibility table for the MBTI

This appendix details the process used to construct a personality compatibility table for the

16 MBTI personality types. The process had these steps:

1. Identify a set of environmental factors that are important in determining

personality compatibility; for this work eight such factors were identified.

2. Interpret the personality model to determine each personality type’s opinion

regarding each of the environmental factors.

3. Perform pair-wise comparisons of 16 MBTI personality types to determine the

number of shared or consistent opinions regarding the environmental factors be-

tween each pair of personality types.

4. Scale the counts of common opinions into probabilities of link formation for the

compatibility table.

In the first step, environmental factors important in determining personality compatibility

were identified by examining the sources describing the personality model. Within a work-

place environment, the factors that may determine compatibility of colleagues include:

� Authority; a tendency to respect or work with the chain of command.

� Communication; a tendency to value accurate and specific vernacular.

� Consideration; a tendency to respect or incorporate other people’s opinions.

� Empathy; a tendency to recognize or synchronize with other people’s feelings.

� Harmony; a tendency to tolerate or relieve interpersonal tensions.

� Loyalty; tendency to value relationships and defend alliances.

� Productivity; a tendency to value efficient processes or creating something.

� Rules; a tendency to follow and defend documented procedures.

The following quotations from (Keirsey 1998) illustrate the source content from which

the environmental factors could be identified and the various personality types’ likely opin-

ions of them were determined. Environmental factors noted after each quotation indicate

that the associated MBTI may have positive or negative attitude about those factors.

� Promoters (ESTP) “[have a] low tolerance for anxiety and are apt to leave relationships

that are filled with interpersonal tensions.” (Harmony, Loyalty)
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� Composers (ISFP) “will put up with a lot more interpersonal tensions than other

Artisans” (Harmony, Loyalty).

� Crafters (ISTP) “can be fiercely insubordinate, seeing hierarchy and authority as

unnecessary and even irksome.” (Authority, Rules)

� Performers (ESFP) “tolerance for anxiety is the lowest of all the types, and they will

avoid worries and troubles by ignoring the unhappiness of a situation as long as

possible.” (Harmony, Productivity)

� Supervisors (ESTJ) “may not always be responsive to points of view and emotions of

others and have a tendency to jump to conclusions too quickly.” (Authority, Productivity)

� Providers (ESFJ) “tend to listen to acknowledged authorities on abstract matters, and

often rely on officially sanctioned views as the source of their opinions and attitudes.”

(Authority, Rules)

� Inspectors (ISTJ) “Because of [being adamant about rule compliance,] they are often

misjudged as having ice in their veins, for people fail to see their good intentions and

their vulnerability to criticism.” (Authority, Rules)

� Protectors (ISFJ) “know the value of a dollar and abhor the squandering or misuse of

resources.” (Productivity)

� Teachers (ENFJ) “When [they] find that their position or beliefs were not

comprehended or accepted, they are surprised, puzzled, and sometimes hurt.”

(Communications, Harmony, Consideration)

� Counselors (INFJ) “value staff harmony and want an organization to run smoothly and

pleasantly, making every effort themselves to contribute to that end.” (Harmony,

Consideration, Productivity)

� Champions (ENFP) “Sometimes [they] get impatient with their superiors; and they will

occasionally side with detractors of their organization, who find in them a sympathetic

ear and a natural rescuer.” (Authority, Communication, Empathy)

� Healers (INFP) “have difficulty thinking in conditional ‘if-then’ terms; they tend to see

things as either black or white, and can be impatient with contingency.”

(Communication, Empathy, Consideration)

� Fieldmarshals (ENTJ) “For the [Fieldmarshall], there must always be a reason for doing

anything, and peoples’ feelings usually are not sufficient reason.” (Authority, Rules,

Productivity)

� Masterminds (INTJ) “Colleagues may describe [Masterminds] as unemotional and, at

times, cold and dispassionate, when in truth they are merely taking the goals of an

institution seriously, and continually striving to achieve those goals.” (Productivity, Rules)

� Inventors (ENTP) “If an [Inventor’s] job becomes dull and repetitive, they tend to lose

interest and fail to follow through -- often to the discomfort of colleagues.” (Productivity)

� Architect (INTP) “It is difficult for an [Architect] to listen to nonsense, even in a

casual conversation, without pointing out the speaker’s error, and this makes

communication with them an uncomfortable experience for many.”

(Communication, Consideration)

Based on these quotes and other similar descriptions of the personality types, their likely

opinions regarding the environmental factors were determined. Table 8 shows the result.

The Keirsey temperaments scheme groups the 16 possible MBTI personality types into four

categories, referred to as Artisans, Guardians, Idealists, and Rationals (Keirsey, 1998); the
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table is organized by those categories. In the table, a 0 indicates that people of the personal-

ity type are likely to hold a low or negative opinion of the environmental factor, whereas a 1

indicates a relatively high or positive opinion.

For each pair of personality types X and Y, the number of environmental factors on which

they agreed (both had 0 or both had 1 in the table) was calculated; let that value be denoted

as a(X, Y), with a(X, Y) ∈ {0, 1, 2, …, 6}. (The pairwise comparison considered six environ-

mental factors, hence six was the maximum number of possible agreements. The maximum

number of agreed upon factors by any pair of two distinct personality types was actually

five.) The probability of a link forming between personality types X and Y was calculated as

p X;Yð Þ ¼ 0:5∙ 1þ erf
x−μð Þ
σ ∙

ffiffiffi
2

p� �
 ! !

where erfðxÞ ¼ 2ffiffiffi
π

p
R x
0 e

−t2dt is the Gauss error function, μ ≈ 2.9747, and σ ≈ 1.8185.

The values for μ and σ were determined empirically. The result of this formula is that

0.05≤ p(X, Y) ≤ 0.95 for all personality types X and Y, leaving a small but non-zero probability

(0.05) of a link forming and a small probability of link not forming (also 0.05) between any

two personality types. The p(X, Y) values were recorded in the personality compatibility table.

The resulting personality compatibility table produced by this process and used in this work

was shown earlier in Table 4.

Other methods of determining the compatibility table values are possible, of course. The

synthetic social network generation algorithm will operate with any reasonable and internally

consistent compatibility table.

Table 8 Inferred MBTI personality types’ opinions of environmental factors

Category Personality type Environmental factor

Authority Communication Harmony Loyalty Productivity Rules

Artisans Promoter ESTP 0 1 0 0 0 0

Composer ISFP 0 0 1 1 1 0

Crafter ISTP 0 1 0 1 1 1

Performer ISFP 1 0 0 0 0 1

Guardians Supervisor ESTJ 1 1 0 1 1 1

Provider ESFJ 1 0 0 1 0 1

Inspector ISTJ 1 1 0 1 0 1

Protector ISFJ 1 1 0 1 1 1

Idealists Teacher ENFJ 1 1 1 0 0 0

Counselor INFJ 0 0 1 1 0 0

Champion ENFP 0 0 0 1 1 0

Healer INFP 0 0 1 0 0 1

Rationals Fieldmarshal ENTJ 1 0 1 1 0 0

Mastermind INTJ 0 1 1 0 1 0

Inventor ENTP 0 1 0 0 1 0

Architect INTP 0 1 1 0 1 1
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