da Cunha and Gongcalves Applied Network Science (2018) 3:36
https://doi.org/10.1007/541109-018-0092-1

Applied Network Science

RESEARCH Open Access

Topology, robustness, and structural @
controllability of the Brazilian Federal Police
criminal intelligence network

Bruno Requi&o da Cunha'” @ and Sebastidn Goncalves?

*Correspondence:

brunorequiao.brdc@gmail.com; Abstract

fsugg‘eaﬂfe@;igfn%gazr olicin Law enforcement and intelligence agencies worldwide struggle to find effective ways
Federal no Rio Grande do Sul. Av. to fight organized crime and reduce criminality. However, illegal networks operate
Ipiranga, 1365, Porto Alegre, RS, outside the law and much of the data collected is classified. Therefore, little is known
Eﬁa\ﬂ:st of author information is about the structure, topological weaknesses, and control of criminal networks. We fill

available at the end of the article this gap by presenting a unique criminal intelligence network built directly by the
Brazilian Federal Police for intelligence and investigative purposes. We study its
structure, its response to different attack strategies, and its structural controllability.
Surprisingly, the network composed of individuals involved in multiple crimes of federal
jurisdiction in Brazil has a giant component enclosing more than half of all its edges.
We focus on the largest connected cluster of this network and show it has many social
network features, such as small-worldness and heavy-tail degree distribution. However,
it is less dense and less efficient than typical social networks. The giant component also
shows a high degree cutoff that is associated with the lack of trust among individuals
belonging to clandestine networks. The giant component of the network is also highly
modular (Q = 0.96) and thence fragile to module-based attacks. The targets in such
attacks, i.e. the nodes connecting distinct communities, may be interpreted as
individuals with bridging clandestine activities such as accountants, lawyers, or money
changers. The network can be disrupted by the removal of approximately 2% of either
its nodes or edges, the negligible difference between both approaches being due to
low graph density. Finally, we show that 20% of driver nodes can control dynamic
variables acting on the whole network, suggesting that non-repressive strategies such
as access to basic education or sanitation can be effective in reducing criminality by
changing the perception of driver individuals to norm compliance.

Keywords: Criminal networks, Modular networks, Netwrok robustness, Structural
controllability

Introduction

Despite recent efforts of Brazilian law enforcement agencies in combating organized
crime, the horizon is not promising: homicide rates have spiked in 2014 reaching 29.1
deaths per hundred thousand people (Cerqueira et al. 2017), the country has become
the second greatest consumer of cocaine in the world —turning into one of the most
important corridors for international drug trafficking—, and corruption and money
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laundry have pervaded major enterprises and important political figures nationwide
(UNODC 2015).

The problem is multivariate: from cultural and historical reasons to the structure of the
Brazilian political, judicial, and law enforcement systems. At the same time, the sociologi-
cal and behavioral literature supports both theoretically and experimentally the adoption
of network methods in studying criminal rings (McGloin 2005; Sah 1991; Glaeser et al.
1996; Morselli 2003; Mastrobuoni and Patacchini 2012; Thornberry et al. 1993). These
studies show that when a person is part of a social criminal network, some of his/hers indi-
viduality is lost, and the group starts acting as a whole. Therefore, attacking the structure
of a criminal organization should block the clustering processes involved in the collec-
tive human behavior related to clandestine activities —this is precisely the aim of police,
law enforcement and intelligence agencies. In this sense, several researchers have stud-
ied the structure and fragility of criminal networks (D’Orsogna and Perc 2015; Baker and
Faulkner 1993; Krebs 2002; Reeves-Latour and Morselli 2017). For instance, the network
structure and resilience of the Sicilian Mafia (often known as Cosa Nostra) was recently
studied (Agreste et al. 2016). In that paper, the cooperation with Italian law enforcement
agencies led to a bipartite network (contact and criminal), which showed different robust-
nesses to network attacks —the contact network is much more fragile to targeted attacks
than the criminal one. However, the authors did not study the Mafia network’s modularity
neither its robustness to important methods of network interventions such as the collec-
tive influence (Morone and Makse 2015) and the module-based attack (Requido da et al.
2015). Accordingly, other authors have studied Mafia syndicates, pointing to the strong
hierarchical networked organization with a few capi (bosses) commanding the criminal
activities (Cayli 2013). Furthermore, some papers have shed light into the modular struc-
ture of criminal networks either to detect non-trivial players in reconstructed phone call
networks (Ferrara and et al. 2014) or to understand the internal structure of subgroups in
a particular case study of a small local mafia group in Italy (Ndrangheta) (Calderoni et al.
2017). Yet, little is known about how the modular nature of criminal networks affects its
robustness to efficiently designed topological interventions.

Complete data concerning criminal or terrorist networks from reliable intelligence
sources are usually unavailable or classified for legal and security purposes. As a result,
researchers usually have to rely on public court data or news magazines, lacking uncut
information. An example of such an approach is the study by Ribeiro et al. (2018) which
analyzed unclassified data from daily newspapers of political corruption scandals in Brazil
over the last two decades. In order to fill this gap, we introduce and share with the sci-
entific community the intelligence (anonymized) data collected by the Brazilian Federal
Police during 2013. The data correspond to federal crimes resulting in a web of almost
24,000 individuals (including the federal scandals studied in Ribeiro et al. (2018) that
occurred before 2013). Such unique set of data is available thanks to an ongoing collab-
oration with the Brazilian Federal Police. It expands across a large amount of criminal
relationships and illegal practices, allowing us to deeply study this criminal intelligence
network structure.

From the network science point of view, there are two main aspects related to police
interventions: the topological robustness of criminal networks and their flexibility or
resilience to disruption. Topological robustness is a static problem related to finding
the minimal set of nodes whose removal from the network would break it into many
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disconnected components with size not comparable to the original network (Morone
and Makse 2015). Network flexibility (or resilience) is in turn a dynamic feature that
indicates how a criminal network re-order itself in response to law enforcement interven-
tions (Morselli and Petit 2007; Morselli 2009). Such flexibility is believed to be due to the
replacement of arrested members of criminal groups that rapidly adapt to the tactics used
by the police (Spapens 2011). In this sense, in a study of a drug-related network from the
Dutch Police (Duijn et al. 2014), researchers discovered that criminal organizations may
react to targeted attacks to its most central nodes by becoming more efficient or robust,
contrary to the common sense. The positive counterpart is that targeted attacks diminish
criminal networks internal security, leaving them more exposed to law enforcement and
intelligence agencies. These results stress the importance of network interventions before
criminal groups have the opportunity to re-organize and enhance their robustness to tar-
geted attacks. Thence, even though criminal networks are dynamic in nature and very
reactive to law enforcement operations, rapid periodical interventions should keep crim-
inals from adapting in a stable way. This is precisely why it is paramount for the police
to identify the minimal dismantling set for criminal networks. This is a second impor-
tant feature of our contribution: to identify the most effective heuristic attack strategy to
disrupt the Brazilian federal criminal intelligence network into many disconnected small
fragments.

Nonetheless, crime can be approached not only through repressive means such as
confrontation and imprisonment (Machin et al. 2011). Recent articles have explored
the effects of illiteracy on crime (Alves et al. 2018), and once thought individualistic
attributes are now known to spread through contagion mechanisms over social networks
(Christakis and Fowler 2007; 2008; Fowler and Christakis 2008). In this sense, dynamical
features such as education and literacy if controlled could act as proxies for decreasing
violence and general delinquency. Therefore, one would be interested in understanding
if it is possible to take a dynamical variable acting on a criminal network from an initial
unwanted state to a desirable lower state by influencing the appropriate driver individ-
uals. This is precisely the framework of mathematical control theory (Yuan et al. 2013).
However, mostly due to the lack of data there is a deep gap in the literature concerning the
controllability of criminal networks. This is another important issue we address thanks
to the unique data we present, i.e. the controllability a real-world criminal intelligence
network.

Accordingly, our contribution is fourfold. We first introduce a unique dataset gathered
by the Brazilian Federal Police and share it with the network science community (the orig-
inal data can be found in the supplementary material). After that, we study the Brazilian
federal criminal intelligence network structure and robustness to targeted attacks. Finally,
we explore the controllability of this network. We conclude the paper with a general
discussion of the results and a perspective of future projects.

Dataset

The data presented here are a subset of the database of records of criminal investigations
conducted by the Brazilian Federal Police. It includes criminal investigation records of
23,666 out of 166,105 people, which is the current size of the database. The original pur-
pose of the Brazilian Federal Police in designing this database was not to conduct scientific
analysis, it was meant only to keep an intelligence record of criminals, suspects and their
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known real life relationships in hope that it could help in future investigations. Therefore,
in the network science perspective the network was naively built in a simplified fashion by
the police itself. In this sense, this is a typical Criminal Intelligence (CRIMINT) (Ratcliffe
2009; Brown 2007) database, and it consists of information gathered, collated, analyzed,
recorded, reported and disseminated by the Brazilian Federal Police concerning identified
criminals and known suspects. The relationship data differ from public and court data
or information. It consists of information interpreted by federal officers using methods
and techniques that led investigators to assign criminal responsibility and liaison among
individuals. For security and legal reasons these techniques are classified. In this sense,
the Brazilian Federal Police built its own criminal relationship network according to the
assessment of each federal agent. Thence, individuals in this network are known crimi-
nals and suspects, not necessarily tried and convicted, since this a CRIMINT database.
The relationship network was also built directly by the Brazilian Federal Police, and two
individuals would be connected through an undirected edge if there were an intelligence
report filled by a federal officer assigning real life co-participation in a federal investiga-
tion. Therefore, when building the network, even though there might be great differences
among the relationships, the Brazilian Federal Police considered all of them as of the same
type. We were later granted access only to the raw anonymized and cyphered edge list
of this undirected and unweighted CRIMINT relationship network. Therefore it was and
is not possible for us to build the relationship network in a different fashion (e.g. with
directed or weighted edges) or to analyze features such as the distribution of the types
of crime. The network is typically dynamic since the relationships were created and/or
deleted during the period from April to August 2013 (five months time span). However,
we were only granted access to a snapshot of the relationships cumulatively collected at
the end of August 2013, thence temporal aspects could not be analyzed by us.

The original police database, in particular the subset at the time of the query, included
classified information. On account of that, the data were filtered and anonymized by
the Brazilian Federal Police prior to the release for scientific, academic, and collabora-
tive purposes, in order to comply with legal and security requirements. In this sense, we
didn’t have access to metadata that were further classified by the Federal Police and are,
therefore, not presented here. Only the topological features of the relationships were pre-
served in order to study the adjacent network structure. The anonymized network data
are available in the Additional file 1.

The investigations cover most Brazilian federal crimes. Nonetheless, the definition of
federal crimes vary depending on time and on the legal system of each country. In Brazil,
the legal set that defines crimes investigated by the Brazilian Federal Police is highly intri-
cate (Brazilian Constitution 1988; Brazilian Federal Law 2002; Brazilian Penal Code 1940;
Brazilian Electoral Code 1965; Brazilian Federal Law 1986). However, crimes included in
this dataset are focused on the following illegal activities:

e drugs and arms trafficking, smuggling and misplacement;

¢ interstate organized bank robbery;

e online sexual predators of children;

e federal corruption;

e environmental crimes and crimes agains historical heritage;

e crimes against the social security system;

e counterfeiting;
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e crimes against the elections;

e crimes against the financial system;

e fraud against federal institutions;

¢ money laundering related to the above crimes.

The resulting undirected and unweighted network has N = 23,666 nodes and E =
35,913 edges distributed among 3425 unconnected components with an average size
of only 7 individuals. However, the degree dispersion (k?)/(k) = 7.42 is much higher
than the Molloy-Reed criterion which means that there is a giant component pervading
the whole network (Dorogovtsev and Mendes 2013). This is remarkable for it was not
expected that a giant component would rise in a set of actors committing criminal actions
not related in principle to one another. Therefore, we focus only on the giant component
of the network since the largest connected component may represent a generalized and
self-organized criminal phase, more dangerous from a national security point of view.
Such structure should be of concern for federal and national law enforcement, and intelli-
gence agencies as well. The largest connected component consists of N = 9887 nodes and
E = 19,744 edges (40% of the total number of nodes and 54% of the total number of edges,
see Fig. 1). By defining < k >= 2E/N, the average degree results in < k >2~ 3.994. From
here we refer to this component by the name BFP2013 or by the expressions criminal
intelligence network, federal criminal intelligence network or Brazilian federal criminal
intelligence network.

Criminal intelligence network structure

The density of a network, i.e. the number of edges as a fraction of the possible number
of edges (§ = 2E/N(N — 1)), is usually related to its “brightness” (Klerks 2000; Toth et
al. 2013). In the case of a criminal network, it gets more exposed as it gets brighter. In
other words, in a bright network with a large number of connections among criminals,
the investigation or capture of one actor, would help the authorities to extract critical
information about the network structure (Duijn et al. 2014). A darker network, how-
ever, while hiding the structure from investigations, would slow down the transfer of
information within the network due to the longer paths among criminals. However, even
though covert networks tend to operate concealing their activities, their economic driven
nature requires efficient communication to exchange money, goods, and merchandise for
instance (Morselli et al. 2007). Topologically speaking, the network efficiency quantifies
the exchange of information across the entire system and might be defined for a given
graph G by the expression:

1 1
16 = YN =D ijeG n (1)
where dj; is the distance between vertices i and j, and N is the total number of nodes.
This metric spans both isolated components (n = 0) and complete graphs (n = 1) as
it reflects how the actors in the network can communicate by measuring the smallest
distance between vertices of the whole system (Memon and Larsen 2006).

Therefore, network density and network efficiency inform us about the compromise
between security and effective diffusion of information and data, and this balance affects
directly the network structure of criminal system (Baker and Faulkner 1993). Precisely,
the network of the present study (Fig. 1) is “darker” than traditional social networks, i.e. it
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Fig. 1 Representation of the largest connected component of the federal criminal intelligence network
consisting of 9887 individuals. The colors are used to represent the different communities to which
individuals are assigned according to the Louvain method (Blondel et al. 2008). As the number of modules is
relatively large (91), several tones are perceived as the same color

has low edge density, but, at the same time, it has low graph efficiency (see Table 1). The
radar chart of Fig. 2 shows the topological features of the criminal intelligence network,
a randomized version of it, i.e. after random rewiring all its edges but keeping N, E, and
< k > the same, and the corresponding configuration model, i.e. a model that assigns
degrees to vertices and then creates stubs, later it connects the stubs randomly, keeping
the degree distribution intact creating a random graph in which the degree sequence is
given (van der Hofstad 2016).

The data highlight that the criminal intelligence network has a complex, non-trivial struc-
ture far from being random. The high average clustering coefficient (< CC > = 0.43)
associated with its average shortest path length (A = 14.43), as compared to
its randomized counterparts (simple rewiring and configuration model respectively,
< CC > = 0.001,0.002 and A = 6.78,5.48), points out to the small-worldness
(Dorogovtsev and Mendes 2013) feature of BFP2013. Accordingly, Humphries and Gur-
ney (Humphries and Gurney 2008) showed that a network is said to be a small-world

network if S& = % x tnd - 1, where the first term corresponds to the ratio
ran

A



da Cunha and Gongalves Applied Network Science (2018) 3:36

Table 1 Comparative data between the federal criminal intelligence network and other social
networks: number of nodes (N), number of edges (£), edge density (§=2E/N(N-1)), graph efficiency (n
as defined in Eq. 1), and fraction of driver nodes np for the following social (communication,
business, friendship and criminal) networks (Kunegis 2013): an e-mail communication network at the
University Rovira i Virgili (U. Rovira i Virgili); a person-company leadership network (Corporate
leadership); a Jazz musicians collaboration network (Jazz musicians); a gift-givings network between
households in a Papuan village (Taro exchange); the well-known Zachary karate club network
(Zachary karate club); a friendship network between boys in a highschool in lllinois (Highschool); a

friendship network from hamsterster.com (Hamsterster); the network of suspected terrorists involved
in the train bombing of Madrid on March 11, 2004 (Train bombing); a criminal dataset recorded by

St. Louis Police in the 1990s (Crime); and the BFP2013 network

Type Networks Reference N E ) n np
Communication  U. Rovira i Virgili (Guimera et al. 2003) 1133 54571 0.0085 300% 0.04
Business Corporate leadership  (Barnes and Burkett 24 99 03587 635% 008
2010)
Jazz musicians (Gleiser and Danon 198 2741 0.1406  513% 0.03
2003)
Friendship Taro exchange (Hage and Haray 22 78 0.1688  488% 0.04
1983)
Zachary karate club (Zachary 1977) 34 78 0.1391 294% 029
Highschool (Coleman 1964) 70 366 00758 44.7%  0.09
Hamsterster (Hamsterster full 2426 16,631 0.0056  20.8%  0.30
network dataset —
KONECT 2017)
Criminal Train bombing (Hayes 2006) 64 243 01205 448% 0.19
Crime (Crime network 829 1473 0.0043 215% 017
dataset — KONECT
2017)
BFP2013 (Fig. 1) Dataset section 9887 19,744 00004 084%  0.21
D(49)
CC(0.43) Q(0.96)
BFP2013
Random
Conf. Model

A(0.017)

A(14.43)

np(0.21)

Fig. 2 Radar chart displaying network parameters for the BFP2013 network (blue pattern and triangle
symbols), its randomized counterpart (red pattern and square symbols), and the corresponding configuration
model (yellow pattern and round symbol). Data for BFP2013, randomized, and configuration model networks,
in this order, are the following: diameter (D = 49, 15, 14), average shortest path length (A = 14.43,6.78,5.48),
assortativity (A = 0.017,0.001,0.012), average clustering coefficient (< CC >= 0.430,0.001,0.002),
modularity (Q = 0.96,0.52,0.53) and number of driver nodes (np = 0.21,0.02,0.16)

Page 7 of 20
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between the clustering coefficient of the network and of its randomized version, and the
second term is the ratio between the average shortest path length of the randomized net-
work and of the original graph. Specifically in the present case, S® ~ 202 and 82 for
simple rewiring and configuration model respectively, while the expected value of the lin-
ear fitting with network size observed in Humphries and Gurney (2008) is around 157,
confirming the small-world nature of the BFP2013.

The degree distribution of a graph gives important clues about the nature of the net-
work it represents. For instance, networks with homogeneous degree distributions, where
the probability p(k) that an arbitrary node has degree k decays exponentially for large
values of k, face a transition from a fully connected to a disconnected phase when a
fraction ¢, is randomly removed from it (Barabdsi 2016). While graphs in which p(k)
has a heavy-tailed distribution are usually robust to random failure of nodes, but weak
to targeted attacks to its most central nodes or hubs (Barabasi 2016). Examples of net-
works with heavy-tailed degree distribution include the Internet, the World Wide Web,
and in general most (large-scale) social networks (Dorogovtsev and Mendes 2013). In
these cases, the degree distribution sometimes follows a power-law in a scale-free regime
(p(k) < k77, with 2 < y < 3) and usually reveals generative models associated with pref-
erential attachment, optimization, multiplicative models among others (Mitzenmacher
2004). However, real networks scarcely display pure power-law distributions. In general,
two competing phenomena are present: low degree saturation and high degree cutoff
(Barabasi 2016). Usually, the number of low degree vertices is smaller than expected by a
pure power-law regime due to an initial attractiveness of every node. The second behav-
ior indicates a rapid drop in p(k) for k > k¢,; due to inherent limitations in the number of
edges each hub can accept. For typical social networks, this constraint is strongly related
to the human limitation of maintaining more than 150 strong ties (a feature known as
Dunbar’s number) (Gongalves et al. 2011). Nonetheless, in the criminal case, besides this
cognitive restriction, the high degree cutoff is also because of the lack of trust among
criminals which is necessary to hide the network’s illegal activities, decreasing its bright-
ness. We call this phenomenon the “no trust among thieves” effect. Illegal activities need
to remain concealed from law enforcement investigations and this means that crimi-
nal contacts (relationship, conspirators, accomplices etc) need to be restricted (Morselli
2009). Therefore, trust and reputation are paramount in criminal cooperation in order to
decrease the risk of the whole illegal operation being busted by the Police (Kleemans and
Van de Bunt 1999; Von Lampe and Johansen 2004). On the other hand, when in time of
operationalizing a given criminal agenda (taking action in a bank robbery for example),
levels of trust could increase momentarily specifically in low level operational individuals
(Erickson 1981). However, we do not have the dynamic data needed to analyze this burst
of trust proposed in earlier researches, and our static results support the necessary lack
of trust among criminals in the long run. This result also introduces an important empir-
ical quantity for the “safe” level of lack of trust among criminals that has direct impact on
the high degree cutoff of the degree distribution at approximately 60 relationships. Such
effect, that reflects an embedded nature of criminal intelligence networks, could be used
in future researches to model generative and agent-based models for criminal networks,
for example. When both effects (cognitive and trust restrictions) occur there is a strong
decrease in ky,;; which impacts the high degree cutoff. Power-law distributions with low
degree saturation (k) and high degree cutoff (k) are usually fitted to
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cut

pk) o (k + ksge) ™7 exp (—kk>, (2)

which can be rewritten as a typical power law py k=7, with the appropriate set of
transformations py = prexp (ﬁ) and k = k + kg (Barabési 2016). Figure 3 shows the
degree distribution of the criminal intelligence network in log-log scale (left panel) and
the re-scaled version of it according to the Eq. 2 (right panel), where we have used ks;; = 6
and k., = 60, resulting in an effective y = 3.29 (see Fig. 3 for statistics). With such
transformation we recover the scale-free property of BFP2013.

The assortativity (A), i.e. the bivariate correlation between the degrees of connected
nodes (Newman 2002), is another important aspect of a network. For instance, in the
case of random networks, the correlation is zero in the limit of large graphs since edges
are linked to each other independently of vertex degree. In assortative networks (4 > 0),
nodes tend to connect to others with a similar degree, while in disassortative networks
(A < 0), high degree vertices tend to attach to low degree nodes. In social and busi-
ness networks, highly connected people tend to relate to others with similar popularity
in search for success, reputation, and social status (Newman 2002; 2003). Apparently,
the same goes true with criminal networks which can be thought of a particular case
of business networks. However, the value of A for the studied network, A = 0.02, is
very small, unraveling a close to neutral assortativity. A possible explanation could come
from the maximum degree (ky4x = 68) of the BFP2013 network which is much smaller
than the structural cutoff for simple graphs (k; ~ ((k)N)!/? = 185.47) (Boguiii et al.
2004). Therefore, there are not enough edges to generate high levels of assortativity. As
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Fig. 3 Degree distribution py for the federal criminal intelligence network in log-log axis, showing the typical
real networks features of low degree saturation and high degree cutoff (left panel). Re-scaled degree function
Dk = prexp(k/keyt) as a function of k = k + kgt in log-log scale and the power-law fit (right panel). The linear
fitis such that log(p) = (4.9643 + 0.4147) — (3.2907 + 0.1218)log(k) with adjusted R? of 0.937 and KS
p-value 0.8693, meaning the model explains the data variability and that the null hypothesis is most
probable. To reach this statistics we have proceeded according to the recipe for analyzing power-law
distributed data proposed by Clauset et al. (2009). That is, we have proceeded a linear regression with the
method of maximum likelihood in the log-transformed data to estimate the power-law parameters. The
resulting statistics gives a very high p-value (0.8693) meaning the generalized power-law is a highly plausible
hypothesis for the data. We then compared the result with a log-normal distribution (p-value 0.5441) via
likelihood ratio test which resulted positive indicating that the generalized power-law model is favored over
the log-normal. Simple power-law and exponential functions also do not show significant results
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aforementioned when discussing the high degree cutoff, we propose that the reason why
the maximum degree is much lower than expected lies both on cognitive restrictions
related to Dunbar’s number and on the “no trust among thieves” effect needed to keep
the network clandestine.

In hierarchical networks, the local clustering coefficient can be expressed as a function

of the degree as (Dorogovtsev et al. 2002):
CClh) ~kF. (3)

It has been shown in previous works that 8 ~ 1 for deterministic scale-free networks as
well as in a variety of real networks (Ravasz and Barabdsi 2003). To measure the topolog-
ical hierarchy level of the BFP2013 network we display in Fig. 4 the clustering coefficient
as a function of the degree in log-log scale. As that figure shows in detail, even though
there is a strong saturation around high values of the clustering coefficient, CC(k) scales
as k~0%, indicating that the network is in fact hierarchical. As a mater of fact, low-k
criminals (such as operatives) tend to have been identified in a small number of common
investigations, i.e. many of them share neighbors that are usually higher profile crim-
inals (such as local commanders) in a much smaller amount. This behavior results in
high clustering coefficients. Complementary, high-k criminals were mostly investigated in
many distinct law enforcement operations, but with different partners involved each time.
These bridge-like criminals (such as bosses and capi) act as proxies for distant regions of
the network, decreasing its diameter. Therefore, their neighbors are usually not connected
among them, resulting in low CC(k) at high values of k. However, in Fig. 4 we observe
a dispersion of CC(k) around high values of k, which might be due to the tendency of
criminals to group with others with similar reputation.

Network disruption and police intervention
The network provided by the Brazilian Federal Police consists of a static snapshot of
CRIMINT relationships, and we do not currently have access to network dynamics.
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Fig. 4 Clustering coefficient (CC) as a function of the degree (k) in log-log representation. The horizontal
dashed red line is the average clustering coefficient (< CC >~ 0.43). The dotted blue line is CC ~ k=1 the
dotdashed magenta line stands for CC ~ k2 and the solid red line is the linear fit
In(CC) = (040195 + 0.02096) — (0.63820 = 0.01287) x In(k) with adjusted R? of 0.2923 and very small
p-value, meaning that the model explains only a few of the variability of the data around its average
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However, as discussed in the introduction, network robustness and resilience are two
important features when dealing with criminal networks. Social and criminal networks
are usually dynamic in nature with nodes and edges being created and deleted with time.
As showed by Duijn et al. (2014), the attack to a set of criminal nodes might result in
new connections that might reinforce network robustness. In fact, after a given perturba-
tion (network attack) the system takes a characteristic time t to reach a new equilibrium
phase. Therefore, if the police could launch sequential attacks to the criminal network
before 7, the network could be treated as static, and its dynamic and resilience features
could be neglected. This is why robustness as a static problem is of paramount importance
to police interventions. Even though with the data at hand we cannot know the charac-
teristic time of resilience of the BFP2013 network, knowing its robustness at a given time
might reveal important structural informations about it.

In this sense, we now study BFP2013 robustness to a series of targeted attacks. The
attack on a network can be performed either by removing its nodes or by removing
its edges (but keeping the nodes). In a topological perspective, node removal is always
more effective in atomizing complex networks causing more damage per elimination than
edge removal, since the deletion of a single node from the network results in the elim-
ination of all the links attached to it (Iyer et al. 2013; Crucitti et al. 2004). Sometimes
the traditional interpretation of topological interventions to criminal networks identifies
the imprisonment of an individual as node removal (Morselli 2009). This usually holds
true when considering isolated criminal groups or mafia rings. However, when dealing
with CRIMINT networks such as BFP2013 which comprises relationships among distinct
groups (such as drug lords and pedophiles for instance) from all crimes investigated by
the Brazilian Federal Police, we believe the interpretation should change to reflect the
bigger picture. For example, when a drug trafficking ring is dismantled by the Brazilian
Federal Police, the criminals involved (nodes) do not get deactivated from the network.
On contraire, they remain active in the CRIMINT network only losing (temporarily)
some of its trafficking connections (edges), maintaining their corruption or sexual abuse
relationships for instance— in real prison systems the individual should also increase its
connectivity by imprisonment. In this sense, law enforcement operations are aimed at
identifying and arresting criminals (nodes), which in turn may result in the elimination
or at least in the temporarily suspension of some of its connections (edges), and not in
the elimination of the individual from the CRIMINT network. Therefore, the deletion
of a node in a CRIMINT network means the complete removal of the individual, which
only occurs in the case of death or by total re-socialization of the subject. Nonetheless, it
should be noted that this is a very simplified version of the real networked system ana-
lyzed, and in the BFP2013 case the network consists of only a static snapshot of a much
complex phenomenon. However, considering only this simplified model of the crimi-
nal intelligence system, the aforementioned topological rationale might have important
implications. From a network science point of view, re-socialization (e.g. by education or
by work) should be in general a more effective strategy to fragment the criminal intelli-
gence network than imprisonment since the first approach relates topologically to node
removal while the second to edge removal. Still, considering all limitations of this model,
analysis, and rationale, and bearing in mind one does not know how such system responds
dynamically to topological disruptions, the death of key individuals (node attack), a strat-
egy architecturally more efficient than edge removal, should reach the same results as
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re-socialization, ceteris paribus. This concept fits the distinction between Criminal Law
of the Enemy (Feindstrafrecht) and Criminal Law of the Citizen as proposed by Giinther
Jakobs in 1985 (Jakobs 2010), in which certain people, as enemies of the society, should
not have full protections of the civil and penal laws to protect this same society from sys-
temic dangers. Jakobs proposes philosophically that when a recidivist criminal ignores all
societal norms on behalf of its own criminal clan purposes he/she would be terminat-
ing the Hobbesian social contract, and in turn would enter a lawless natural state, losing
his/hers civil rights, therefore turning into an enemy and losing its statue as a citizen
(Jakobs 2010). However, we would like to strongly stress that even though such legal con-
cept has been notably used in terror fighting (the idea of Taliban unlawful combatant for
example), it is opposed and severed criticized by most scholars of penal law and legal
philosophy (Negt 2014). From the topological point of view, once again considering all
limitations of our analysis, perhaps the best argument against Feindstrafrecht is the fact
aforementioned that re-socialization, a much more defensible strategy ethically, should
reach the same network disruption effect.

To simulate the attacks on the BFP2013 network, we now perform node and edge
attacks to the giant component as it was anticipated. We do that considering two differ-
ent kind of strategies: high centrality attacks, when nodes or edges are deleted according
to a list previously ordered by a chosen centrality index, and high centrality adaptive
attacks when the list is iteratively ordered by a centrality index updated after each removal
(Barabasi 2016). Following these two types of strategies we test the network struc-
tural fragility against several procedures based on different centrality measurements (see
Fig. 5): node-based High Degree Adaptive (HDA), High Betweenness Adaptive (HBA),
High Degree (HD), High Betweenness (HB), Collective Influence (CI), and Module-Based
(MBA) attacks, and edge-based High Betweenness Adaptive (eHBA), High Betweenness
(eHB), and Module-Based attacks (eMBA).

The degree centrality is the number of connections a node has, while the betweenness
centrality measures the fraction of shortest paths connecting two nodes that include the
given vertex in its way (Iyer et al. 2013). The collective influence of a node takes into
account the degree of its neighbors at a given distance / from it in the following way:

—=¢HB
a—-s eHBA
e o eMBA

G (%)

Fig. 5 Fragmentation results of the federal criminal intelligence network represented by the relative size of
the largest connected component, G, as a function of the percentage of nodes/edges removed, g, according
to procedures based on different measurements: a, node removal by Degree (HD - black squares),
Betweenness (HB - blue triangles), and Modular (MBA - red circles); b, edge removal by Betweenness (eHB -
black squares), Betweenness Adaptive (eHBA - blue triangles), and Modular (eMBA - red circles); ¢, node
removal by Degree Adaptive (HDA - black squares), Collective Influence (Cl - lower green triangles),
Betweenness Adaptive (HBA - blue triangles), and Modular (MBA - red circles)
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where k; is the node’s degree and the dBali(i, £) is the set of all nodes at a distance ¢ from
node i. The method of network fragmentation based on iteratively removing nodes with
the highest collective influence CI, was proven to generate an attack list very close to the
minimum dismantle set (Morone and Makse 2015), i.e. the minimal set of nodes that if
removed would break the network into non-extensive components. The Module-Based
attack (Requido da et al. 2015) is based on the modular nature of real networks, i.e. the
tendency of complex networks to group into clusters densely connected internally but
weakly connected among them. The density of internal (community) links when com-
pared to the average density of edges is measured by the network’s modularity, Q, which
ranges from — 1 to 1, and depends slightly on the community extraction algorithm used
(Girvan and Newman 2002). Highly modular networks are fragile against MBA attacks, as
we recently showed (Requido da et al. 2015). In fact, criminal relationships are expected
to be organized in networks with a clear modular fingerprint. The reason is that weak
connections among communities would favor network obscurity while the higher density
inside the communities helps to run a business efficiently. Indeed, the present network
has a very high modularity either using Louvain (Blondel et al. 2008) (Q = 0.96) or using
Infomap (Rosvall et al. 2009) (Q = 0.88) methods.

To quantify the effects of each disruption strategy on the BFP2013 network, we measure
the size of the largest connected component relative to the network’s original size, G(g),
as a function of the fraction of removed elements, g. As pointed out in earlier research
(da Cunha and Gongalves 2017), the generalized robustness of a network to a given attack
strategy is given by the metric:

qmax

= N1-G6.5 mm) Z G(q) , (5)

where N is the number of nodes in the network, g,y is the point at which the attack ends,
and Gy is the value of the relative size of the largest connected component at g y.

As mentioned before, the Brazilian Federal Police database continued to grow after the
snapshot we analyzed and contains currently almost 2 x 10° vertices. It is unfeasible to
compute many centrality lists, remarkably HBA attacks, for networks of this size or bigger.
Therefore, in order for the Brazilian Federal Police to identify high topological profile
targets in the future according to its growing database it is important to check for the
best strategy considering the trade-off between robustness (R) and the time (£) needed to
compute the attack list. In this sense, the performance of an attack is measured by the
relation P = t~! x R, where t is the time taken to complete the procedure and R is the
robustness (da Cunha and Gongalves 2017).

In accordance with these considerations, the attack strategy with highest performance
(see Fig. 6) is MBA both for node and edge attacks as expected for the network’s high mod-
ularity. However, the network is a little less robust to HBA, which in turn takes much more
time to compute. Besides that, the BFP2013 is much weaker to HBA and MBA attacks
than to the novel CI strategy as depicted in Fig. 5. In other words, the network would be
fully atomized after removing approximately 2% of its vertices and almost 5% of its edges
by HBA. The deactivation point at which all communities are detached from the core of
the original graph is reached by the MBA prescription when nearly 2% of either its edges
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Fig. 6 The histograms show the performance of the three best attacks on the federal criminal intelligence
network. a shows Module-Based (MBA - horizontal red shades), High Betweenness (HB - inclined blue shades)
and High Degree (HD - vertical golden shades) strategies for node removal, while b depicts MBA, HB and
High Betweenness Adaptive (HBA - inclined black shades) methods for edge-based removal

or nodes are removed. This means that even though node removal is in general more effi-
cient than edge attacks, particularly in this network both strategies are very similar—for
instance, the edge MBA has higher performance and similar robustness than the node
HBA. To illustrate the effectiveness of HBA and MBA, the network would fragment com-
pletely by random attacks after the random failure of 80% of nodes or 86% of edges. From
the criminal sciences perspective, one may say that re-socialization is, in general, a more
desirable and sustainable strategy to lower crime levels than imprisonment. However, as
far as the modular nature of BFP2013 is taken into account, both strategies show similar
results mostly due to its low density of edges.

Recent studies (Ren et al. 2018a; 2018b) have suggested that a more realistic approach to
network robustness would be to take into account a cost of removing nodes proportional
to the number of edges deleted along with it. The authors argue that most state-of-the-art
algorithms such as MBA or CI fail in efficiency when such a generalized network disman-
tling framework of node removal cost (such as node price, protection level or removal
energy) is taken into account. Even though such framework may be applicable to a vari-
ety of real networks, we believe that it is not the case of criminal networks. For instance,
high profile criminals that could, in principle, have higher levels of protection, violence
or political influence should be precisely the ones targeted by the police. Likewise, since
all edges in BFP2013 are criminal relationships, the mainstream criminal policy is pre-
cisely to eliminate the higher amount of them with the least number of actions— this is
exactly the aim of confinement and prison, to remove the largest possible amount of exte-
rior criminal edges of the inmate. We believe that such framework might be extremely
suited to networks of networks when a criminal network functioning is dependent, for
instance, on an infrastructure network or a non-criminal relationship network (e.g. family
or friends). However, this is not the case of the BFP2013 network.
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Brazilian Federal Police network controllability

A dynamic system is said to be controllable if one can get it to evolve from any initial
state to an arbitrary final state in a finite time by an appropriate choice of external inputs.
However, for very large systems such as real networks it is more suitable to search for a
minimum subset of nodes whose control guarantees mathematically control of the whole
network. For instance, a dynamic variable such as opinion, wealth or general tendency to
commit a crime evolving in time constricted to a criminal network topology is reducible
to a minimum or zeroth level, at least in principle, if the network is controllable. Recently,
it was developed the so-called structural controllability theory of directed networks (Liu
et al. 2011), which consists of identifying a minimum set of individual driver nodes to
achieve full control of complex networks, this framework was shown to be equivalent to
a problem of maximum matching. More recently, it was shown that structural controlla-
bility can be achieved with a single time-varying input suggesting that nodal dynamics is
the key factor in determining network controllability (Cowan et al. 2012). Nonetheless,
the proposal is restricted to directed networks, which is not the case studied here. There-
fore, the exact controllability theory (Yuan et al. 2013) is more suited to BFP2013. This
framework is based on using the maximum geometric multiplicity of the adjacency matrix
to find the minimum set of drivers required to fully control the network. In this sense,
consider a linear system described by the following set of ordinary differential equations:

x = Ax + Bu, (6)

where the vector x stands for the states of the nodes, A is the adjacency matrix of the
network whose elements are a;; = 1 if nodes i and j are connected and a;; = 0 otherwise,
u is the vector of controllers and B is the control matrix. The network represented by A
is said to be controllable according to the framework of the exact controllability theory
(Yuan et al. 2013) if we control a minimum fraction of nodes (called drivers or controllers)
given by:

np = %max{l,N — rank(A)}. (7)

In this sense, it was previously shown by Liu et al. that the degree distribution deter-
mines in great extent the controllability of the network (2011). For example, in the case of
unweighted and undirected Erd6s-Rényi networks, np — 0 for typical values of the con-
necting probability (Yuan et al. 2013). In their seminal article, Liu et al. (2011) have shown
that, counter-intuitively, many social networks usually have very low #np values when com-
pared to biological or infrastructure networks. For instance, in the networks studied by
Liu et al. (2011), gene regulatory networks display #p as high as 0.96 (TRN-Yeast-1), while
social networks have values as low as 0.04 (Slashdot), indicating that few individuals could
in principle control the whole network. A similar behavior is shown here. In Table 1 we
show np for many social networks, and the values range from 0.04 (in the communica-
tion network of University of Rovira i Virgili) to 0.30 (in the Hamsterster network). The
BFP2013 network also shows low level of np = 0.21, suggesting that it could be controlled
by only 2076 criminals out of 9887 individuals. This result supports the idea that crim-
inality levels can be mitigated by non-repressive policies. For instance, supposing norm
compliance (or obedience to law) is not an individual attribute, but a dynamic variable
that spreads through the network by contagion mechanisms, according to these results it
would be possible to change the whole network perception of breaking the law by flipping
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the behavior of approximately 20% of individuals. This rationale might suggest that miti-
gation of criminality can be achieved by non-repressive policies such as general access to
basic education, sanitation or health, that in turn could change the perception of driver

individuals to norm compliance.

Conclusion

Thanks to a recent data acquisition program by the Brazilian Federal Police, we are able to
study the network structure, robustness, and control of a snapshot of a large and unique
criminal intelligence network covering different classes of federal crimes all over Brazil.
The network was built directly by federal agents assigned to each investigation for intel-
ligence and investigative purposes. The network was anonymized and cyphered before it
was made available for us to study. In this paper, we share and analyze this unique network
consisting of 23,666 individuals in 35,913 undirected and unweighted relationships. Sur-
prisingly, the network consisting of initially distinct crimes such as drug trafficking and
online children predators, has a giant component holding more than 40% of the nodes
and 54% of the edges.

By focusing on this giant component (BFP2013) we show that the network has small-
world and scale-free behaviors, being “darker” than traditional social networks, com-
bining both low edge density and low network efficiency. These features are related
to the clandestinity of the network that constantly tries to hide from law enforcement
surveillance. The network also has a heavy-tailed degree distribution that is fitted to a
generalized power-law with low degree saturation and high degree cutoff. The first phe-
nomenon is due to the initial attractiveness of each node and the second, which explains
the low maximum degree, is related to both cognitive limitations and to the “no trust
among thieves” effect, i.e. criminals tend to have a reduced number of relationships in
order to protect their illegal activities. This effect, which we believe reflects a subjacent
nature of criminal networks, introduces an empirical quantity to a “safe” level of trust
among criminals that might be used in future works to design generative or agent-based
models for criminal networks consisting of multiple rings of distinct criminal actions
such as the one studied here. This high degree cutoff also results in a close to neutral
degree assortativity. The network is also highly hierarchical, a feature directly related to
the behavior of the clustering coefficient, reflecting the fact that a few prominent individ-
uals are responsible for network cohesion, while most low-k criminals participate only in
a small amount of illegal enterprises with a repeated number of accomplices.

The criminal intelligence network is highly modular, which is a result of the com-
partmentalization of activities, i.e. the low density of connections among modules favor
clandestinity while the higher fraction of edges inside communities enhances internal
efficiency. Consequently, BFP2013 is highly weak to module-based attacks, being deac-
tivated after the removal of approximately 2% of nodes (198 criminals) and 2.5% of
edges (494 relationships). Although in general it is more efficient to remove nodes than
edges, particularly in this network both strategies have similar results because of its low
graph density. This is an important feature of this analysis. According to our interpre-
tation of law enforcement topological disruptions of global CRIMINT networks, node
removal corresponds to either re-socialization or death of key individuals. Edge removal,
on its turn, has a close relation to imprisonment. Ceteris paribus, since mathematically
removing nodes fragments general graphs faster than edge attacks, one could assert,
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as similar to Jakobs in his Criminal Law of the Enemy theory (Jakobs 2010), that the
killing of key criminals would fragment the network in a more efficient way. Our results,
however, introduce topologically two different approaches. For instance, re-socialization
should have the same topological effect on fragmenting the criminal network. Besides,
due to the low graph density of the BFP2013 network, the difference on the number of
removals needed to fragment the CRIMINT network studied here in both node and edge
removals approaches is very small (2% of nodes versus 2.5% of edges). This means in our
rationale that the imprisonment of key topological criminals should reach very similar
fragmentation levels as compared to the other two hypotheses, specially when compared
to (Feindstrafrecht) theories that have an evident high social and ethical cost. We argue
that the weakness of this network to targeted attack to its bridges among communities
might have an important impact in law enforcement perception of high profile targets,
i.e. criminal intermediates such as lawyers, accountants, black-market dealers, and money
launderers operating for different groups have a structural role more prominent than the
role of big bosses or capi. The biggest corruption scandal in the history of Brazil known
as “Operacdo Lava-Jato” (Car Wash Operation in English) fits precisely this framework.
It started as an international drug trafficking investigation by the Brazilian Federal Police
in which a black-market money changer was later identified as the one responsible for
laundering cash not just for drug lords but also for a highly intricate federal corruption
scheme that lead recently to the conviction of former secretaries, congressmen, senators
and presidents.

However, considering BFP2013 is a CRIMINT network it may not be possible to build
legal cases in many situations. Therefore, one must consider non-repressive alternatives
to police interventions, i.e. without the removal of nodes or edges. In this sense, we have
shown that 2076 criminals out of 9887 individuals could in principle control the dynamic
of linear systems evolving on this network. We suggest that this result indicates that crimi-
nality may be faced by non-criminal policies shaped to flip the perception of a small subset
of driver individuals about the obedience to law. Nonetheless, in control theory one is
usually interested in finding a stable final state or else the network will easily move away.
Besides, in social networks the drivers are people and even the task of engineering a single
input could raise ethical and legal issues. These are all question we will address in future
contributions. Moreover, we plan to explore in the future how spread dynamics behave in
controllable networks and to understand the role of superspreaders and superblockers in
criminal networks (Radicchi and Castellano 2017).

It is important to note that our research focuses on a deliberately simplistic model
of a criminal system with much of its complex structure not considered in order to
obtain some insight about the simplified embedded topological mechanism of the net-
work concisely. Therefore, our study has several limitations. First, the network consists
of relationships identified by intelligence officers after a criminal intelligence cycle. This
means that connections are manifold and may include relations such as contact, prison
mates, co-offending, telephone or internet communications etc. However, the Brazilian
Federal Police did not take into account the possibility of building a multiplex criminal
network and the data were shared consisting of a condensed, simplified, undirected, and
unweighted graph. Second, the BFP2013 consists of a static snapshot of a truly dynamic
system that evolves in time and obviously responds to topological interventions. This
highly limits our study of the CRIMINT network since we were not granted access to any
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temporal evolution of the system. All in all, even though this is only a simplified analysis
of a much more intricate complex system, we believe the results we show in this paper
might help understand some important underlying features of criminal networks, spe-
cially when considering the size, dimension and uniqueness of the criminal intelligence

shared by the Brazilian Federal Police.

Additional file

Additional file 1: This additional file consists of a CSV file with the anonymized edge list relative to the Brazilian
Federal Police criminal relationship data, i.e. a 35,913-by-2 matrix. Each cell contains a hash which identifies an
investigated person, and two adjacent cells indicate a criminal intelligence relationship between them. (CSV 2455 kb)
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