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weighted, temporally evolving and signed networks using correlation-based
interdependences. Our results revealed a “fission-fusion” market growth in network
topologies, which indicated the dynamic and complex characteristics of its evolutionary
process. In addition, our regression and modelling results offer insights for construction
a “characterisation tool” which can be used to predict stocks that have delisted and
continuing performance relatively well, but were less adequate for stocks with normal
performance. Moreover, the analysis of deviance suggested that the survivability
resilience could be described and approximated by degree-related centrality measures.
This study introduces a novel alternative for looking at the bankruptcy in the stock
market and is potentially helpful for shareholders, decision- and policy-makers.
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Introduction

Complex network approaches are commonly applied in a wide range of academic fields
(Barabdsi 2016; Munnix et al. 2012), and studies on network topology have always
been an interesting topic. The statistical measures of topology and interdependence
are often strongly associated with the performance of network components. For exam-
ple, in financial stock networks, the correlation-based topology varies with the different
condition of nodes (stocks) and edges (correlation-based interdependence). Here, we
investigated such associations and tried to establish a predictive relationship between net-
work measures and a special type of component performance, survivability resilience, in
correlation-based stock networks.

As self-explained, the term survivability resilience describes the ability of the subject
to survive, to be reliable, and to avoid failure in the environment (Singpurwalla 1995).
It answers the question of how resilient the subject is in a static or dynamic envi-
ronment to maintain long survival (Sterbenz et al. 2010). In the stock market, the
survivability is termed to illustrate the ability of stocks/listed firms to prevent corporate
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failure/bankruptcy or being delisted from the market. Categorising and predicting cor-
porate failure is essential in bankruptcy studies (Khoja et al. 2016) because it is of great
importance in providing early warnings about a company’s financial distress to stakehold-
ers, business managers, policy-makers, and financial economists (Amendola et al. 2017;
Jones et al. 2017) and it is hard to be characterised and predicted (Allen and Babus 2009).

Over the past 50 years, various statistical models based on financial or accounting
data have been applied for predicting corporate bankruptcy (du Jardin et al. 2017). The
most frequently used methods for studying stock survivability include genetic fuzzy
models (Kuo et al. 2001), artificial networks (Zhang et al. 1999), genetic algorithms
(Zelenkov et al. 2017), and neural networks and deep learning networks (Ticknor 2013;
Chong et al. 2017). Other traditional statistical models have also been proposed, such
as multivariate discriminant analysis and logistic regression (Beaver 1966; Altman 1968;
Shumway 2001; Mossman et al. 1998; Lee et al. 1996). In recent years, machine learning
models have been popular in bankruptcy predictions due to their excellent performance
on accuracy (Barboza et al. 2017). However, the majority of those models require a sub-
stantial amount of accounting-related data (from a company’s financial statement) as
input variables (du Jardin et al. 2017). This sometimes leads to an unpromising issue as
those accounting data could not always be available in hand. Furthermore, most studies
of bankruptcy have concentrated on only failed firms and overlooked the possibility of
using networks perspectives to model stocks/firms with different survivability, including
those of exceptionally resilient performance.

On the other hand, apart from bankruptcy literature, studies of financial stock networks
themselves are not rare in the literature. One interesting topic is to study the temporal
transformation of the market with a network perspective. The special swarm patterns
caused by different stock’s survivability performance often manifest in the network evo-
lution process. However, most of the previous works have only briefly discussed such
process of their studied networks (Bonanno et al. 2004; Mantegna 1999; Onnela et al.
2003), and most have been based only on either a short time period or a small fraction of
the market population (Huang et al. 2009; Gao et al. 2013). We believe that studying the
long-term evolutionary process of the market networks would help us understand more
about the survivability resilience of stocks.

Thus, the two-fold purposes of this paper are: (a) firstly, to explore the correlation-
based interdependence of a whole market by constructing weighted, signed and temporal
stock networks and to understand the long-term dynamic evolution of their topological
features; and (b) with the understandings of long-term historical evolution process from
the first purpose, we then characterise the survivability resilience of stocks via statisti-
cal models (using interdependence and network measures as variables) and then explore
their predictive strengths by identifying highly descriptive parameters. This work is an
expanded version of preliminary work in (Tang et al. 2017). Here we expanded the scopes
by using a new and more completed dataset and applying new modelling approaches.
Also, we tested and validated the predictability of the model and studied its performance
regarding various stock behaviours.

The remainder of this paper is organised as follows: “Data and methodology” section
describes the data and methodology for network construction, followed by analysis of the
dynamic evolving process in “Understanding interdependence” section. In “Time-series

network measures” section, six network measures are introduced and their statistical
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analysis are presented. “Survivability and resilience characterisation” section consists
detailed results and discussion on survivability resilience, followed by final conclusions
summarised in “Conclusion” section.

Data and methodology

We used DataStream’ to gather historical data on the daily closing stock prices
(adjusted stock price, which accounts for actions such as splits and dividends) for 7206
companies that had ever traded or were still trading on the London Stock Exchange over
a 40-year period (total of 10438 trading days), from 04/05/1977 to 05/05/2017.

Firstly, we categorised all stocks before constructing networks. The categorisation of
Delisted companies and Continuing companies were based upon their ability to survive
in the markets. Stocks that did not belong to either of those two groups were treated as
Normal companies. The following definitions were used for our categories:

¢ Delisted stocks (example stocks 1 and 2 in Table 1): those companies that were
delisted when they have a high leverage generally because they were unprofitable,
and/or were facing difficulties in gaining additional equity capital during their public
life (Pour and Lasfer 2013). Consequently, those companies have been delisted to
become privately owned companies, acquired companies or in some cases, went
bankrupt.

¢ Continuing stocks (example stocks 3 and 4 in Table 1): those companies have good
opportunities for investment growth, and which showed increases in equity capital
when quoted in the market (Pour and Lasfer 2013). For our purpose, continuing
group represents the companies which have been continuing to trade in the market
for the entire 40-years observation period.

Table 1 Structures for three groups of collected data

Yearly window Date stock 1 stock 2 stock 3 stock 4 stock 5 stock 6
Year 1 date 1 2322 - 7325 101.0 - -
date 2 186.2 - 232.2 106.9 - -
date 3 1487 162.9 186.2 1026.7 - -
112.7 168.2 148.7 2188 - -
82.2 185.0 112.7 732.8 - -
Year 10 82.2 185.0 1127 732.8 - -
date 100 59.7 1084 822 2323 - -
date 101 82.7 121.2 59.7 186.3 2322 -
date 102 163.8 201.0 827 148.8 186.2 -
154.8 154.8 163.8 1128 148.7 2.6
154.8 154.8 163.8 1128 148.7 26
Year 25 108.1 - 154.8 822 112.7 2.7
date 10000 954 - 108.1 59.7 822 2.8
date 10001 - - 59.7 828 59.7 14
- - 82.7 163.9 827 1.0
- - 827 163.9 82.7 1.0
Year 40 - - 827 1639 82.7 1.0
date 10437 - - 163.8 154.8 163.8 2.1
date 10438 - - 154.8 108.1 154.8 29

The “Date” column indicates the number of trading days into the 40-year observation period. Stocks 1 and 2 illustrate the Delisted
group, stocks 3 and 4 are examples of the Continuing group, and stocks 5 and 6 represent companies in the Normal group. In
each column, values are the average closing prices for that date
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¢ Normal stocks (example stocks 5 and 6 in Table 1): those companies were initially
listed at some point during the observation period and had not failed yet by the end
of the observation period.

Next, we determined the edges of these complex financial networks, based on prede-
fined interdependence that characterised a certain relationship or interaction between
acting nodes. A considerable number of studies have focused on methods for constructing
the edges in stock networks. They include the minimal spanning tree (Bonanno et al.
2003; Vandewalle et al. 2001; Kwapien et al. 2017), planar maximally filtered graph
(Tumminello et al. 2005), threshold filtering mechanism (Huang et al. 2009), and winner-
takes-all approach (Chi et al. 2010). Other more recent investigations have concentrated
on the methods for constructing interdependence, e.g., Pearson correlation coefficients
(Heiberger 2014), Partial correlation coefficients (Xu et al. 2017), Pearson product-
moment correlation coefficient (Zhang et al. 2017), covariance and Gaussian graphical
models (Xuan and Murphy 2007). Generally speaking, the Pearson correlation coefficient
tends to be the most widely applied methods.

Therefore in our study, we used the Pearson correlation coefficients to construct net-
works, using pair-wise logarithmic returns for stocks on a daily basis. For this, we let r;(¢)
and p;(¢) denote the log-return and closing price of stock i at time ¢, respectively. The
daily log-return can be expressed as follows:

ri(t) = In [pi(®)] — In [pi(t — AD)] (1)
where At is one trading day, At = 1. Then we write Pearson correlation coefficients
(Benesty et al. 2009) c;; between stock i and j as:

<ri®) xrj()) > — <ri(®) > x <7(t) >

Cij = (2)
o; X gj

where < . > indicates the mean value and o; is the standard deviation of the stock i
in a time series. The p-values were also computed for each coefficient and used as the
threshold to prune the networks and filter out those insignificant correlations. In order
to avoid severe topological information loss while pruning the edges (according to the
evidence shown in Huang et al. (2009), the edge density of stock network drops sharply
from c;; = 0.1), we set p-value threshold as 0.01 to eliminate weak correlations for — 0.1 <
¢;j < 0.1, replacing them with “0” We then used the coefficient values as edge weights
to represent the intensity of connections. Like the positive/negative interactions in social
networks (Leskovec et al. 2010), we also showed considerations to negative signs in the
correlation-based financial networks, and the edge signs were same as the corresponding
signs of those coefficients.

In the final step, networks were constructed based on the yearly time window, which
resulted in 40 networks in total (c.f.,, Table 1). One should be aware of that we need to
identify the population of active stocks in each constructing year. For example, the stock
5 in the table cannot be included until year 10 since it was not listed during those years.
However, if a particular stock was newly de-listed in the middle of a given year, e.g., stock
1in Year 25, it was still considered active for that year because some closing price records
remained available in that specific yearly window. It was only counted as inactive there-
after. Thus, for all active stocks in one year, the correlation coefficients were calculated in
a “pairwise” manner, meaning that if one of the two columns contained a series of value
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“NAN” from a certain row, all rows with value “NAN” were omitted and only the common

section was used to calculate the coefficient.

Understanding interdependence
In this section, we investigate the basic network information extracted from the stock
networks and study the dynamic evolution of correlation-based interdependence in long-

term observation.

Network topology

The growth of networks shows a constant fluctuation in terms of the total number of
nodes (Fig. 1a), the number of newly listed and delisted nodes (Fig. 1b), the number of
edges (Fig. 1c), and the network density (Fig. 1d). Counterintuitively, the networks did not
evolve constantly as the market population gradually increased. Subplot (a) presents three
major shrinkages and expansions of the market population (Table 2). The first continuous
increment occurred during the first eight years when the number of total nodes increased
from 1963 to 2336. However, between 1984 and 1986, numerous stocks (599) were de-
listed due to a severe recession in the UK in the early 1980s. This was followed by an
increasing number of bankruptcy cases (Rhim 1993).

The second expansion was found in 1992 to 1993 (16th year), when the market grew
from 1760 stocks to 2093 in 1996-1997 (20th year), after that the number gradually
decreased again until 2003-2004. In the following two years (28th, 2004-2005 and 29th,
2005-2006), the market rapidly expanded. However, from the 30th year (2006-2007), the
market rapidly downsized to 1627 stocks in 2012-2013. This trend is even more apparent
in subplot (b), which shows the rise and fall in the number of newly listed and delisted
stocks. It is interesting that a major network synchronisation existed in the number of
edges (see subplot (c)), where a dramatic change in the number of nodes did not necessar-
ily lead to a similar change in the number of edges. This synchronisation during a period
of massive shrinkage might have, in fact, improved the correlations between stock pairs,
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Table 2 Statistic summary of 40 constructed networks

No. Year Number Number Mean Density Newly Delisted Net growth
of nodes of edges degree listed
1 1977-78 1963 192913 196.5 0.1002 22 13 9
2 1978-79 1986 152314 1534 0.0773 36 9 27
3 1979-80 2010 157144 156.4 0.0778 33 2 31
4 1980-81 2056 58959 574 0.0279 48 10 38
5 1981-82 2121 283672 267.5 0.1262 75 10 65
6 1982-83 2200 60651 55.1 0.0251 89 3 86
7 1983-84 2336 32044 274 0.0117 139 2 137
8 1984-85 2461 82441 67.0 0.0272 127 599 -472
9 1985-86 1988 40221 40.5 0.0204 124 152 -28
10 1986-87 2039 45687 448 0.0220 202 138 64
1 1987-88 2113 917427 8684 04112 217 199 18
12 1988-89 2049 114460 117 0.0546 144 150 -6
13 1989-90 2016 528287 524.1 0.2601 117 120 -3
14 1990-91 1964 127319 129.7 0.0660 68 140 -72
15 1991-92 1867 95383 102.2 0.0548 43 177 -134
16 1992-93 1760 70120 79.7 0.0453 71 87 -16
17 1993-94 1828 45818 50.1 0.0274 155 70 85
18 1994-95 1874 33363 356 0.0190 116 92 24
19 1995-96 1989 23959 24.1 0.0121 208 120 88
20 1996-97 2093 34956 334 0.0160 227 164 63
21 1997-98 2072 75287 727 0.0351 144 168 -24
22 1998-99 1988 67088 67.5 0.0340 87 202 -115
23 1999-00 1949 46248 475 0.0244 163 235 -72
24 2000-01 1949 39917 410 0.0210 236 173 63
25 2001-02 1934 72085 74.5 0.0386 158 135 23
26 2002-03 1900 49091 51.7 0.0272 100 183 -83
27 2003-04 1867 26718 286 0.0153 155 159 -4
28 2004-05 2069 34537 334 0.0161 361 139 222
29 2005-06 2267 37860 334 0.0147 337 189 148
30 2006-07 2273 98924 87.0 0.0383 194 189 5
31 2007-08 2242 103821 926 0.0413 157 192 -35
32 2008-09 2073 104141 100.5 0.0485 24 233 -209
33 2009-10 1874 55845 59.6 0.0318 34 196 -162
34 2010-11 1749 62130 710 0.0406 71 168 -97
35 2011-12 1656 105045 126.9 0.0767 75 106 -31
36 2012-13 1627 46304 56.9 0.0350 78 93 -15
37 2013-14 1667 46774 56.1 0.0337 134 70 64
38 2014-15 1758 55231 628 0.0358 161 92 69
39 2015-16 1800 116737 129.7 0.0721 135 96 39
40 2016-17 1802 145024 161.0 0.0894 98 78 20

possibly leading to a slight change in the number of edges. This is also manifested in the
density measure in subplot (d), where the network appeared to evolve with same-shape
fluctuations. These static measures were strongly associated with the distribution and
number of edges, indicating a dynamic shrinking-and-expanding behaviour in network
sparsity and topology. This could have been a set of responses by the market to external
stimuli that resulted in a “fission-fusion” evolving behaviour.
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Visualisation and basic features of dynamic evolution

We used Gephi with Fruchterman Reingold layout algorithm (Fruchterman and Reingold
1991) to visualise eight networks that roughly maintained an equal time gap. This algo-
rithm is a famous member of a force-directed family, utilises nodes that are symbolised as
solid objects and the edges acting as “springs” between them. By minimising the energy
of the system, the algorithm moves the nodes and changes the forces between them until
finally achieves an equilibrium state and then terminates.

Figure 2 shows the visualisation results for eight selected networks with an “atom-like”
structure, wherein a few nodes were highly interconnected while the rest were sparsely
connected around the core. Here, the color and the size of the nodes corresponded to
their degree centrality, ranging from large red (high degree) via medium-green to small
blue (low degree). Positive edges (positive correlation/interdependence) were indicated
with yellow, and negative ones (negative correlation/interdependence), with light-blue.
The thickness of the edges was proportional to their weights.

As can be seen, several high-degree nodes formed a core in each network, which indi-
cated an uneven distribution of edges, i.e., nodes in the core area have a high tendency
to connect with other high-degree nodes while nodes with fewer connections were more
likely to be marginalised. We also determined that the core area (highly interconnected
stocks) changed in size, possibly due to the “fission-fusion” evolving behaviour, which
denotes a dynamic and unstable picture of interdependence among stocks.

In addition, most of the positive edges were concentrated around the core area while
the negative edges were positioned toward the periphery, such as in subplots (a), (c), (d),
(e), and (h). This interesting distribution of edge signs indicates that, in some years, the
core stocks play influential roles as they not only positively interdependent with each
other, but also have positive connections with other marginalised stocks. However, it also
can be observed that this intriguing pattern does not stably last throughout the time.

8
L

Fig. 2 Dynamic evolution of companies in London Stock Exchange from 1977 to 2017, depicting small-world
effect in networks at each step. Node color and size: large red, high degree of centrality; small blue, low
degree. Edge color: yellow, positive edge; light-blue, negative edge. Thickness of edges is proportional to
weight. a 1977-1978; b 1983-1984; € 1988-1989; d 1993-1994; e 1997-1998; f 2003-2004; g 2009-2010; and h
2016-2017
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For example, in subplots (b), (f), and (g), it is difficult to observe aforementioned clear
polarisation on the distribution of positive and negative edges around the core.

Table 3 shows some basic features of the corresponding networks. The small diame-
ters (most of the networks have a diameter no greater than four) and small average path
lengths (less than three) again verify a highly interactive and interdependent feature of
the stock networks, which in addition denote a “small-world” effect. Taking a closer look
at the percentage of edge signs in each network, we found that the ratio of positive and
negative edges can be, although with fluctuations, approximated as 9:1, which indicated
that a large number of the interdependence between stock pairs was positively correlated
based on our network construction method. Such a high percentage of positive correla-
tions could be one of the consequences of simultaneous market synchronisation under
market crisis (Kaué Dal’'Maso Peron et al. 2012) (N.B. Because various methods exist for
constructing correlation coefficient matrix, the pattern we observed here is inferred by
applying Pearson correlation method. In other cases, such as using excess returns with
Partial correlation coefficients, the percentage and distribution of the edge sign would be
different, see an illustrative example of the year 2016-2017 in Appendix 1. However, the
comparative study on various methods is beyond the scope of this study. The interested
readers can refer to Baba and Sibuya (2005); Kenett et al. (2010)).

Time-series network measures

Based on the understandings of the interdependence and features of topology evolu-
tion obtained from the previous sections, we then investigated the possibility of using
more detailed network measures to characterise stocks with different survivability per-
formance. In this way, we could determine which network measures could differentiate
the stocks among different performance groups. Here, we excluded the flow- and route-
oriented network measures, such as betweenness centrality and closeness centrality,
because the flow and route choice are not issues in correlation-based networks.

The six selected network measures chosen for our review were: (1) Degree, k; (2)
Strength, s; (3) Negative degree, k—; (4) Eigenvector centrality, e; (5) Clustering coeffi-
cient (CC), ¢; and (6) Average neighbour degree (Ave. neighbour. degree), x. The selection
criteria were based on the consideration of their popularity and universality in network
literature. We also paid particular attention not only to the interdependence of a target
node, but also to the condition of its neighbour nodes as well (i.e., eigenvector centrality,
CC, and Ave. neighbour. degree). Here, we briefly explain them as follows (for interested
readers, more details can be found Barabdsi (2016); Erciyes (2014); Newman (2010)).

Table 3 Network statistics of illustrated networks

Visualisation Year Diameter Average path length Positive edges Negative edges
a 1977-1978 3 1.848 97.91% 2.09%

b 1983-1984 4 2129 89.72% 10.28%

C 1988-1989 3 1.955 96.71% 3.29%

d 1993-1994 3 2013 89.36% 10.64%

e 1997-1998 3 1.958 92.58% 7.42%

f 2003-2004 3 2.175 82.29% 17.71%

g 2009-2010 4 2152 83.61% 16.39%

h 2016-2017 4 2013 78.63% 21.37%
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1 Node degree is a straightforward nodal measure in complex networks, providing
an indication of the importance of the node in terms of the number of its
neighbours. For an undirected network of n nodes, the degree k; of node i can be

expressed in an adjacency matrix as:
n
k=34, )
j

2 Yook et al. (2001) and Barrat et al. (2008) have studied the Node strength s; of
network properties in weighted networks. This measure assesses the importance of
a particular node in terms of its connection intensity. Node strength is defined as
the sum of the weights on its total connections/degree. Let Wj; denotes the edge
weight matrix corresponding to adjacency matrix A;;, the strength s; can be
expressed as:

J
S = Z W/ij (4‘)

3 In general, most existing network studies simply encode whether interdependence
exist or not (Chiang et al. 2014). The sign of the interdependence is normally
neglected for topological simplification. However, the nodes with a large portion of
negative interdependence might have some characters that of great interests for
understanding the special features such as hidden community clusters (Ma and
Zhang 2018) and structure balance (Anchuri and Magdon-Ismail 2012). Therefore,
we gave equal attention to both positive and Negative degree in this paper to
conceptualise our data as signed networks. It is important to notice that a negative
edge literately represents the attribute of the edge as a negative relationship or
opposite synchronisation, but does not indicate a low or an absent interaction
between nodes. Instead, two nodes could be highly interactive and have a strong
relationship with a negative edge (Newman 2010). Let A;; denote the negative
correlation identified in an adjacency matrix, then:

ki =Y A; (5)
j

4 Eigenvector centrality can be seen as an extension of the degree centrality but
shows consideration to the relative importance of a node’s neighbours. This
centrality measure, firstly proposed by Bonacich (1987), defines centrality e; as
proportional to the sum of the centrality of neighbour nodes of i, let k1 be the

largest eigenvalue of matrix A, we have:
1
e = — E Ajej 6
i P - ij€j (6)

5 A very useful centrality measure for depicting the relation between pairs of nodes is
known as Clustering coefficient (CC), sometimes also referred to as transitivity.
For each individual node, the CC is always defined as the local clustering
coefficient, which represents the average probability that a pair of node i’s
neighbours are also connected (Newman 2010).

number of pairs of i's neighbour that are connected

¢i = (7)

{2 . . .
number of pairs of i's neigbhour
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6  The last one is a fairly straightforward measure of node i’s neighbourhood
condition. The Average neighbour degree (Ave. neigh. degree) measures the
average number of degree that connected to i’s neighbours. Let i has n neighbours
and their degree can be expressed as kj, then:

YL

n

(8)

We calculated all six network measures for each stock in every stock group during the

Xi

40-year period. Using 1988-1989 as an example, Fig. 3a-f illustrates the exceedance prob-
ability distribution of network measures in the three groups. A clear gap existed between
the Delisted group and the other two groups, indicating that the Delisted stocks behaved
differently in terms of all six measures. However, the differences were not as easily spotted
between the Continuing and Normal groups, except in the degree and strength distribu-
tion plots (Fig. 3a-b). We found it interesting that subplot (c) revealed a reverse order in
the distribution of negative degree for a node, i.e., stocks from the Delisted group tended
to have larger negative degrees when compared with stocks from the Continuing group,
while Normal stocks fell in between.

A similar tendency was found for other years, such as those seen from 1993 to 1994
(Fig. 4a-f). There, the negative degree distribution profile indicated some variations
because the gaps among each group pair were not very obvious, and even some cross-
ing and entanglement were found. However, the gaps between each pair of groups were
generally clear and distinct, such as the significant difference noted in 2003-2004 (see
Appendix 2). Thus, we confirmed that each group differed in terms of their network
nodal features, thereby allowing us to use those differences as appropriate features when

characterising the survivability performance of stocks within each group.

Survivability and resilience characterisation

In this section, survivability analysis based on aforementioned network measures are pre-
sented. In order to study the possible relationship between stock survivability resilience
and dynamic network measures, we constructed a model to characterise the different
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Fig. 3 Distribution of the six network measures in 1988-1989. a Degree; b Strength; € Negative degree; d
Eigenvector; e CC; f Ave. Neigh. degree




Tang et al. Applied Network Science (2018) 3:23 Page 11 of 20

C .
107
102}
X
2 ™~ 103 N
5
e} 10-4 " % 10-4 10.4
£ 10! 10° 100 100 10° 10t 100
2 Degree Strength Continuin
o d 9
5 0 e . o o f o Delisted
‘g 10 I - 10 107 ——Normal
g
L 107} 107 107
3 |
102 102 102
¢
107 N 107 107
10 . 107 : 10 .
102 10 10° 10 102 10° 10° 102 10°
Eigenvector CcC Ave. Neigh. degree
Fig. 4 Distribution of the six network measures in 1993-1994. a Degree; b Strength; ¢ Negative degree; d
Eigenvector; e CC; f Ave. Neigh. degree

groups and explored the explanatory strength of each variable. The method applied here
was selected as weighted multinomial logistic modelling. The particular reason for such
selection is three-fold: First, we categorised all stocks into three nominal groups and that
raises a problem of dealing with multi-class classification. Multinomial logistic regression
is known to be suitable to handle dependent variable which has more than two levels. Sec-
ond, because the populations of three groups were unbalanced in our data (a large portion
of stocks are from the Normal group), we used penalised/weighted multinomial logistic
regression to “re-balance” the groups by specifically assigning biased weights according to
their actual number of observations. Third, as explained previously (Alaka et al. 2017), the
logistic-based classifiers have been shown to possess high transparency in understand-
ing of detailed parameters. Even though their accuracy may not be as excellent as other
popular machine-learning classifiers, their capability to facilitate decomposition analysis
is still outstanding. Last but not the least, we had to consider that the regression could
only show how the variation in predictive variables co-occurs with variation in response.
There is no cause-and-effect relationship guaranteed between survivability resilience and
nodal interdependence just based on regression analysis (Montgomery et al. 2012).

Weighted multinomial logistic modelling

Multinomial logistic models depict the relationship between response probabilities and
all six predictors, node degree k;, node strength s;, negative degree k;, eigenvector e;,
cluster coefficient ¢; and average neighbour degree x;. By their very nature, such models
provide the estimated probability or odds of a target group against a reference group and,
in our case, can be presented in the form as:

ln(a):A+Bxk—l—st—{—ka_—l—Exe—}-Fxc—f—Gxx 9)
Y

where « is the target group, y is the reference group, A is the intercept term of the model
and B, C, D, E, F and G are coefficients of the six covariates. Because we were more
interested in the Delisted and Continuing groups as our targets, we used the Normal pop-
ulation as the reference group. Therefore, we modelled the first two against the Normal
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group and transformed the dependent variables into nominally distributed responses,
where “1” represented the Delisted group, “2” was for the Continuing group, and “3”
indicated stocks in the Normal group.

The data used to calibrate the models were network data from 1984-2012. The first
seven years of networks, cross-referencing Fig. 1b, were not used due to their extremely
unbalanced number in the Delisted group (very low number of observations) and the last
five years, 2012-2017, were selected to be used as testing sets in later sections. This left 28
networks, from 1984 to 2012, for model training and calibration. From there, we gained
a total of 55903 observations, among which 4875 were in the Delisted group; 5096, in the
Continuing group; and the remaining 45932 stocks, in the Normal group.

Before starting the model training, it takes only a moment’s reflection to realise that
apart from two special groups (Delisted and Continuing) the majority of the population
would, of course, be in the Normal group. The class imbalance problem, if left untreated,
could have potentially biased the estimated calibration results and lose accuracy due to
different distributions of each class. Treatments for such issue have always been a topic
in statistics and machine learning communities (Mosley 2013). There are several meth-
ods are claimed as effective such as over-sampling, under-sampling, synthetic minority
over-sampling technique (SMOTE) (Chawla et al. 2002) and threshold-moving meth-
ods. Yet those methods have only been empirically observed as effective in most of the
binary classifications, and a satisfactory solution for multi-class unbalance problem still
needs investigation (Han et al. 2011). Here, we applied penalised/weighted models for two
aspects of consideration: First, the over-sampling and under-sampling approaches would
have required random deletions or duplicate tuples in groups, which would have involved
unavoidable manipulation of the original data. It also would have been difficult to decide
which of the majority and minority groups to be under- and over-sampled, respectively.
Second, because we had decided on a fixed model type and were unwilling to manipulate
tuple data, a good alternative was to assign weights to bias the model, thereby giving more
attention to the minority group. Furthermore, by not manipulating the data, our choice
provided a different perspective on the problem by adjusting the models per se.

Each stock can be modelled with a penalised weight determined by its class group dur-
ing the fitting process. Given a series of multi-class as 1,2,3,...i, . . .z in total, the weight for
class i can be determined as:

Wi = (X1 N;) /n (10)
N;

where N; is the number of observation in class i. In our case, the stocks in the Delisted
group had a penalised weight of % = 3.822, while the weights of the Continuing
group and Normal group were 3.657 and 0.401, respectively. One can see that the two
minority groups eventually had relatively higher weights than the majority Normal group.
Table 4 lists the estimated coefficients and their standard errors for the log odds of two
groups against the Normal group. The coefficients indicate the effects of the predictor
variables on the log odds of being in one category versus the reference category. We can
also notice one interesting observation that all of the signs for the coefficients estimated
in the Delisted and Continuing groups were completely reverse. In other words, the dif-
ferent behaviour of the Delisted and Continuing stocks, in terms of network measures,
could relate to reverse effects of the same variables. The standard errors for all predictor

variables were rather small.
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Table 4 Estimated coefficients and corresponding standard errors

Intercept Degree Strength Neg.degree Eigenvector CC Ave.neighbour.degree

Coefficients

Delisted/Normal 0.841 -0.047  0.140 0.003 -6.372 -5.184  0.003
Continuing/Normal -0.421 0.003  -0.005 -0.003 1.346 3.805 -0.004

Standard Errors

Delisted/Normal 0.0190 0.0013 0.0038  0.0008 0.0007 0.0155 0.0001
Continuing/Normal  0.0218 0.0007  0.0021 0.0009 0.0039 0.0939 0.0001

In addition, we tested the significance of the estimated coefficients. We firstly per-
formed a two-tailed z test. Table 5 indicates that all estimated coefficients were very
significant for estimation on both groups (very small values). Moreover, a Type III analysis
of variance (ANOVA) was carried out to verify this result with an overall significance test
on all variables. The test contains evaluation on likelihood-ratio chi-square statistic (LR
Chisq) test and their significance p-value test. We can see from Table 6 that all variables
were tested as “significant” in our modelling analysis.

Thus, we write:

P(Delisted) _

———— 1t = 0.841—0.047k+0.140s+0.003k~ —6.372¢—5.184¢c+0.003x (11)

P(Normal)

P(Continuing) _

———=~ 1 = —0.42140.003k—0.0055—0.003k ™ +1.346e+3.805¢—0.004x
P(Normal)

(12)

where P(.) is the probability of being a particular category. Let y1 denotes
In(Delisted /Normal) and y2 = In(Continuing/Normal), then taking exponential on both
sides of the equation, we have:

P(Delisted) + P(Continuing) 1 — P(Normal)

ol 2
P(Normal) ~ P(Normal) =+ (13)

therefore, we were able to calculate the probabilities of an observation being in each
category as:

1
P(Normal) = ——— 14
( ) 1+ et + e? (14)
listed -
P(Delisted) = —— 15
( ) 1+ el + 2 (15)
e
P(Continuing) = ——— 16
( 9= ol 4 o7 (16)
Table 5 Two-tailed z test on significance level of estimations

Intercept Degree Strength Neg.degree Eigenvector CC Ave.neighbour.

degree

Two-tailed z test
Delisted/Normal 0 0 0 1.136x1073 0 0
Continuing/Normal 0 7841x107% 2651x1072 1.157x10™* 0 0
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Table 6 Type Il ANOVA test on likelihood-Ratio chi-square test and p-value test

LR Chisq Degree of Freedom Pr(>Chisq) Significance level®
Type Il ANOVA
Degree 193755 2 <22x1071°
Strength 1697.76 2 <22x1071°
Neg.degree 30.79 2 2.056x 1077 Hoex
Eigenvector 65.61 2 5656x10~1° *xx
cc 3078.99 2 <22%10716 .
Ave.neighbour.degree 2979.82 2 <22x1071° e

aSignificance indicator: 0 ***,0.001 **',0.01 *', 0.05 "’

Here, we obtained Eqs. (14)-(16) as quantitative assessments of the survivability
resilience of stocks. For a given stock with corresponding network measures, three prob-
abilities were associated with its calculation of survivability resilience, and the final
categorisation of such stock depended upon the most likelihood (largest probability) of
being in each different group.

To investigate further, we performed an analysis of deviance to test the explanatory
strength of interactive predictors. As shown in Table 7, node degree, average neighbour
degree, and strength were the first three influential terms that contributed the most to
the reduction of residual deviance, i.e., 10919.2 from k;, 2979.8 from x;, and 2777.2 from
s;. This indicated that these three degree-based measures contributed more in terms
of reducing deviance to the resilient response probability when compared with other
centrality measures.

Figure 5 shows the effect displays of these three degree-based variables in terms of
quantified probability for all three groups. In subplot (a) to (c), we can see the probability
of being modelled as Delisted was relatively sensitive to the changes in these three vari-
ables (probability value varies in full range from zero to one). In contrast, the sensitivity
associated with Normal group fluctuated within a small range. For example, no matter
how much drop or raise occurred in these three variables, the maximum probability of
being modelled as Normal members were always less than 0.5. Meanwhile, their effects
on modelling probability for Continuing group seemed to be in the middle of the former

two.

Model testing

The multinomial logistics model was validated and tested using network data from the
last five years of observation, 2012-2017. Taking 2012-2013 as an example, Fig. 6 depicts
the Receiver Operating Characteristic (ROC) curve analysis of the model performance

Table 7 Analysis of deviance

Variables Deviance Residual deviance
Intercept 122831
Intercept+k 10919 111912
Intercept+k+s 2777 109135
Intercept+k+s+k~— 1520 107615
Intercept+k+s+k~+e 17 107598
Intercept+k+s+k~+e+c 737 106861
1

Intercept+k+s+k~+e+c+x 2980 03881
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Fig. 5 Effect displays analysis of the the three degree-based measures on all stock groups. a degree; b node
strength; ¢ average neighbour degree

when predicting the survivability resilience of the stocks during that time period. Because
the ROC curve is normally used for binary classifiers, we plotted a one-vs-rest ROC
curve for each class. The Area Under Curve (AUC) was adopted as an illustrative indica-
tor that quantitatively demonstrated the diagnostic ability of the model. As shown in the
figure, model performance with regard to predicting Delisted (AUC=0.733) and Contin-
uing (AUC=0.702) stocks was relatively higher than when it was applied for predicting
stocks from the Normal group (AUC=0.626). This might have resulted from the range
of dynamic behaviour of network measures associated with stocks from different groups,
which meant that the uniqueness of nodal interdependence from stocks in the Delisted
and Continuing groups could potentially be more abnormal.

By observing ROC plots in Fig. 7, it even further enhances such interpretation as the
AUC values for the Delisted and Continuing groups remained relatively stable around 0.69
to 0.74, while the AUC for Normal group gradually decreased from 0.649 to 0.550, indi-
cating an increasing difficulty to accurately identify stocks with normal nodal behaviour.
However, that might have been more achievable if one considered the rationale behind the
network measures of these interactive nodes. That is, the continuing stocks would very
likely still exist in the near future and, because they were becoming more influential in the
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Fig. 6 One-vs-rest ROC analysis of three groups of stocks in 2012-2013
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core area of the market, then more stocks would tend to correlate with them. This would
result in a growing interdependence degree within the networks. Of course, such growth
would be heavily subjected to dynamic changes and shifts as the market evolved. However,
stocks from the Normal group might also tend to waver between states of failure and con-
tinuation, therefore making their accurate identification fairly difficult. Coincidentally,
this matches with the sensitivity insights we found in the aforementioned effect

display tests.
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Conclusion

We addressed the issue of characterising a stock’s survivability resilience in terms of
bankruptcy prediction, using interdependent correlation-based networks. Relying upon
big financial market data, we constructed these weighted, signed, and temporal net-
works based on correlations between stock pairs according to their daily adjusted closing
prices. As a first step in exploring the dynamically evolving topology of the networks, we
identified six suitable measures of network centrality and characterised different stock
behaviours in terms of survivability. To maintain model transparency for each variable, we
used those centrality measures as predictor variables in a weighted multinomial logistics
model and conducted the further statistical analysis.

This study produced three main findings: First, the market, counterintuitively, does not
constantly expand exponentially if one considers yearly dynamic “fission-fusion” shifting.
Instead, major fluctuations occur, possibly because the market responds to unexpected
external stimuli by dynamically adjusting nodal interdependence. Second, centrality-
based network measures were useful predictive variables when characterising failed or
resilient stocks because those measures can effectively capture the abnormal behaviour
of such stocks. Finally, the results of analysis and model testing suggested that degree-
based measures, including node degree, average neighbour degree, and node strength,
could be applied as descriptive parameters for characterising the survivability resilience of
equities in the London Stock Exchange. However, the effect of variables and AUC values
obtained from the Normal group indicated that stocks from this group were more difficult
to depict.

This study provides insights for quantitatively assessing and modelling the survivabil-
ity resilience of stocks in the London Stock Exchange. We propose a new perspective
that utilises statistical topology measures to assess company resilience in interdependent
complex networks. Future research could focus on higher-fidelity characterisations and
representations within such complex, dynamic, and temporally evolving systems, and
comparative studies on different network construction methods, data treatment algo-
rithms, and modelling techniques could be carried out as well. The findings are useful
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for identifying early signals of firms in potential financial difficulties, which can help for
various decision- and policy-makers such as investors, creditors, and managers.

Appendix 1: Partial correlation coefficients with excess return

Taking 2016-2017 as an example, we constructed the network with Partial correlation
coefficient method. The benchmark for calculating excess return was SPDR S&P 500
ETF index, which collected with a same periodicity within 2016-2017. The correlation
matrix was obtained by applying Partial correlation coefficient function in MATLAB
(Mathworks) with the residuals against the benchmark. The percentage of the positive
coefficient was around 62.26% (dropping from 78.63% from Table 3) with negative ones
around 37.74%. This shows an interesting comparative result as the portion of negative
correlations greatly increased.

Appendix 2: Distributions of six network measures in 2003-2004 and 2016-2017
Figures 8 and 9 illustrate the distribution of all six network measures with respect to dif-
ferent groups of companies in 2003-2004 and 2016-2017. The aforementioned gaps were
still obvious in those two later years. Because these differences in distribution remained
throughout the observation period, one might infer that they were a general feature
associated with each group rather than being simply random outcomes.
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