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output for gluing arcs together as interface between processes, respectively. We
demonstrate their use and discuss their meaning by calculating them in two toy
directed networks and one real-world network. We also compare them with the
existing centrality measures that reflect asymmetry of links in directed networks:

out- and in-degrees and Hub and Authority scores. We found that input and output
betweenness centralities behave differently from these measures in some nodes. It is
suggested that they can effectively identify nodes that are less important in terms of
existing measures but are noteworthy from the viewpoint that nodes are processes.
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Introduction

Categorical network theory is a general framework to study open networks, namely, net-
works with explicit input and output nodes such as electrical circuits (Baez and Fong
2015), signal flow diagrams (Baez and Erbele 2015; Bonchi et al. 2014) and chemical reac-
tion networks (Baez and Pollard 2017). It thinks of networks as processes in contrast to
network science where networks are thought of as things (Baez 2014). Indeed, the main
challenges in network science are analysis and modeling of network structure found in
nature and society (Newman 2010; Estrada 2012; Barabasi 2016). On the other hand, the
primary interest of categorical network theory is the behavior of open networks deter-
mined by the relation between inputs and outputs that is revealed by black-boxing the
internal structure of networks (Baez and Fong 2015). The divide into networks as things
and networks as processes is a natural consequence of the category theoretic perspective.
As we explain in next section, a category has two-level structure: objects representing
things and morphisms representing processes between things. In categorical network
theory, networks are regarded as morphisms. The aim of this study is to bridge these
two different approaches to networks and get a new insight into structure of networks.
Our approach is based on a reformulation of our previous work (Haruna 2013b) that has
been developed independently of categorical network theory. However, we reinterpret

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

@ Springer Open International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
— reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-018-0076-1&domain=pdf
http://orcid.org/0000-0002-1774-217X
mailto: tharuna@lab.twcu.ac.jp
http://creativecommons.org/licenses/by/4.0/

Haruna Applied Network Science (2018) 3:15 Page 2 of 12

our previous work as an internalization of the idea of categorical network theory into net-
works themselves and as a result we find new betweenness centralities that are obscure
so far.

Identifying important nodes or links from a specific perspective is a basic task when
analyzing networks found in social and natural sciences. A variety of centrality measures
has been proposed to quantify importance of nodes or links (Borgatti and Everett 2006).
In this paper, we focus on betweenness centrality among them since it seems to be the
most natural one in our context. There are many variants of betweenness centrality such
as the original one based on shortest paths (Anthonisse 1971; Freeman 1977) and those
based on network flows (Freeman et al. 1991), random walks (Newman 2005) and per-
colation (Piraveenan et al. 2013). We will be faced with a path notion called lateral path
different from the usual directed path in directed networks in the following attempt to
internalize the idea of categorical network theory into networks themselves. Here, we
only focus on the simplest betweenness centrality based on shortest lateral paths because
extensions to other variants seem to be non-trivial and are out of the scope of this paper.
We propose input (resp. output) betweenness centrality of nodes in a directed network
quantifying importance of nodes as input (resp. output) from the viewpoint that nodes
are processes.

This paper is organized as follows. In the second section, we explain how the idea of
categorical network theory can be internalized into networks themselves and derive input
or output betweenness centrality from the viewpoint that nodes are processes. In the third
section, we calculate them in two toy directed networks and a real-world network. In the

final section, conclusions are given.

Input or output betweenness centrality

In this section, we first explain the main idea of categorical network theory and then
proceed to the way we internalize it into directed networks themselves. There are
several approaches based on different techniques such as cospans (Fong 2015), props
(Bonchi et al. 2014; Baez et al. 2017) and operads (Spivak 2013). Here, we follow the
one based on cospans (Fong 2015). Finally, input or output betweenness centrality is
introduced.

Idea of categorical network theory

In categorical network theory, networks are regarded as processes, namely, a certain kind
of action with input and output. This can be formalized in category theory. Here, we
do not intend to go into the technical details. However, a few terminologies cannot be
avoided to explain it without ambiguity. So, first we explain them.

In general, a category consists of objects and morphisms between objects. It is subject
to a few axioms but we leave the details such as the rigorous definition of categories and
their basic properties to introductory textbooks (Awodey 2010; Spivak 2014). Objects
represent things of interest and a morphism between two objects represents an allowed
process from one to the other. For example, in the category of sets, objects are sets and
morphisms are maps. A map f from a set A to another set B (we write f : A — B)
specifies an element of B to which each element of A is transformed. As the map f has its
domain A and codomain B, each morphism in a category has its domain and codomain.
The domain and codomain of a morphism can be seen as input and output to the process
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represented by the morphism, respectively. We denote a morphism m with domain D and
codomain E in a category by m : D — E as in the case of maps. As twomapsf : A — B
and g : B — C can be composed and yield a new map gof : A — C, two morphisms
m:D — Eandn : E — F can be composed. The obtained morphism is denoted by
nom:D — F.

Now, let us consider directed networks. We denote a directed network by G =
(N,A,s,t) where N is the set of nodes, A is the set of arcs and s and ¢ are maps
from A to N sending each arc to its source and target nodes, respectively. Directed
networks form a category D. Its objects are directed networks and morphisms are homo-
morphisms of directed networks, namely, “maps” preserving the structure of directed
G1 = (N1,A1s1,t1) — Gy = (Na,Ag,s2,t2) is a pair
of maps (my : N1 — N, my

networks: A morphism m :
: Ay — Aj) such that my o s7 = sy o my and
myn ol =1Ilyomy.

In the category of directed networks D, directed networks are objects and thus they are
regarded as things, not processes. However, we can build a category whose morphisms
are directed networks with input and output as follows. Let us call a pair of morphisms
(i:1— G,0:] — G)inD a cospan from [ to J. In Fig. 1a, an example is shown.
If we have another cospan (' : ] - H, o’ : K — H) from J to K (Fig. 1b), we can
glue them viao : /] — Gand{ : ] — H (Fig. 1c). As a result, we obtain a new cospan
G:1—>HoG, o :K— HoG)fromItoK (Fig. 1d), where iand o’ are homomorphisms
to H o G that are induced automatically from i and o', respectively. Thus, we can compose
cospans. It is known that we can form a category Cospan(D) whose objects are objects
of D, namely, directed networks and morphisms are cospans (precisely, we should take
isomorphism classes of cospans (Borceux 1994)). This fact itself is not used in the follow-
ing, we have remarked it for completeness. Thus, a directed network G together with its
input i : I — G and output 0 : /] — G can be regarded as a process within the category
Cospan(D). This is one of the main ideas of categorical network theory. Note that here
we only consider network topology. To include weights or dynamics on networks requires
extra machineries (Fong 2015).

a G b H
° o—>oe
T RNt
= . . °o—>e
° o\%o o%/o o\%o
I )i J K
c d
G H HoG
° e——>e *e—>eo
A TN AN
s> h . T e e ——>e
° .H ° o%\ . o o%\\ °
I )i K I K
Fig. 1 An example of composition (¢, d) of cospans (a, b) in the category of directed networks D. See the
main text for details
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Internalization

In the previous subsection, we explain how a directed network together with its input
and output can be seen as a process. In this subsection, we internalize this idea into net-
works themselves. The content of this subsection is a recapitulation of our previous work
(Haruna 2013b) from the viewpoint of categorical network theory.

Our motivation is as follows. In real-world networks, nodes are not just points. They
often have internal processes. In particular, this is obvious for some biological networks.
For example, let us consider food webs. We will analyze one in next section. In a food
web, nodes are biological taxa. They are living processes. Links represent prey-predator
relations. From the physical viewpoint, they are passages of organic materials. However,
if we think of nodes as processes, then links can be interpreted as interface between living
processes. Thus, the idea that networks are processes should be internalized to each node
in a given network. In the following, we explain how this idea can be formalized.

We would like to represent nodes as processes in the sense of categorical network the-
ory. One of the simplest and natural way is to represent a node in a directed network by
the cospan (i : I — G, 0 : ] — G) (Fig. 2a): G consists of two distinct nodes {a, b} and
an arc f from a to b. I and J are networks with a single node and no arcs. Maps i and o
send the single nodes to a and b, respectively. Now let us consider two nodes in the net-
work connected by an arc (Fig. 2b). We replace the source and target nodes of the arc by
the two copies of the cospan (i : I — G, o : ] — G). The arc is interface between these
two processes. This can be manifested by identifying the output of the cospan for the
source node with the input of the one for the target node. Then, we can compose these
two cospans and obtain a new cospan shown in the bottom of Fig. 2b. By forgetting the
input and the output of the obtained cospan, we can see that the network at the left top
in Fig. 2b is transformed to the one at the apex of the cospan at the bottom in Fig. 2b.
Indeed, this procedure can be extended to the whole network and gives rise to a network
transformation L described as follows (Haruna 2013b): Let G = (N, 4, s, t) be a directed
network. L(G) = (N',A’,s,t) is a directed network such that N' = N x {0,1}/ ~,A' =N
and maps s, t' : A’ — N’ are defined by s'(x) = [(x,0)] and #'(x) = [(x,1)]. Here, ~

a
G
de ———o b
A f I
Lo iy
b Source node  Target node
Arc as a process as a process
o —>0 |:> e—e o——eo
A I A N
Source Target
° o~ O )

Composition

An arc can be seen as interface b/w nodes as processes

Fig. 2 a A cospan representing nodes as processes. b What happens when two nodes as processes are
linked by an arc
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Fig. 3 Lateral paths are defined between two arcs, not between two nodes. A lateral path between two arcs f
and g is a sequence of arcs between them such that successive arcs have a common target node or source
node alternately

is an equivalence relation on the set N x {0, 1} generated by the relation R: We define
(%, )R(y,0) when there is f € A such that s(f) = x and £(f) = y. [(x,i)] is the equivalence
class containing (x, i) for i = 0, 1. In other words, nodes in G become arcs in L(G) and
they are glued up together along the relation induced by arcs in G. (x,0) and (x, 1) cor-
respond to the input and the output of the cospan in Fig. 2a, respectively. An example is
shown in Fig. 4.

What is the precise relationship between the composition of cospans and L(G)? Both
are examples of colimits (MacLane 1998). Colimits are a categorical construction to form
an object by gluing parts together. The composition of cospans is a special type of colim-
its called pushouts (MacLane 1998). On the other hand, L(G) is a more general colimit
depending on the “shape” of G (Haruna 2013b).

The idea that arcs are interface between nodes as processes can be formalized as a map
¢ : A —> N’ defined by ¢(f) = [(s(f),1)] or equivalently, ¢(f) = [(¢(f),0)]. In Fig. 4,
arcs f, g and /1 in G are mapped to a single node in L(G). In general, ¢ (f) = ¢(g) holds for
f,g € Aifand only iff and g are connected by a lateral path (Fig. 3). A lateral path between
two arcs f and g in a directed network is a sequence of arcs such that the first and last
arcs are f and g, respectively, and successive arcs in the sequence have a common target
node or source node alternately. Note that lateral paths are not defined between nodes
but arcs in this paper. Lateral paths between nodes have been considered in the literature
(Crofts et al. 2010) to reveal the bipartite community structure of directed networks. The
map ¢ has a characterization in terms of a category theoretic universality (Haruna 2013b):
It is the “minimum” map materializing the idea that arcs are interface between nodes
as processes. We also note that the directed network transformation L is a kind of dual
transformation to the operation of taking the line-graph: the line graph R(G) of a directed
network G = (N, A, s, t) is a directed network such that the set of nodes is A and arcs are

Input to {f, g,h} Output from {f, g, h}

G L(G)

Fig.4 A directed network G is transformed to another directed network L(G). Associated map ¢ from the set
of arcs of G to the set of nodes in L(G) is also shown
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directed paths of length 2 in G. In category theoretic terms, both L and R can be made into
functors from D to itself and L is left adjoint to R (Pultr 1979; Haruna and Gunji 2007).

Definition of input or output betweenness centrality
Let us consider a directed network G shown on the left-hand side in Fig. 4. In G, a is the
input to f and c is the output from f in the sense of cospan (isolate f and its source a and
target ¢ from G and consider the cospan like Fig. 2a). The same holds for g and 4. From
the result of the previous subsection, we can regard a, b, ¢ and d as processes and f,g
and / as interface between them by applying L to G and considering the map ¢. By the
map ¢, f, g and 4 are sent to the same node at the center of L(G). From this viewpoint,
we can say that 4 and b are input to the set {f, g, 4} and ¢ and d are output from {f, g, 4}
(Fig. 4). A natural question is, how important are they as input or output? Since f, g and
h are related by lateral paths, one could use lateral paths to measure importance of nodes
in G with respect to cohesiveness among f, g and 4. One way is to introduce analogues of
betweenness centrality (Anthonisse 1971; Freeman 1977). Namely, if a node is the source
(resp. target) of arcs in many shortest lateral paths, then it would be important as input
(resp. output) for retaining cohesiveness of arcs mapped to the same node in L(G). To
quantify importance of nodes as input (resp. output) in this sense, first we calculate the
betweenness centrality of arcs with respect to lateral paths and then project them to their
source (resp. target) nodes.

Let G = (N, A, s, t) be a directed network. The lateral betweenness centrality (LBC) of
anarcf € A is (Haruna 2013b)

h
LBCG,=C ) £, 1
f I (1)
gheA, lgh>0

where Iy, is the number of shortest lateral paths between g and 4, lf;h is the number of
shortest lateral paths between g and / that pass throughfand C =}, . A,lgh>0(dgh +1)is
the normalization constant such that Zfe 4 LBCy = 1. dgy denotes the length of shortest
lateral paths between g and /4. The length of a lateral path is the number of nodes that are
passed through between g and 4. In particular, dg; = 0. Zfe 4 LBCy = 1 follows from the
equality ZfeA l";h = lg(dg, + 1) for g, h € A such that [y, > 0. Indeed, both sides of the
equality are two different ways to count the number of arcs on shortest paths from g to %
with repetition. Note that in the summation in Eq. (1), g, # are an ordered pair. Thus, the
same shortest lateral path is counted twice if g # /: one is from g to / and the other is
from hto g.

The input betweenness centrality (IBC) of a node x € N is defined by summing all
LBCys such that the source of f is «:

IBC,= ) LBC;. 2)
s(f)y=x
The output betweenness centrality (OBC) of x is defined similarly:
OBC,= ) LBCs. (3)
t(f)=x

Note that we do not directly focus on the structure of L(G) to define LBC, IBC and
OBC. Lateral paths induce an equivalence relation on the set of arcs in G to form the
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nodes in L(G). These measures evaluate contribution of each arc or node for gluing arcs
along lateral paths and yielding nodes in L(G). Since lateral paths are derived from the
map ¢ representing arcs as interface between nodes as processes, we suggest that IBC
(resp. OBC) can be used to identify natural input (resp. output) nodes of a given directed
network from the viewpoint that nodes are processes.

The LBCs of all the arcs can be calculated by slightly modifying the Brandes-Newman
algorithm (Brandes 2001; Newman 2001): For each arc f, we construct the shortest path
tree with respect to lateral paths and run the algorithm to calculate the contribution to
LBC of shortest lateral paths starting from all the arcs and ending at f. The time complexity
to calculate LBCy for all the arcs f in G is O (|A|2) or O (|N|2) for sparse networks. The
same holds for the calculation of IBCs or OBCs of all the nodes.

Examples and an application

In this section, we calculate IBC and OBC of two toy networks and one real-world net-
work. We compare them with existing centrality measures reflecting asymmetry of links.
The aim of this section is not a thorough analysis of a specific network but demonstration
of their use.

Toy examples

First, let us calculate IBC and OBC of nodes in a small network for an illustration (Fig. 5a).
Since l; = 1foralli,j € {f,g, h}, dy = dgg = dpp, = 0,dgy = dyf = dgpy = dpg = 1 and
dpg, = djr = 2, wehave C = 3(0+1)+4(1+1)+2(2+1) = 17. smceszf = zjg =/ = =

[Zf =1, LBCy = 5/17. Similarly, we find LBC, = 7/17 and LBC,; = 5/17. Thus, we have
IBC; = LBCy = 5/17, IBC; = LBC,y + LBCy;, = 12/17 and IBC3 = IBCy = 0. Similarly,
OBC; = OBC; = 0, OBC3 = LBCy + LBC; = 12/17 and OBCy4 = LBC), = 5/17.

Next, let us consider a larger but still a small network consisting of 10 nodes and 12 arcs
(Fig. 5b). Here, thickness of arcs is proportional to LBC, size of red nodes IBC and size of
blue node OBC. OBC of node i for 1 < i < 5 and IBC of node j for 6 < j < 10 are 0. Let
us call a set of arcs forming dense lateral connections lateral community of arcs (LCA). In
Fig. 5b, we could identify two such communities by visual inspection: the set of arcs from
nodes 1,2,3 to 6,7 and the set of arcs from nodes 4,5 to 8,9,10. From this example, it is
suggested that nodes bridging LCAs from input and output sides of them have high IBC
and OBC, respectively. This can be expected from the definitions of IBC and OBC since
shortest lateral paths between two LCAs must pass through an arc bridging them as in the
case of the classical betweenness centrality. The values of IBC and OBC of all the nodes
are shown in Table 1 together with out-degree, in-degree, Hub score and Authority score
for comparison. Recall that the out-degree of a node in a directed network is the number

a b
1 2 1 2 3 4 5
o [ ]
f l / l h
[ ] [ ]
3 4 6 7 8 9 10
Fig.5 a, b Toy networks. See the main text for details
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Table 1 Centrality measures for the toy network in Fig. 5b

Node Out-degree In-degree Hub Authority IBC OBC

1 2 0 0461162 0.000000 0.112108 0.000000
2 2 0 0461162 0.000000 0.112108 0.000000
3 3 0 0.640115 0.000000 0405830 0.000000
4 3 0 0.309048 0.000000 0.230942 0.000000
5 2 0 0.263439 0.000000 0.139013 0.000000
6 0 3 0.000000 0.600224 0.000000 0221973
7 0 3 0.000000 0.600224 0.000000 0.221973
8 0 3 0.000000 0465831 0.000000 0392377
9 0 1 0.000000 0.118723 0.000000 0.051570
10 0 2 0.000000 0.219926 0.000000 0.112108

of outgoing arcs from the node and the in-degree of a node is the number of incoming
arcs to the node. Authority and Hub scores were originally proposed as a method to find
authoritative pages about a specific topic on the WWW together with hubs collecting
such authoritative pages (Kleinberg 1999). The idea is that a page with a high Hub score
has many links toward pages with a high authority score on one hand, a page with a high
Authority score receives many links from pages with a high Hub score on the other hand.
In this paper, we apply the HITS algorithm (Kleinberg 1999; Newman 2010) to calculate
Authority and Hub scores of all the nodes in a given network.

From Table 1, one can see that there is no monotone relation between IBC and Hub
score or between OBC and Authority score. For example, OBC of node 8 is the highest
OBC but its Authority score is not. Nodes 1 and 2 have the lowest IBC but their Hub
scores are the second highest. This example quantitatively suggests that IBC and OBC
measure importance of nodes that cannot be captured by Hub and Authority scores.

Florida Bay food web
In this subsection, we consider a food web of Florida Bay (Ulanowicz et al. 1998). It con-
sists of 121 nodes and 1767 arcs. To focus on the prey-predator relation, we excluded
the two detrital nodes and the node representing roots from the original data (Ulanowicz
2002) from the analysis. In Fig. 6a and b, IBC and OBC are plotted against out-degree and
in-degree, respectively. One can find overall positive correlation. However, we can iden-
tify several nodes with significantly high IBC or OBC values by the following procedure:
First, we prepared 1000 randomized networks with degree-preservation as a null model.
Second, we calculated the p—value of b where b denotes IBC or OBC of a given node. It
was calculated from its z—score if the distribution of b in the null model can be approx-
imated by a normal distribution. We tested this by the Kolmogorov-Smirnov test. If the
p—value of the KS test is greater than 0.10, then we adopted the normal approximation.
Otherwise, the p—value of b is simply the proportion of the degree-preserving random-
ization trials in which b exceeds the value in the real-world network. Third, we applied
the Benjamini-Hochberg-Yekutieli procedure for arbitrary dependency at level 0.05 for
the multiple comparisons correction (Benjamini and Yekutieli 2001). This means that we
keep the false discovery rate less than 0.05.

In Fig. 7, IBC and OBC are plotted against Hub and Authority scores, respectively. We
again found positive correlations. However, there are several nodes that are deviated from
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Fig. 6 Input betweenness centrality (IBC) a and Output betweenness centrality (OBC) b of each node in a
food web of Florida bay are plotted against its out-degree and in-degree, respectively. The blue triangles are
the average value over 1000 randomized networks with degree-preservation. The error bars represent the
standard deviation. The red squares represent nodes whose IBC or OBC are judged to be significantly higher
than those of the corresponding nodes in degree-preserving random networks by the procedure describe in
the main text. The green points are the other non-significant nodes

the line of the best linear fittings. They mostly overlap with those judged to be significant
in Fig. 6.

The nodes that are judged to have significantly high IBC and OBC are listed in Tables 2
and 3, respectively. One noticing point is that 6 out of 7 phytoplankton taxa whose out-
degree is relatively low appear in Table 2, but the other taxa of primary producers such
as seagrasses that are important in the carbon cycle (Ulanowicz et al. 1998) do not have
significantly high IBC. Another point is that Table 3 consists of mostly invertebrates and
fishes that occupy intermediate level of the food chain. The taxa at the top of the food
chain such as mammals, and some of reptiles and birds, namely, nodes with zero out-
degree, do not have significantly high OBC. The table of centrality measures of all the
nodes in the food web is available as an Additional file 1.

How can we interpret these results? In our previous work, we found that robustness
of the largest connected components with respect to lateral paths for ten food webs is
higher than that for randomized ones (Haruna 2013a). We suggested that the non-random

a b
0.06 0.03
0.05 0.025
0.04 0.02
8 003} 1 2 0015¢
0.02 +. 0.01
H . S 0.005 S
0.01 } NS NS
g™ Pe08l9 ok ‘ ?=0.723 ——
0 0.05 0.1 0.15 0.2 0.25 0.3 0.05 0.1 0.15 0.2
Hub Authority
Fig. 7 IBC a and OBC b of each node in the same food web as in Fig. 6 are plotted against Hub score and
Authority score, respectively. The red squares represent nodes whose IBC or OBC are judged to be
significantly high in Fig. 6. The green points are the other non-significant nodes. Dotted lines are the best
linear fits. The coefficients of determination are indicated
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Table 2 Nodes with significantly high IBC in the Florida Bay food web. The values of out-degree and
Hub score are also shown

Node Taxon Classification Out-degree Hub IBC

1 2um Spherical Phytoplankton Primary Producers 14 0.010182 0.011130
2 Synedococcus Primary Producers 22 0.012086 0.019034
3 Oscillatoria Primary Producers 9 0.009904 0.006438
5 Big Diatoms (> 20um) Primary Producers 13 0.009851 0.009418
6 Dinoflagellates Primary Producers 12 0.008580 0.008619
7 Other Phytoplankton Primary Producers 12 0.010108 0.008840
8 Benthic Phytoplankton Primary Producers 16 0.011732 0.010121
22 Other Zooplankton Invertebrates 18 0.046550 0.010272
23 Benthic Flagellates Invertebrates 10 0.003484 0.004930
24 Benthic Ciliates Invertebrates 9 0.003462 0.004358
25 Meiofauna Invertebrates 15 0.038636 0.008634
30 Bivalves Invertebrates 43 0.192335 0.032299
37 Macrobenthos Invertebrates 30 0.138043 0.019683
42 Herbivorous Shrimp Invertebrates 60 0.272954 0.050273
43 Predatory Shrimp Invertebrates 60 0.277423 0.049966
63 Brotalus Fishes 9 0.043694 0.004823
80 Mojarra Fishes 29 0.160359 0.018436
90 Mullet Fishes 9 0.043322 0.004516

structures of real-world food webs contribute to their robustness. Since nodes that have

significantly high IBC or OBC are expected to lie at boundaries between LCAs that are

destroyed by degree-preserving randomization, they could play a key role to enhance

robustness of food webs as a collection of living processes joined via prey-predator inter-

actions. In particular, we here identified phytoplankton as such nodes as input in the

Table 3 Nodes with significantly high OBC in the Florida Bay food web. The values of in-degree and
Authority score are also shown

Node Taxon Classification In-degree Authority OBC

20 Other Copepoda Invertebrates 5 0.000975 0.002374
27 Coral Invertebrates 7 0.015479 0.004491
29 Echinoderma Invertebrates 20 0.054952 0.016491
35 Predatory Polychaetes Invertebrates 13 0.047606 0.010619
36 Suspension Feeding Polychaetes Invertebrates 11 0.004143 0.005912
44 Pink Shrimp Invertebrates 15 0.032820 0.009682
65 Needlefish Fishes 12 0.057367 0.006321
66 Other Killifish Fishes 20 0.080793 0.020724
68 Rainwater killifish Fishes 23 0.100857 0.028408
77 Pompano Fishes 33 0.188513 0.023484
83 Pinfish Fishes 26 0.118824 0.027448
84 Scianids Fishes 34 0.183795 0.025882
85 Spotted Seatrout Fishes 22 0.118785 0.013489
88 Parrotfish Fishes 13 0.039724 0.008584
90 Mullet Fishes 12 0.028262 0.008111
95 Flatfish Fishes 26 0.135255 0.017806
98 Other Pelagic Fishes Fishes 19 0.092812 0011312
99 Other Demersal Fishes Fishes 31 0.143135 0.027782
109 Omnivorous Ducks Birds 22 0.128449 0.013457
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Florida Bay food web. This is unexpected in the literature (Ulanowicz et al. 1998) and can-
not be derived by using out-degree or Hub score. Thus, IBC (resp. OBC) can be used as
an exploratory tool to find important nodes as input (resp. output) that are overlooked by

the conventional measures.

Conclusions

In this paper, we bridged two existing approaches to networks, categorical network theory
and network science. The former regards networks as processes, on the other hand, the
latter does networks as things. We internalized the idea that networks are processes into
networks themselves: Nodes are processes rather than things. Based on the category the-
oretic representation of this viewpoint, we proposed betweenness centralities of nodes as
input and output called IBC and OBC, respectively. We discussed their meaning through
toy directed networks and demonstrated their use in real-world directed networks by cal-
culating them for a food web. We also compared them with existing centrality measures
that reflect asymmetry of links in directed networks. We found that IBC and OBC take
quite different values from out- and in-degrees or Hub and Authority scores for some
nodes.

In this paper, IBC and OBC are defined based on shortest lateral paths between arcs.
Thus, contributions to betweenness from the other lateral paths are ignored. Their contri-
butions can be included by considering random walks along lateral paths (Newman 2005),
which is left as future work. Another future direction is an analytic study of the behavior
of IBC and OBC in random networks generated by the configuration model as has been
investigated in the case of the classical betweenness centrality (He et al. 2009; Guo et al.
2010). Finally, we only consider unweighted directed networks in this paper. Proposing a
natural way to define analogues of IBC and OBC in weighted directed networks seems
to be a non-trivial task. We hope that further development of the idea presented in this
paper will open a new perspective in network science.

Additional file

Additional file 1: Table of the centrality measures for the Florida Bay food web. The values of Out-degree, In-degree,
Hub score, Authority score, IBC and OBC for all the nodes in the Florida Bay food web are listed in
table floridabay.csv.(CSV 14kb)
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LBC: Lateral Betweenness Centrality. It measures importance of arcs when nodes are regarded as processes. The value of
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Centrality. It measures importance of nodes as input when nodes are regarded as processes; OBC: Output Betweenness
Centrality. It measures importance of nodes as output when nodes are regarded as processes; LCA: Lateral Community of
Arcs. Itis a set of arcs forming dense lateral connections
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