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Abstract
Link-prediction is an active research field within network theory, aiming at uncovering
missing connections or predicting the emergence of future relationships from the
observed network structure. This paper represents our contribution to the stream of
research concerning missing links prediction. Here, we propose an entropy-based
method to predict a given percentage of missing links, by identifying them with the
most probable non-observed ones. The probability coefficients are computed by
solving opportunely defined null-models over the accessible network structure. Upon
comparing our likelihood-based, local method with the most popular algorithms over a
set of economic, financial and food networks, we find ours to perform best, as pointed
out by a number of statistical indicators (e.g. the precision, the area under the ROC
curve, etc.). Moreover, the entropy-based formalism adopted in the present paper
allows us to straightforwardly extend the link-prediction exercise to directed networks
as well, thus overcoming one of the main limitations of current algorithms. The higher
accuracy achievable by employing these methods - together with their larger flexibility
- makes them strong competitors of available link-prediction algorithms.

PACS numbers: 89.75.Hc; 89.65.Gh; 02.50.Tt

Introduction
Link-prediction is an active research field within network theory, aiming at uncovering
missing connections (e.g. in incomplete datasets) or predicting the emergence of future
relationships from the observed network structure. Loosely speaking, the missing links
prediction problem can be stated by asking the following question: given a snapshot of
a network, can the next most-likely links to be established be predicted? Such an issue is
relevant inmany research areas, such as social networks (Liben-Nowell and Kleinberg 2003;
Pavlov and Ichise 2007; Berlusconi et al. 2016; Jalili et al. 2017), protein networks (Barzel
and Barabási 2013; Singh and Vig 2017), brain networks (Cannistraci et al. 2013), etc.
To this aim, several algorithms have been proposed so far. Overall, “recipes” for link-

prediction can be classified as belonging to either two main classes, similarity-based
algorithms or likelihood-based algorithms (Lu and Zhou 2011; Zhao et al. 2015). Both
classes of algorithms output a list of scores to be assigned to non-observed links: while the
similarity-based ones may employ local (Barabasi and Albert 1999), quasi-local (Cannistraci
et al. 2013; Jaccard 1901; Sorensen 1948; Salton and McGill 1983; Adamic and Adar 2003;
Zhou et al. 2009) or global information (Katz 1953; Lu et al. 2015; Zhao et al. 2015)
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(e.g. the nodes degree, the degree of common neighbours and the length of paths con-
necting any two nodes, respectively), the likelihood-based ones (Guimerá and Sales-Pardo
2009; Tan et al. 2014; Pan et al. 2016) are defined by a likelihood function whose max-
imization provides the probability that any two nodes are connected. This is usually
achieved by assuming that some kind of benchmark information is known and by treating
it as a constraint to account for. An alternative classification distinguishes between algo-
rithms employing purely structural information (either binary or weighted (Lu and Zhou
2011)) and algorithmsmaking use of some kind of external information as well (e.g. nodes
attributes (Liao et al. 2015)).
This paper represents our contribution to the stream of research concerning missing

links prediction. A novel algorithm is proposed, building upon a series of results con-
cerning constrained entropy-maximization (Park and Newman 2004; Garlaschelli and
Loffredo 2008; Squartini and Garlaschelli 2011). In a nutshell, we advance the hypothe-
sis that the tasks of predicting missing links and reconstructing a given network structure
share many similarities worth to be further explored. The method we propose in the
present work makes a first step in this direction, by employing entropy-based null-models
to approach the link-prediction problem. As a last remark, we notice that while the prob-
lem of missing links prediction is usually associated to the problem of spurious links
identification, here we only address the former one.
The remainder of the paper is organized as follows. In the “Methods” section an

overview of the missing links prediction problem is provided, together with a detailed
description of the method we propose here. The “Data” section contains a synthetic
description of the datasets used for testing our methods. In the “Results” section, we com-
pare our method with the most common link-prediction algorithms and we comment on
the results in the “Discussion” section.

Methods
In order to fix the formalism, let us briefly reformulate the link-prediction problem ab
initio.
Let us indicate with the symbol A the adjacency matrix of the observed network and

with the symbol E the corresponding set of observed links: as a consequence, upon
indicating with U the set of all nodes pairs, U \ E will be referred to as to the set
of non-existent links. In order to fully control a given recipe for link-prediction, the
link set is usually partitioned into a training set, ET , and a probe set, EP = E \ ET .
The former is used in the “calibration” phase of a given prediction algorithm, while
the latter is used for testing it: links belonging to EP are, in fact, removed, thus con-
stituting the actual “prediction target”. We denote with |EP| ≡ Lmiss the cardinality
of the probe set, corresponding to the number of missing links. Naturally, the adja-
cency matrix is partitioned as well: the portion of it corresponding to the training set
will be indicated with the symbol AT . The union of the missing links set and the non-
existent links set EN = EP ∪ U \ E ≡ U \ ET will be referred to as to the set of
non-observed links.
Link-prediction algorithms output a list of scores to be assigned to non-observed links.

Upon indicating with i and j the nodes constituting the extremes of non-observed links,
the most traditional recipes are quickly reviewed below. In what follows, we will focus on
the algorithms employing either local or quasi-local information.
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Link-prediction for undirected networks

• The simplest recipe to define scores is based the number of common neighbours
(CN) of i and j

sCNij = |�(i) ∩ �(j)|; (1)

• a slightly more elaborate function of it is represented by the Jaccard coefficient (J),
which discounts the information encoded into the size of the nodes neighbourhoods:

sJij = |�(i) ∩ �(j)|
|�(i) ∪ �(j)| = sCNij

ki + kj − sCNij
; (2)

• algorithms based on the information provided by nodes degrees exist. The simplest
example is provided by the one inspired to the “preferential attachment” (PA)
mechanism, whose generic score reads

sPAij = ki · kj; (3)

• other, instead, are defined by the inverse of some kind of function of the neighbours
degree (according to the original Adamic-Adar - AA - prescription or subsequent
variations, as the “resource allocation” - RA - one)

sRAij =
∑

l∈�(i)∩�(j)

1
kl
, sAAij =

∑

l∈�(i)∩�(j)

1
ln kl

; (4)

• modifications of the aforementioned indices have been recently proposed, encoding
information on the link density of the neighbourhood of each pair of nodes. These
indices are the so-called CAR-based ones (Cannistraci et al. 2013) and prescribe to
“correct” the scores above by adding a factor |γ (l)|, counting how many neighbours
of node l ∈ �(i) ∩ �(j) are also common neighbours of i and j. More explicitly

sCARij = sCNij ·
∑

l∈�(i)∩�(j)

|γ (l)|
2

, (5)

sCJCij = sCARij

|�(i) ∪ �(j)| , (6)

sCPAij =
(
ei + sCARij

)
·
(
ej + sCARij

)
, (7)

sCRAij =
∑

l∈�(i)∩�(j)

|γ |l
kl

, (8)

sCAAij =
∑

l∈�(i)∩�(j)

|γ |l
ln kl

(9)

where ei indicates the external degree of node i, i.e. the number of neighbours of i
that are not neighbours of j.

Entropy-based approach to link-prediction

The rationale of our method is based upon the concept of network reconstructability.
In other words, provided that the accessible portion AT of a network is satisfactorily
reproduced by a given amount of topological information, it is reasonable to suppose
that the latter allows the inaccessible portion to be inferred with reasonable accuracy
as well. Invoking the aforementioned concept allows us to rephrase the link imputation
problem within the network reconstruction framework, making it possible to employ the
techniques developed there.
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From a technical point of view, our algorithm is a local, likelihood-based one. It rests
upon the information provided by local, topological quantities, which are enforced as
constraints of a maximization procedure defined within the Exponential Random Graph
(ERG) framework (Park and Newman 2004; Squartini and Garlaschelli 2011). In the
case of binary, undirected networks, constraints are represented by nodes degrees, i.e.
�k (

AT)
and the ERG framework leads to the maximization of the likelihood function

L = lnP
(
AT)

where

P
(
AT

)
=

∏

i<j
paijij (1 − pij)1−aij (10)

and pij = xixj
1+xixj . The numerical value of the unknown coefficients �x is obtained upon

solving the system of equations

ki
(
AT

)
=

∑

j( �=i)
pij =

∑

j( �=i)

xixj
1 + xixj

∀ i (11)

(see the Appendix for the derivation of the condition above). Our algorithm, which is
trained on AT , prescribes to interpret the probability coefficients {pij}ij∈EN assigned to
the non-observed links, as scores to carry out the link-prediction: upon sorting the coeffi-
cients {pij}ij∈EN in decreasing order, the first Lmiss largest ones are naturally interpreted as
pointing out the Lmiss most probable missing links (notice that such a prescription is based
on the assumption that the number of missing links is known, although their identity is
not: as a consequence, this number is retained). In other words, the reconstructability
assumption underlying our method leads us to interpret the non-observed links which
have been assigned the largest probability coefficients as the ones that are most likely to
appear given the chosen constraints.
Our recipe has a remarkable, equivalent formulation. In fact, the subset�∗ of Lmiss links

characterized by the largest probability coefficients identifies the subgraph satisfying the
relationship

�∗ = argmax
�:|E|(�)=Lmiss P

(
�|AT

)
(12)

with P
(
�|AT) = ∏

i<j
ij∈EN

pσij
ij (1 − pij)σij . Since the maximum value of such a product is

achieved once the Lmiss largest factors are selected, the generic entry σ ∗
ij obeys the follow-

ing rule: σ ∗
ij = 1 if ij belongs to the set of Lmiss most probable missing links and σ ∗

ij = 0
otherwise; in other words, �∗ is the subgraph with largest probability among the ones
with precisely Lmiss links. In the remainder of the paper, this approach will be named
after the null-model employed to calculate the link scores, i.e. UBCM (Undirected Binary
Configuration Model) (Squartini and Garlaschelli 2011).

Link-prediction for directed networks

Remarkably, our algorithm can be generalized to approach the missing links prediction
problem in directed networks as well. It is enough to maximize the likelihood L = ln
P

(
AT)

where, now, P
(
AT) = ∏

i�=j p
aij
ij (1 − pij)1−aij by solving the system of equations

⎧
⎨

⎩
kouti

(
AT) = ∑

j( �=i) pij = ∑
j( �=i)

xiyj
1+xiyj ∀ i

kini
(
AT) = ∑

j( �=i) pji = ∑
j( �=i)

xjyi
1+xjyi ∀ i

(13)
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and consider the coefficients {pij}ij∈EN as scores to be assigned to the non-observed links
(see the Appendix for the derivation of the condition above). The proper prediction step
is still carried out by applying the recipe defined by Eq. 12, with the only difference that,
now, the product runs over the directed pairs of nodes. In the remainder of the paper, this
approach will be named after the null-model employed to calculate the link scores, i.e.
DBCM (Directed Binary Configuration Model) (Squartini and Garlaschelli 2011).
Notice, instead, that no unambiguous ways to generalize traditional scores exist. Here

we have adopted the (directed) extensions listed below, with the aim of accounting for
link directionality whenever possible:

• when considering directed networks, the concept of common neighbours can be
replaced by the concepts of “successors” and “predecessors”, i.e. the nodes
respectively “pointed by” and “pointing to” a given node. Upon indicating the set of
“successors” of i with �S and the set of “predecessors” of j with �P , the CN index can
be generalized as follows

sCNij = |�S(i) ∩ �P(j)|; (14)

• building upon the directed version of the CN index, the J index reads

sJij = |�S(i) ∩ �P(j)|
|�S(i) ∪ �P(j)| = sCNij

kouti + kinj − sCNij
; (15)

• the RA and AA indices can be straightforwardly generalized as follows:

sRAij =
∑

l∈�(i)∩�(j)

1
ktotl

, sAAij =
∑

l∈�(i)∩�(j)

1
ln ktotl

(16)

with ktoti = kouti + kini ;
• the PA score admits two different generalizations: one employing the total degree of

nodes

sPA
′
I

ij = ktoti · ktotj (17)

and the other employing the nodes out- and in-degree

sPA
′
II

ij = kouti · kinj ; (18)

• while the CAR-based indices are not straightforwardly generalizable to the directed
case, other scores exist aiming at extending the concept of “closed triad” to account
for link directionality (Schall 2014):

sTCij =
∑

l∈�(i)∩�(j)
wi,j,l · w(l); (19)

here, the “triad weight” wi,j,l = #Ti→j,l+#Ti↔j,l
#Ti,j,l

is defined by the (global) number #Ti,j,l
of observed, open triads of the particular kind Ti,j,l, the (global) number #Ti→j,l of
observed, closed triads via a directed link from i to j and the (global) number #Ti↔j,l
of observed, closed triads via a reciprocal link between i and j ; w(l) is, instead, a
node-specific weight that can be set either to w(l) = 1

kl or to 1. In order to avoid
misinterpretations, we set the weight to 1.
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Testing link-prediction

Once a link-prediction algorithm has been defined, a number of statistical indices exist
to test its effectiveness. In what follows we will briefly review the ones we have employed
in the present paper to compare the aforementioned algorithms. The first index we have
considered is the true positive rate (also known with the name of precision), defined as

TPR = Lr
Lmiss

(20)

and quantifying the percentage of missing links that are correctly recovered (i.e. the
number Lr of rightly identified missing links within the list of the first Lmiss links with the
largest score). A similar-in-spirit index is the accuracy

ACC = Lr + Lne
|EN | , (21)

quantifying the percentage of correctly classified links (i.e. both the missing ones and
the non-existent ones) with respect to the total number of non-observed links. The
third index we consider is the traditional area under the ROC curve, or AUC, proxied
by the number

AUC = n′ + n′′/2
n

; (22)

n′ counts the number of times a missing-link is assigned a higher probability than to a
non-existent one, while n′′ accounts for the number of times they are assigned an equal
probability. The denominator n coincides with the total number of comparisons (i.e. the
number of missing links times the number of non-existent links). This index is intended
to quantify the probability that any missing-link is assigned a score that is larger than the
score assigned to any non-observed link. If all scores were i.i.d. the AUC value should
be distributed around an expected value of 1/2: therefore, the extent to which the AUC
value exceeds 0.5 provides an indication of how much better the algorithm performs
than pure chance.
The set of missing links is usually randomly removed: we have followed such a proce-

dure, by 1) randomly removing the 10% of links 10 times, 2) quantifying the performance
of the algorithms above, by computing the three aforementioned indices over each sam-
ple, 3) averaging these values over the sample set (the sample standard deviation is used
to proxy the estimation error.)

Data
Our approach to link-prediction has been tested on a number of economic and financial
datasets (see Table 1) and on several food-webs (see Table 2).
As a first dataset, we have considered the World Trade Web (WTW) across a period of

51 years, i.e. from 1950 to 2000. The dataset in (Gleditsch 2002) collects yearly, bilateral,
aggregated data on exports and imports (the generic entry magg

ij (y) is the sum of the sin-
gle commodity-specific trade exchanges between i and j during the year y). The binary,
directed representation of the WTWwe have considered here has been obtained by link-
ing any two nodes whenever the corresponding element magg

ij (y) is strictly positive, i.e.
aij(y) = �[magg

ij (y)].
As a second dataset, we have considered the Dutch Interbank Network (DIN) across a

period of 11 years, i.e. from 1998 to 2008 (’t Veld and van Lelyveld 2014). Such a dataset
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Table 1 Network statistics for both the undirected (BUN) and directed (BDN) version of the World
Trade Web, e-MID and the Dutch Interbank Network: for each quantity (number of nodes N, number
of links L and average degree 〈k〉) the mean value across the temporal snapshots and the range are
reported

World trade web

BUN N L 〈k〉
145 [85,187] 5901 [1678,10254] 76.3 [39.5,109.7]

BDN L 〈k〉
10604 [2871,20107] 68.2 [33.8,107.5]

e-MID

BUN N L 〈k〉
152 [107,170] 1755 [742,2333] 22.5 [13.4,28.6]

BDN L 〈k〉
1827 [754,2477] 11.7 [6.8,14.9]

Dutch interbank network

BUN N L 〈k〉
99 [92,104] 675 [444,1025] 13.6 [8.9,20.1]

BDN L 〈k〉
773 [512,1207] 7.8 [5.2,11.8]

collects quarterly data on exposures between Dutch banks, larger than 1.5 million euros
and with maturity shorter than one year.
As a third dataset, we have considered the e-MID (i.e. the electronic Market for Inter-

bank Deposits) network in a series of 61 temporal snapshots, corresponding to the
maintenance periods (and ranging from 2005 to 2010). In this case, links represent
granted loans (Iori et al. 2006). As for the WTW, the binary, directed representations
of both the DIN and e-MID have been obtained by linking any two nodes whenever a
positive weight is observed between them.

Table 2 Network statistics (number of nodes N, number of links L and average degree 〈k〉 for the
directed version of 18 different food-webs (Squartini and Garlaschelli 2011)

Food-webs N L 〈k〉
Chesapeake Bay 39 177 4.54

Lower Chesapeake Bay 37 178 4.81

Middle Chesapeake Bay 37 209 5.65

Upper Chesapeake Bay 37 215 5.81

Everglades Marshes 69 916 13.28

Florida Bay 128 2106 16.45

Grassland 88 137 1.56

Little Rock Lake 183 2494 13.63

Maspalomas Lagoon 24 82 3.42

Michigan Lake 39 221 5.67

Mondego Estuary 46 400 8.70

Narragansett Bay 35 220 6.29

Rhode River Watershed 19 53 2.79

Silwood Park 154 370 2.40

St Marks River 54 356 6.59

St Marks Seagrass 49 226 4.61

St Martin Island 45 224 4.98

Ythan Estuary 135 601 4.45
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The three real-world systems above are defined by directed connections. In order to
evaluate the performance of the link-prediction algorithms considered in the present
paper on undirected networks, we have properly symmetrized the adjacency matrices of
these systems, according to the prescription asymij = aij + aji − aijaji.
Food-webs, instead, are considered in their binary, directed version only: if species i

preys on species j, a directed link is drawn from j to i.

Results
The performance of our link-prediction algorithm is shown in Figs. 1, 2 and 3: the three
panels of Figs. 1 and 2 refer to the WTW, the DIN and e-MID respectively while food-
webs are reported in Fig. 3.
As a general comment, our method performs better than the other algorithms, with

respect to all considered indices. The success of the method is particularly evident when
considering the AUC index, proxying the probability of (correctly) assigning a larger score
to a missing-link than to a non-existent link.
We argue the success of our algorithm to rest upon a core result that has been ver-

ified in a number of previous works (Squartini and Garlaschelli 2011; Squartini et al.
2011; Cimini et al. 2015): the (purely) topological structure of the networks considered
here can be reconstructed, to a large degree of accuracy, by enforcing the informa-
tion encoded into the degree sequences alone; very likely, thus, the same amount of
information also defines an accurate recipe to spot potential missing links. Other-
wise stated, the level of “complexity” of the considered networks seems to be largely
encoded into the degree sequences, thus requiring (just) their enforcement to be fully
accounted for.
The founding principle of our approach is, thus, radically different from the one inspir-

ing other link-prediction algorithms: we aim at finding the (most likely) generative process
for the network at hand, while other methods define increasingly detailed procedures
with little control on the “quality” of the included information. This becomes evident
when considering that other algorithms (i.e. the CN, J, RA, AA and the CAR-based ones)
employ a larger amount of information than the UBCM- and DBCM-based ones: while
the latter take as input just the nodes degrees, the former exploit the information provided
by the whole set of common neighbours. This may indicate that the information encoded
into the neighbourhood of any two nodes - supposedly providing more information than
the one encoded into the degrees alone - is, actually, a mere consequence of lower-order
statistics (i.e. the degrees themselves).
This also sheds light on the reason why our algorithm is less sensitive than others to

the original value of link density: provided that our entropy-based recipes successfully
individuate the process generating the networks at hand, the number of observed links is
automatically accounted for.
Our comparison also points out that one of the factors determining the goodness of

a given link-prediction algorithm concerns how the available information is used. An
illustrative example is provided by the performance of the PA algorithm defined by
Eq. 18, requiring the same basic knowledge of our entropy-based recipes, i.e. the degree
sequences of nodes. As clear upon inspecting the e-MID directed case, the assump-
tion that any two nodes establish a connection with a probability that is proportional to
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Fig. 1 Comparison of link-prediction algorithms when applied to the undirected version of the WTW (top),
the DIN (middle) and e-MID (bottom). Left panel: evolution of precision; middle panel: evolution of accuracy;
right panel: evolution of AUC. Our entropy-based approach to link-prediction performs better than other
algorithms, across the vast majority of temporal snapshots. Notice that PA implements the recipe sPAij = ki · kj .
See also Fig. 4 for a visual inspection of the errors accompanying the estimations shown here
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Fig. 2 Comparison of link-prediction algorithms when applied to the directed version of the WTW (top), the
DIN (middle) and e-MID (bottom). Left panel: evolution of precision; middle panel: evolution of accuracy;
right panel: evolution of AUC. Our entropy-based approach to link-prediction performs better than other
algorithms, across the vast majority of temporal snapshots. Notice that while PA-I implements the recipe
sPA

′
ij = ktoti · ktotj , PA-II implements the recipe sPA

′′
ij ∝ kouti · kinj
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Fig. 3 Comparison of link-prediction algorithms when applied to the (directed version) of the food-webs.
Our entropy-based approach to link-prediction performs better than the other algorithms. Here, we have
retained only the recipe sPA

′′
ij ∝ kouti · kinj

their total degrees fails to capture the process shaping the network structure; entropy-
maximization, on the other hand, makes a better use of the available information, by
retaining the information on link directionality (that indeed plays a role, completely
ignored by the aforementioned PA prescription).
Interestingly, the DBCM recipe described in the “Methods” section induces the

“correct”, directed generalization of the PA algorithm, defined by Eq. 23 and outper-
forming the one defined by Eq. 18. For sparse networks, in fact, the DBCM probability
coefficients can be approximated as follows

pDBCMij � kouti · kinj
L

(23)

a simplified prescription that performs very similarly to the entropy-based algorithm on
theDIN and e-MID; on dense networks - as theWTW- theDBCMperformsmuch better,
instead. The UBCM, on the other hand, reduces to pUBCMij ∝ ki · kj, i.e. the undirected PA
prescription defined by Eq. 3.
Finally, let us comment on the performance of the TC index. The algorithm employing

it has been designed to provide a solution to the problem of forecasting new connections
among social networks users. By definition, it only predicts new links among discon-
nected nodes, disregarding all nodes pairs connected by, e.g. a non-reciprocated link.
This explains the poor performance of the algorithm in our context, despite it performs
satisfactorily to solve the specific task it was designed for (Schall 2014).

Discussion
Whenever judging the performance of a given link-prediction algorithm, one should con-
sider both the amount of information it requires and the way in which this is employed
to carry out the prediction step. While the usual link-prediction algorithms assume the
existence of some node-specific tendency at a microscopic level (e.g. social agents tend
to close triads), ours focuses on the most likely process that may have generated the
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considered network. The guessed process is, first, trained on the visible portion of the
network and, then, employed to infer the (supposedly) unknown portion of the network:
the “homogeneity” assumption underlying the whole procedure leads us to expect that a
model satisfactorily reproducing the accessible part of a system is also effective in spotting
potential missing links.
One of the most effective recipes to tune generative processes is the one based on the

entropy-maximization: beside guaranteeing that the available information is encoded in
the least-biased way, the ERG framework is also very flexible, being applicable to both
undirected and directed networks; other algorithms, on the contrary, rest upon concepts
unambiguously defined only for undirected networks (an example is provided by the
whole family of CAR indicators, whose core concept - i.e. the “local community links”
factor |γ (l)| - does not admit a straightforward generalization).
Although every newly-proposed algorithm fosters the idea to be applicable to different

kinds of systems, the effectiveness of a given (null) model depends on the particular sys-
tem at hand: while economic, financial and food networks seem to be largely explained
by the degree sequences, other systems may require a different (or additional) kind of
information.
The results obtained so far on undirected, as well as directed, binary networks push

us to look for further extensions of the proposed link-prediction technique. Interesting
perspectives are represented by bipartite and weighted networks, for which the link- and
weight-imputation topics are still little explored.

Appendix: ConfigurationModels
This Appendix is devoted to the explicit derivation of the undirected and directed ver-
sion of the Binary Configuration Model. Let us start by defining the core quantity of our
approach, i.e. Shannon entropy

S = −
∑

A∈A
P(A) lnP(A); (24)

representing a functional of the probability distribution {P(A)}A∈A defined over the
ensemble of configurationsA. Its constrained maximization represents an inference pro-
cedure which has been proved to bemaximally non-committal with respect to themissing
information. To this aim, let us define the Lagrangean function

L [P]= S −
M∑

m=0
θm

(
∑

A∈A
P(A)Cm(A) − 〈Cm〉

)
(25)

with Cm representing the m-th constraint and the C0 = 〈C0〉 = 1 summing up the nor-
malization condition. Upon solving the equation δL [P]

δP(A)
= 0 one finds the expression

P(A) = e−1−�θ · �C(A) that can be further re-written as

P(A) = e−
∑M

m=1 θmCm(A)

Z
(�θ

) (26)

a formula defining the Exponential Random Graph formalism in its full generality. Since
we are interested in defining a link-prediction algorithm employing only local informa-
tion, let us now enforce the nodes degrees as constraints. In the undirected case, this
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Fig. 4 Error bars accompanying the estimation of the link-prediction algorithms shown in Fig. 1. Panels refer
to the undirected version of the WTW (top), the DIN (middle) and e-MID (bottom)
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amounts at posing �C (
AT) = �k (

AT)
which leads to the equivalence

∑M
m=1 θmCm

(
AT) =∑

i<j(θi + θj)aij
(
AT)

and, upon identifying xi ≡ e−θi , further leads to Eq. 10. In the

directed case, instead, �C (
AT) =

{�kout (AT)
, �kin (

AT)}
, leading to

∑M
m=1 θmCm

(
AT) =

∑
i�=j(θi + λj)aij

(
AT)

and to the directed version of P(A) (a function, now, of xi ≡ e−θi

and yi = e−λi ).
The recipe to estimate the unknown parameters comes from another principle, i.e. the

likelihood maximization one. Upon maximizing the function

L = lnP
(
AT

)
(27)

with respect to the unknowns (i.e. �x in the undirected case and
{�x, �y} in the directed case)

the systems of Eqs. 11 and 13 are recovered.
As a last remark, we stress that the computational complexity of the whole algorithm is

the one required for solving the systems of Eqs. 11 and 13. In both cases, the formulation
provided in the present paper can be further simplified by limiting ourselves to consider
only the distinct values of the degrees (Garlaschelli and Loffredo 2008). This induces
the resolution of a reduced system of equations, further lowering the computational
complexity of the whole algorithm.
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