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Abstract

In this paper, a novel method is proposed for designing a bike network in urban
areas. Based on the number of taxi trips within an urban area, a weighted network is
abstracted. In this network, nodes are the origins and destinations of taxi trips and
the number of trips among them is abstracted as link weights. Data is extracted from
the Taxi smart card system of a real city. Then, Communities i.e. clusters of this
network are detected using a modularity maximization method. Each community
contains the nodes with highest number of trips within the cluster and lowest
number of trips with other clusters. Within each community, the nodes close
enough to each other for being traveled by bicycle are detected as key points and
some non-dominated bike network connecting these nodes are enumerated using
a bi-objective optimization model. The total travel cost (distance or time) on the
network and the path length are considered as objectives. The method is applied to
Isfahan city in Iran and a total of seven regions with some non-dominated bike
networks are proposed.
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Introduction
Promotion of non-motorized transportation is a step toward sustainable urban devel-

opment. The benefits of travel by cycling and walking include increased physical

health, decreased dependence on fossil fuel combustion, decreased production of

environmental pollutants, efficient use of capacity of urban passages, and provision of

more equitable conditions due to lack of dependence on citizens’ economic and car

ownership status. Promotion of non-motorized forms of transportation requires

requires proper infrastructure and service. In the case of cycling, the presence of

bike-lanes with suitable safety, geometric design and pavement can have a significant

impact on citizens’ willingness to use bicycles for short and medium range travels.

Common methods of identification of suitable routes for construction of a bike

network are based on two principles: i) determination of urban passages suited for allo-

cation of necessary width to bike-lanes, and ii) identification of origins and destinations

of short and medium range travels. These origins and destinations can be identified by

direct statistical surveys (through observation and questionnaire) or indirect use of

past data (the outputs of comprehensive urban transportation plans that have been

developed based on direct surveys).
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Statistical surveys are based on rigorous scientific principles; however, the presence

of inevitable errors (e.g. sampling error), the high cost of collecting adequate sampling,

and the difficulty of securing the effective cooperation of respondents make these

surveys a challenging phase of transportation studies. The widespread use of intelligent

transportation systems however allows researchers to extract useful information about

citizens’ travel behavior without the need for any direct engagement. Recently, the pres-

ence of automated vehicle location systems, automatic transit fare collection systems,

speed cameras and license plate scanners provide unprecedented access to raw data

necessary for the study of traffic behaviors.

The method proposed in this paper is based on data pertaining to taxi trips and does

not therefore require any direct survey. In this method, origins and destinations of

short taxi trips are abstracted as vertices of a graph. Short trips are those within the

feasible distance traversed by bike which is assumed 4 km in this study. If a trip is made

between two vertices, they become connected by an arc. The number of travels

between two points is modeled as the weight of the arc connecting the corresponding

vertices. Modeling the travel patterns as a graph paved the way for using the concept of

community i.e. clusters to identify the points with more significant travel connections.

On this basis, after detecting the graph communities, the point with highest rates of

short-range trips in each community were identified, and then the best networks con-

necting these points was attained based on a bi-objective mathematical model. The first

objective of the model minimizes the total travel cost (distance or time) on the network

as a users’ objective. While, the second objective minimizes the total network length as

planners’ objective. Therefore, the model by considering a trade-off between users and

planners objectives proposes some non-dominated (pareto-optimal) bike networks.

The rest of the paper is organized as follows: A review of application of graph theory

in transportation networks, the usage of information of taxi positioning systems, and

methods of bike network design are presented in section “Review of literature”. In

section “Research method”, a methodology of identifying the non-dominated bike

networks in a city is proposed based on integrating a community detection method and

a bi-objective optimization problem. Section “Data and results” is devoted to analyzing

the results of applying the presented method on a real case study of Isfahan network.

Review of literature
The literature review in this study follows of three streams, methods of analysis the

complex networks and their applications, the usage of extracted information of taxi

positioning system on urban planning and the method of designing bike networks.

Graph theory and complex networks

Graph theory and complex networks have found many applications in air, sea, rail and

land (highways and public) transportation networks. Previous studies in this field are

mainly focused on identification of network’s functional communities, vulnerably (Hu

and Zhu 2009; Li and Cai 2007; Mohmand and Wang 2014), reliability (Duan and Lu

2014; Qian et al. 2012), evolution pattern (Jia et al. 2014; Roth et al. 2012), and com-

parative studies on different networks through performance measurements (Leng et al.

2014; Von Ferber et al. 2009; Xu et al. 2007).
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One of the applications of network-based approach is the identification of potential

community of a network. In a graph, community also known as cluster is a subgraph

whose vertices have a high degree of inter-connection and relatively low connection

with vertices outside that subgraph. Figure 1 shows an example of communities in a

simple network.

In large and complex networks, communities cannot be detected by shear intuition;

but literature has provided several methods for this purpose. These methods can be

grouped into two categories: division methods, and aggregation methods (Clauset et al.

2004; Girvan and Newman 2002; Newman 2006; Newman and Girvan 2004; Pons and

Latapy 2005; Radicchi et al. 2004; Wu and Huberman 2004). Division methods assume

the entire network as a large community and then select the vertices most suited for

isolation. These methods divide the network to its communities and continue this

process until the generated communities exhibit the desired quality, i.e. when vertices

of each community have a high degree of inter-connection and relatively low connec-

tion with vertices of other communities. Aggregation methods first assume each vertex

as a minuscule community, and then determine the vertex most suited for formation of

a larger community (containing two vertices). These methods aggregate the vertices to

form the most suitable communities, and then examine the addition of remaining verti-

ces to existing communities, and repeat this process until the generated communities

exhibit the above-mentioned quality.

The usage of information of taxi positioning systems

The information obtained from automated positioning system of taxis have been used

in numerous transportation and urban planning studies. Previous studies in this regard

have mostly focused on developing and updating street maps (Cao and Krumm 2009;

Lou et al. 2009), developing transportation routes and services based on frequent

patterns of taxi trips (Chen et al. 2013; Wei et al. 2012; Ziebart et al. 2008), predicting

the time and volume of traffic in city streets and identifying the points with frequent

traffic jams (Castro et al. 2012; Gao et al. 2013; Liu et al. 2010b; Wang et al. 2009; Zhu

et al. 2011), classifying the land use by analyzing the information regarding the arrival

and departure of passengers over space and time dimensions (Pan et al. 2013; Yuan et

Fig. 1 Communities of a sample network
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al. 2012), recommending optimal routes during rush hours based on route selected by

taxis (Liu et al. 2010a; Yuan et al. 2010), predicting the dynamic patterns of travel dis-

tribution by analyzing factors such as time, location of taxis, and weather conditions

(Chang et al. 2009; Yue et al. 2012), identifying the unknown connections in the

network of intra-urban travel (Zheng et al. 2011), and identifying the nearest source of

passengers for vacant and roaming taxis (Veloso et al. 2011; Yuan et al. 2011).

This study, by applying the clustering method on the information of taxi trips, where

are gathered by a digital payment service, identifies the potential locations (key bike

nodes) of a city for setting up a bike network. Considering these potential locations as

some small networks instead of the whole city network, reduces the size of problem

with preserving the quality of results for designing a bike network facility.

Bike network design

Several studies represents that the countries and cities with a high cycling demand in

Western Europe and North America have large networks of separate bike facilities

(Fraser and Lock 2011; Furth 2012; Pucher et al. 2010). In contrast with the other

transportation network design, the cyclists considers a broader range of factors for

selecting routes such as travel time, distance, comfort, slope, turn frequency, noise,

pollution etc. (Broach et al. 2012; Winters et al. 2011). Therefore, designing the bike

networks or routing the bike lanes usually is done based on some different criteria.

There is a difference between routing bike lanes and bike network design. The objective

of routing problem is proposing some best routes between a specific origin and destin-

ation (OD). While, the bike network design problem considers some OD pairs and pre-

sents some directed bike lanes as a bike network (Buehler and Dill 2016; Hrncir et al.

2015; Mauttone et al. 2017; Song et al. 2014).

Buehler and Dill (2016) with reviewing the literature reported the different

approaches to design the cycling infrastructures such as links, nodes and network. They

concluded that designing a bike network as a whole is the much remained approach for

planning cycling infrastructures. The literature on the topic of bike network design is

relatively scarce. Mesbah and Thompson (2011) presented a bi-level optimization

model for bike network design. The upper-level simultaneously maximized the share of

bike trips and its impact over car travel time due to reduction of street space. The

lower-level was a traffic assignment for both bikes and cars with a user-equilibrium

hypothesis (Mesbah and Thompson 2011). Duthie and Unnikrishnan (2014) proposed a

single objective optimization model which aimed to decrease the total constructing

costs of a bike network in a city. It was assumed that the total bike OD demand in

network must be covered with the proposed network. Also, the construction costs of

network was related to the links and intersections (Duthie and Unnikrishnan 2014).

Mauttone et al. 2017, with considering the interest of planners and users proposed a

single objective model for bike network design that minimized the distance of bike trips

given by an OD matrix. The interest of planner was provided by applying a budget con-

straint into the model (Mauttone et al. 2017).

This study with considering both objectives of planners and users proposes a

bi-objective model for bike network design. In contrast with (Mauttone et al. 2017), we

consider the interest of planner as a model objective with minimizing the length of
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proposed network. Also, the potential OD demands for bike network are gathered by a

digital payment service as a revealed preferences data. The previous studies built the

OD matrix with a stated preferences data that were collected by home surveys (Duthie

and Unnikrishnan 2014; Mauttone et al. 2017; Mesbah and Thompson 2011). One of

the big problem of previous studies for routing bike lanes or bike network design was

the the big size of the problem and disability of exact methods for solving it (Hrncir et

al. 2015; Mauttone et al. 2017; Song et al. 2014). This study with identifying the key

OD pairs in each cluster that have the most potential of moving to bike network

decreases the size and complexity of problem.

Research method
The objective of present study is to determine the routes most suited for the development

of a bike network by analyzing the matrix of taxi trips based on the data obtained from

digital payment service. Figure 2 shows the methodology as a flowchart.

Steps are explained in detail in the following subsections.

Step 1: Extract the taxi trip data for a time period

Taxi trip data was extracted from the fare transaction system of Isfahan Taxi

Organization. The database was anonymized and included the longitude and latitude of

the trip origin and destination, and the boarding and alighting time of each passenger.

Step 2: Create a weighted graph based on trip patterns

Every trip origin and destination could potentially be considered as a node of the graph.

This would yield a huge graph. Hence, trip origins and destinations close to each other were

aggregated and contracted to one node. Corresponding trips of aggregated nodes were also

aggregated. The method of aggregation is described in section “Data and results”.

Step 3: Detect the communities of the graph

Community detection was conducted by the heuristic algorithm presented by Blondel

et al. (Blondel et al. 2008) applicable to undirected networks. The algorithm consists of

Fig. 2 The framework of the methodology
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two consecutively repeating steps. In the first step, algorithm considers each vertex of the

network as a community. In the second step, algorithm identifies the two vertices with

the most interaction and groups them as one community. It then replaces these two verti-

ces with one (virtual) vertex and repeats the first step. In this algorithm, the suitability of

vertices for aggregation is determined by the value of modularity. Modularity (Q) is a vari-

able that compares the density of intra-community and inter-community connections,

and as a result, its value represents the quality of the formed communities. In a weighted

network, this index is defined as the following equation:

Q ¼ 1
2m

X

i; j

Aij−
KiK j

2m

� �
δ Ci;C j
� � ð1Þ

where Aij denotes the weight of the arc connecting vertex i to vertex j; Ki represents

the total weight of all arcs connected to vertex i; Ciis the community that includes the

vertex i; δ is a binary function which is 1 when i and j are in the same community, and

is 0 otherwise; and 2m is the total weight of all arcs in the network.

The community detection algorithm first selects an arbitrary vertex (i), separates it

from its community and inserts it into the neighboring community (j), and then recal-

culates the resulting modularity index. It repeats this process for all vertices adjacent to

vertex i, and ultimately adds the vertex i to the neighboring community with maximum

positive ΔQ (difference between modularity index of target community with that of

original community). The change in the modularity index (ΔQ) is calculated by eq. (2):

ΔQ ¼
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where ∑in.is the total weight of all arcs inside the community C; Ki, in is the total weight

of all arcs connecting the vertex i to other vertices of the community C; and ∑tot. is the

total weight of all arcs connected to the vertices of the community C.

The algorithm repeats this process for all vertices in the network and continues until

ΔQ cannot be improved any further. In the second step, algorithm considers each formed

community as one vertex and considers the total weight of connections between the two

communities of the first step as the weight of the new arc. This leads to formation of a

new network whose layout and properties depends on the output of the first step. This

algorithm then repeats the entire process for the new network. This second step of algo-

rithm continues until ΔQ cannot be further improved. This marks the end of algorithm’s

first cycle (iteration) and the start of a new cycle through re-initiation of step1. These

iterations continue until modularity index cannot be improved any further.

Step 4: Select the links in each community suitable for passing bike lanes

Suitable distance for biking was assumed to be four kilometers. Hence, in each

community node pairs with distances less than 4 km were selected as potential bike

lane routes. Hereafter, these nodes are called the key points.

Step 5: Find the best bicycle route in each community

Routes connecting the key points in each community were enumerated to generate the

choice set for selecting the best route for constructing the bike network. An economical

and desirable network should consider a trade-off among the goals of users and planners.

Accordingly, we present a bi-objective optimization model for bike network design problem
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to generate some non-dominated solutions and facilitate the process of decision making.

The mixed integer formulation of model is a variant of fixed-charge multi commodity

network design problem (Magnanti and Wong 1984). The first problem objective is minim-

izing the total travel costs (distance) as the users’ objective. The second objective minimizes

the total length of proposed directed bike network as the planners’ objective. This objective

covers the economic issues for constructing the bike network and has a conflict with the

first one. An example is illustrated in Fig. 3 to explain how the optimization model works.

Assume a grid network in which five nodes have high values of short-length taxi trips.

Figure 3 shows four possible networks selected as the non-dominated bike

networks. A non-dominated solution is a solution for which each objective could not

be improved without deteriorating the other objectives. There is a large variety of

classical methods for converting a multi-objective model to a single objective one and

generally, none of them can be said to be superior to others (Hartikainen et al. 2012).

For example, the values of objectives (O1, O2) for these four networks are as follow:

(100, 20), (80, 30), (60, 35), and (50, 40).

In this study, a weighted method with normalization is used to convert the

bi-objective to a single objective model. The weighted method with normalization

is an extension of weighting method in which the objectives are normalized to

return a value between zero and one (Grodzevich and Romanko 2006).

Normalization of each objective is done by deducing the value of ideal solution of

the objective formulation and dividing them by different values between the nadir

and the ideal solutions of the objective function. For a bi-objective model the ideal

solution for each objective is obtained by minimizing it without considering the

other objective. Also, when the first objective is minimized, the value of second

objective is a nadir solution for second objective and vice versa. Equation (3)

shows the process of normalization for objective i. Equation (4) demonstrates the

new weighted objective constructed from initial two objectives.

f 0i xð Þ ¼ f i xð Þ− f Li
f N i− f

L
i

ð3Þ

Fig. 3 Alternative bike networks within a community: an example
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h xð Þ ¼ w1 f
0
1 xð Þ þ w2 f

0
2 xð Þ ð4Þ

Where, fi(x) and f 0iðxÞ are the objective function i and its normalized form, respect-

ively. fLi and fNi are the ideal and nadir solutions of objective function i, respectively.

h(x) is the new weighted objective constructed from initial two objectives. w1 and w2

are the weights of the first and second objectives, respectively. Also, in this method the

sum of weights must be equal to one. In this study, for extracting a set of

non-dominated solutions the weight of first objective increases from zero to one by

steps equal to 0.1.

Before describing the mathematical problem of bi-objective bike network design, the

used sets, indices, input parameters and decision variables are described.

� Sets

N : The set of network nodes

A : The set of network links

D : The set of network demands

� Indices

s : The index for network demands

i, j : The index for network nodes

� Input parameters

Lij : The length of link (i, j)

Qs : The amount of OD demand flow s

O(s) : The origin node of OD demand flow s

D(s) : The destination node of OD demand flow s

M : A constant positive number and it is equal to the number of OD demand flows in the network

� Decision variables

xsij : A binary decision variable, it is equal to one if link (i, j) be selected for routing OD demand flow s,
otherwise it is equal to zero.

Zij : A binary decision variable, it is equal to one if link (i, j) be selected as a network link, otherwise it is equal
to zero.
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Min O1 ¼
X

s∈D

X

i∈N

X

j∈N ; i; jð Þ∈A
xsij � Lij � Qs ð5Þ

Min O2 ¼
X

i∈N

X

j∈N ; i; jð Þ∈A
Zij � Lij ð6Þ

St :
X

j∈N ; i; jð Þ∈A
xsij−

X

j∈N ; j;ið Þ∈A
xsji ¼ 1 ∀i∈N ;∀s∈D; and i ¼ O sð Þ ð7Þ

X

j∈N ; j;ið Þ∈A
xsji−

X

j∈N ; i; jð Þ∈A
xsij ¼ 1 ∀i∈N ;∀s∈D; and i ¼ D sð Þ ð8Þ

X

j∈N ; i; jð Þ∈A
xsij−

X

j∈N ; j;ið Þ∈A
xsji ¼ 0 ∀i∈N ;∀s∈D; and i≠ O sð Þ;D sð Þf g ð9Þ

X

s∈D

xsij≤MZij ∀i; j∈N ; and i; jð Þ∈A ð10Þ

xsij and Zij∈ 0; 1f g ð11Þ

Equation (5) is the users’ objective and minimizes the total travel distance in the

network. Equation (6) is the system or planners’ objective that minimizes the total length

of bike network. Equations (7), (8), and (9) are the flow conservation constraints.

Equation (7) ensures that for each OD pair, a network link is departed from origin.

Equation (9) expresses that for each OD pair, a link must arrive at the destination of the

OD demand. Equation (9) is for intersection nodes and ensures that if a link enters an

intersection node another link for leaving it must exist. Based on Eq. (10) if link (i, j) is

selected for transferring the OD flows, this link must be constructed in the network.

Finally, Eq. (11) shows the nature of the decision variables (binary variable).

Data and results
Taxi trip data of Isfahan, Iran was used for implementing the model. Accordingly,

travel information within the period of 26 May 2014 to 30 May 2014 of all the taxis

equipped with the smart card system were obtained. The database contained the

coordinates of trip origins and destinations, trip duration, and actual distances traveled.

The database contained nearly fifty-three thousand trips.

The taxi trips made on workdays were used to form the weighted directed network G

(N, E) consisting of n nodes and e links. In order to form a network with tractable

number of nodes, spatial aggregation was implemented on the origin and destination

points. Nodes were assumed to be located at the intersections and major trip attracting

areas of the city. Then every trip originated or destined within a circle of radius of 200

(m) around them, were aggregated. In other words, each node represents an area of

trip generation and attraction with a radius of 200 m. Radius of these areas (200 m)

was selected after considering the size of squares and intersections and relative position

of nearby taxi stations. Figure 4 shows an example of aggregation of points within

200-m radius of a square.
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The priority of each area for designation as a node was determined based on the

number of trips generated and attracted to that area. After identifying the high priority

areas on the Isfahan map, it was observed that almost 70% of all trips made in

workdays pertained to 114 nodes. The links of the network represented direct trips

among the nodes, and after aggregating the trips made between nodes, each link was

assigned a weight equal to the total number of trips made on that particular route.

Links were assumed to be undirected as the trips made by bike would be bidirectional.

Next, the links with very low trip counts (less than 5 trips per day) were eliminated and

the network of Isfahan’s taxi trips in workdays was developed with 114 nodes and 1112

links. Figure 5 shows a view of the network.

The community detection algorithm detected seven clusters in the network. In each

cluster, the node pairs with distance less than four kilometers were considered as key points

for being located on future bike networks. The key points of clusters are illustrated in Fig. 6.

Once key points in each community were determined, some road networks around

each key point were determined to extract the non-dominated bike networks. The key

points in communities 3, 4, 5, and 6 are situated in a direct path. Therefore, applying the

proposed model on them was not necessary and they have a non-dominated solution that

connects the key points of the cluster to each other with a two-directed path. The bike

networks for these communities are shown in Appendix. Figure 7 shows the proposed

road network around the key points of community 7. Also, the proposed road networks

around the key points of communities 1 and 2 are shown in Appendix. The proposed

road network in community 7 consists of 14 nodes and 38 directed links. Among the 14

network nodes, the number of demand nodes is 6 and the eight remaining nodes belong

Fig. 4 Spatial distribution of aggregated OD points
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Fig. 6 The key points in each community for constructing bike networks

Fig. 5 Vertices and arcs of Isfahan’s taxi network
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to intersection nodes. The input parameters for running the model i.e. the length of

network links and OD demand flows where extracted from Google Map and the data of

taxi payment service, respectively.

The model was applied on the proposed road networks of communities 1, 2, and 7.

Commercial software IBM ILOG CPLEX 12.6.1 was used for solving the bi-objective

model in a device with Intel(R) Core(TM) i7 CPU @2.13 GHz and 6 Gbytes of RAM

under the 64-bit Windows 7 operating system. In order to obtain an ideal solution for

an objective in bi-objective programming models, its weight and the weight of the other

objective were set equal to 1 and 0, respectively. In this situation the value of the other

objective is equal to its nadir solution. Table 1 shows the obtained ideal and nadir

solutions for all communities.

The results of finding the ideal and nadir solutions for communities 3, 4, 5, and 6 also

confirm that these communities just have an optimal solution for both objectives. In order

to find the non-dominated solutions for communities 1, 2, and 7, the weight of the first

objective (w1) was increased from zero to one in increments of 0.1. It means that the weight

of the second objective (w2) decreased from one to zero in increments of 0.1. Table 2 shows

the characteristics of the non-dominated solutions for all communities. Some of the

weighting systems yield same solutions which are illustrated in column 3 of Table 2.

Fig. 7 The proposed road network around key points of community 7

Table 1 The ideal and nadir solutions of bike networks of all communities

Community
ID

User objective (O1) (bike-km) Planners objective (O2) (km)

Ideal Nadir Ideal Nadir

1 53.53 93.91 4.16 10.22

2 321.25 623.5 6.85 16.8

3 277.4 277.4 4.2 4.2

4 412.5 412.5 5.5 5.5

5 484.9 484.9 3.2 3.2

6 96.15 96.15 4.8 4.8

7 287.95 507.9 6.35 20.09
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The model yielded 3, 5, and 6 non-dominated bike networks for communities 1, 2,

and 7, respectively. A comparison between the objective values of non-dominated bike

networks in each community shows that by making a little increase in users’ objective,

it is possible to make a considerable improvement in planners’ objective and vice versa.

For instance, consider the networks 1 and 2 in community 2. The value of the first

objective in network 2 in comparison to network 1 is increased by 2.3%, while the

second objective decreased by 52.3%. Therefore, with a little attention to the planners’

objective, one can decrease 50% of the total network length by another non-dominated

bike network. As another example consider networks 4 and 5 in community 2. In this

case with a little attention to users’ objective in network 4, the users’ objective is

improved by 39.9%, while the planners’ objective is only increased by 2.1%. Figure 8

shows all non-dominated bike networks for community 7. The non-dominated bike

networks for communities 1 and 2 are shown in Appendix.

In order to evaluate the quality of the proposed model, its performance in terms of

speed, and trip coverage was compared to a random node selection approach. An

extended covering area around communities 1 and 2 was selected and key points were

randomly selected. Figure 9 shows the assumed area and its nominated nodes as well

as the road facilities. The matrix of network demand is shown in Appendix: Table A.1.

The presented key points for community 2 in this area have a bigger captured OD

flows than community 1. Therefore, the aim is comparing the values of model

objectives for new and old (key points for community 2) sets. We believe that the

total amount of OD flows between key points in new proposed sets affects the value

of the model objectives and consequently disparages the process of comparison. For

instance, if an alternative set was constructed with eliminating some key points of

Table 2 Characteristics of non-dominated networks for all communities

Community ID
X

i∈K

X

j∈K

hij w1 (weight of
the first objective)

network ID User objective
(O1) (bike-km)

Planner objective
(O2) (km)

1 53 0 1 53.53 10.2

All weights –{1,0} 2 54.35 4.3

1 3 93.91 4.2

2 193 1 1 321.2 16.8

0.9–0.8-0.7 2 328.7 8

0.6–0.5-0.4-0.3 3 335.9 7.4

0.2–0.1 4 374.4 7

0 5 623.5 6.8

3 242 All weights 1 277.4 4.2

4 357 All weights 1 412.5 5.5

5 548 All weights 1 484.9 3.2

6 71 All weights 1 96.1 4.8

7 148 1 1 287.9 20.1

0.9 2 288.2 15.3

0.8–0.7 3 297.8 12.7

0.6–0.5-0.4-0.3 4 336.3 8.3

0.2–0.1 5 435.6 6.4

0 6 507.9 6.3
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community 2, both model objectives would attain less values than prior and a

dominating solution would be achieved. But this solution is derived from diminishing

the total OD flows that is as important as two model objectives. In order to have a

valid comparison, we can either consider the amount of captured OD flows as an

additional objective or select some OD flows such that their sum is close to the

amount of community 2.

We adopted the second approach into the proposed mathematical bi-objective

bike network design by randomly selecting some key points from the network that

their total OD flows have a maximum of 5% deviation of total OD flows in community 2

(193 ± 10 trips). We linked the Java software with commercial software IBM ILOG

CPLEX 12.6.1 to choose a subset of network demand periodically and solved the model.

Fig. 8 The proposed non-dominated bike networks for community 7
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Figure 10 compares the quality of the obtained non-dominated solutions for 10, 30, and

50 iterations for each weighting system with the proposed non-dominated solutions of

community 2 which were resulted by integrating network clustering with the optimization

model. The total time for finding the communities of network and solving the mathemat-

ical model for each weighting system was 14 s. While, the recorded solution time without

applying clustering approach for each weighting system were 301, 169, and 91 s with

Fig. 9 The road networks around the key points are situated in the picture area

Fig. 10 Demonstrating the quality of non-dominated bike networks based on presented approach
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considering 300, 500, and 700 iterations, respectively. Therefore, the proposed approach

is faster than random key points generation integrated with bike network design.

A first look at the non-dominated solutions of both approaches shows that the

random key point selection approach could produce more optimal solutions from the

standpoint of user objective than the presented clustering approach (solutions which

are situated in yellow box). But this is caused by compromising the amount of total OD

flows between the key points. Investigating the amount of total OD flows for solutions

that are situated in the yellow box shows that they have a total OD flows up to 185

trips while the proposed model was applied on a network with 193 trips. Also, the

clustering approach produced more optimal solutions from standpoint of planner

objective even with reducing the total amount of OD flows in the network.

The proposed model belongs to the category of strategic problems for designing bike

networks. In addition to identifying the links of a bike network, the number and

position of bike stations is important. There are some other tactical problems that are

concerned about locating the most suitable positon of bicycle stations and ensuring the

adequate redistribution of bicycles. Adequate redistribution of bicycles increases the

likelihood of stations servicing new passengers, increases the fleet productivity, and

reduced the fleet size required to provide adequate service, which all in turn increase

the demand and desirability of the whole program. These problems can be integrated

with bike network design in future to propose a uniform network.

Conclusion
A method for using the data collected by intelligent transportation system devices in

planning urban infrastructure was proposed. This paper used the taxi trip data to

suggest a number of bike networks for a city. The aim of this study was to provide a

conceptual framework and a suitable approach for this purpose. The results of this

paper can be further improved by repeating the work with a wider range of data,

different community detection methods, engaging the attitude of residents, and trying

different values for model parameters.

In this paper, the travel data of Isfahan’s taxis were used to extract the common origins

and destinations of travels made by citizens. Then each set of relatively proximate points

showing a high volume of exchange were classified as one community. Ultimately,

authors proposed seven potential regions for setting up a bike network for Isfahan. In

each community the vertices spaced less than 4 km from each other were considered as

key points for designing a bike network. After identifying the key points in each

community, with considering the road network types and their characteristics, in each

community a network connecting the key points were proposed as bike network.

Next, a bi-objective optimization model was applied to each community to find the

non-dominated bike networks. The first objective of the model minimized the total

travel distance in network and was a users’ objective. The second objective minimized

the total network length and was a planners’ objective.

The proposed method circumvents the need for collection of massive stated data on

travelers’ trips and preferences. Since smart cards in bus and taxi are being rapidly

embraced by cities, using their data does not incur extra charge. Although elegant,

community detection is not a complicated and time consuming process. Therefore, the

proposed method can be applied in almost every urban context.
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Table 3 OD flows for the network was considered around community 7

O/D 1 3 4 5 6 7 9 10 11 14 16 20 22 24 25 26

1 20 21 9

3 10 3 5

4 4 4 2

5 6 6 14

6 12 14

7 6 4 4 3 3

9 8 2 6

10 1 8 18

11 6 12 6

14 6 1 5

16 12

20 12 14 10 8

22 6

24 11 8 11 6 40

25 3

26 16

Fig. 11 The best bike networks for communities 3 and 4

Appendix
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Fig. 12 The best bike networks for communities 5 and 6

Fig. 13 The proposed networks for community 1 and 2
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Fig. 15 The proposed non-dominated bike networks for community 2

Fig. 14 The proposed non-dominated bike networks for community 1
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Abbreviation
OD: Origin Destination matrix/flow/pair
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