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Introduction

Context

In our previous work on the subject, we argued the need to go beyond vertices when
analysing complex networks. In fact, remarks to this end can be found scattered in the liter-
ature (Contreras and Fagiolo 2014; Estrada and Rodriguez-Veldzquez 2005; Milo and et al
2002; Mukhtar and et al 2011; Yeger-Lotem and et al 2004). For example, studies of gene
regulatory networks have shown that “motif-based centralities outperforms other meth-
ods” and can discern interesting network features not grasped by more traditional vertex
centralities (Koschiitzki et al. 2007; Koschiitzki and Schreiber 2008). Another example is
provided by the notion of protein essentiality, a property now understood to be deter-
mined at the level of protein complexes, that is groups of proteins in the protein-protein
interaction network (PPI) rather than at the level of individual proteins (Hart et al. 2007;
Ryan et al. 2013). In addition, further biological properties have been tied to ensembles
of genes or proteins, e.g. the notion of synthetic lethality, where the simultaneous deacti-
vation of two genes is lethal while the separate deactivation of each is not (Nijman 2011).
Since measures of importance for nodes constitute a key tool in the study of complex net-
works, it is only logical to expect that similar tools for ranking groups of vertices could
find widespread applications throughout network analysis.
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In this spirit, we proposed in (Giscard and Wilson 2017b) a measure of importance
for groups of nodes (henceforth called “subgraphs”), that has the following desirable

properties:

1. Provided the edge weights are non-negative, the centrality ¢(H) of a subgraph H is
always between 0 and 1.

2. The precise value c(H) taken by the centrality on a subgraph H is the fraction of all
network flows intercepted by H.

3. For subgraphs comprising a single node H = {i}, the centrality measure c({i})
yields the same ranking than the eigenvector centrality. In other terms, it induces
the eigenvector centrality over vertices.

4.  Computationally, ¢(H) costs no more to compute per subgraph H than ordinary
vertex-centralities. What is computationally costly however, is to compute it over
all subgraphs.

In (Giscard and Wilson 2017b), we have shown, by analysing real-world networks
from econometry and biology, that c(.) performs better than centralities defined from
naive sums of vertex-centralities. Concretely, we demonstrated that subgraph centrali-
ties defined from sums of the resolvent, exponential and eigenvector centralities failed to
account for even the dominant events affecting input-output economic networks. In biol-
ogy, we used c(.) to construct a model of protein-targeting by pathogens that achieved a
25% improvement over the state of the art one.!

In this work, we establish further properties of the centrality measure ¢(.) and present
its rigorous mathematical underpinnings. We also compare this centrality with the notion
of group-centrality presented by Everett and Borgatti in (Everett and Borgatti 1999) on
real-world networks.

Notations and centrality definition

The measure of cycle and subgraph centrality we propose is rooted in recent advances
in the algebraic combinatorics of walks on graphs. Here we only define the few concepts
from this background that are necessary to comprehend the centrality measure.

We consider a finite network G = (V; &) with N = |V| nodes and M = || edges and
which may be weighted and directed. The adjacency matrix of G is denoted Ag or simply
A.If G is weighted then the entry A; is the weight of the edge e; from i to j if this edge
exists, and 0 otherwise.

A induced subgraph H of G, also called simply a subgraph of G and denoted H < G,
is a set of vertices Viy € V together with the set of all edges linking these vertices in G,
En = {ej € £ 1 i,j € Vy}. The subgraphs considered in this article are not necessarily
connected.

A walk w of length £(w) from v; to v; on G is a sequence w = ej; €;, - - - €, ;; of £
contiguous edges. The walk w is open if i # j and closed otherwise.

A simple cycle, also known in the literature under the names loop, cycle, elementary
circuit and self-avoiding polygon, is a closed walk w = e;; e;;, - - - e;,_,; which does not
cross the same vertex twice, that is, the indices i, i1, . . ., ig—1 are all different.

We now recall the definition of the centrality for cycles and subgraphs, introduced in
(Giscard and Wilson 2017b).
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Definition 1 (Centrality). Let G be a (weighted di)graph and let A be the adjacency matrix
of G, including weights if any. Define A the maximum eigenvalue of A. For any cycle y, let
Ag\y be the adjacency matrix of the graph G where all vertices visited by y and the edges
adjacent to them have been removed. Then we define the centrality c(y) of the cycle y as

1
c(y) :=det <| — )»AG\]/> .

More generally, for any non-empty subgraph H of G, we define the centrality of H as

c¢(H) := det (| — iAG\H) .

The calculation of the centrality is illustrated on Fig. 1.

As we have shown in (Giscard and Wilson 2017b), these centralities not only reflect the
relative importance of cycles or subgraphs, but their values have a precise meaning too.
Indeed, ¢(H) is the fraction of all information flows on the network that are intercepted
by the subgraph H. As such, and as long as the network has no negative edge-weights, the
centrality is always between 0 and 1, which is numerically advantageous,

0<cH) =<1

Because it has a concrete real-world meaning as fraction of network flows, the value of
the centrality can be assessed with respect to external informations when available. More
generally, it enriches the analysis in that it does not only produce a ranking of groups
of nodes, but it also quantitatively ties these groups’ importance with an immediately
meaningful quantity, e.g. a fraction of capital flow, of successions of proteins interactions
or of social interactions depending on the context.

It the following section we give the full, rigorous mathematical proof of the main
theorem underpinning these results and which relates the centrality c(y) of a cycle y
with network flows. This theorem was presented as Proposition 1 in (Giscard and Wilson
2017b) but was only given a qualitative proof there, owing to length constraints. Note, we
focus on the centrality of simple cycles as it is precisely in this context that the rigorous
proof appears as an extension of a number theoretic sieve. The case of arbitrary subgraphs
is similar, and we operate with no loss of generality.

Original network G = A maximum eigenvalue Network G\T

Centrality ¢(7') = det (I - %Ag\r)

Fig. 1 Schematic representation of the calculation of a centrality. Left : full network G, with in black the group
of three vertices forming a triangle T, the centrality of which is desired. Right: graph G\T where all vertices
belonging to T have been removed. The matrix Ag\7 is the adjacency matrix of G\T
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Centrality and network flows: a rigorous mathematical proof

We first need to recall some combinatorial notions introduced in the context of the
extension of number theory satisfied by walks on graphs (Giscard and Rochet 2017).
The central objects of this earlier study are hikes, a hike 4 being an unordered collec-
tion of disjoint closed walks. Hikes can be also be seen as equivalence classes on words
W =y, vi, - - - i, over the alphabet of simple cycles y; of a graph. Two words W and W’
are equivalent if and only if W’ can be obtained from W through allowed permutations
of consecutive simple cycles. In this context, two simple cycles are allowed to commute if
and only if they are vertex disjoint V(y)) N V() =¥ <= vyiyj = vV

For example, if y; and y» commute but neither commute with y3, then y;y» and y2),
represent the same hike, but y;y3y2 and y»y3y; are distinct hikes.

Theletters y;;, - - - , y;, found in a hike / are called its prime divisors. This terminology is
due to the observation that simple cycles obey the defining property of prime elements in
the semi-commutative monoid H of hikes. In addition, they constitute the formal, semi-
commutative, extension of prime numbers (Giscard and Rochet 2017).

Two special types of hikes will be important for our purpose here:

A self-avoiding hike is a hike all prime factors of which commute with one another. In
other terms, it is collection of vertex-disjoint simple cycles.

A walk, defined earlier in section Notations and centrality definition, can be shown to
be hikes with a unique right prime divisor (Giscard and Rochet 2017), a characterisation
which is both necessary and sufficient so that any hike with a unique right prime divisor
is a walk.

It may perhaps help the reader’s intuition to know that in the extension of number the-
ory satisfied by hikes, hikes are the extension of the integers, self-avoiding hikes are the
square-free integers and walks are integers of the form pX, with p prime and k € N.

Now we claim that the centrality c¢(y) of a simple cycle y is exactly the fraction of all
hikes # (including infinite length ones) such that all right prime divisors of / intercept y,
that is no right prime divisor of / is vertex-disjoint with y and commutes with it. This
later observation implies that y is the only right prime divisor of /y. Thus, the claim we
make is equivalent to stating that c(y) is the proportion of all hikes / such that &y is a
walk.

Theorem 1. Let G be a finite (di)graph with adjacency matrix A and let y be a simple
cycle on G. Then the total number n,, (k) of closed walks of length k on G with right prime
divisor y is asymptotically equal to

[k], as k — oo,

(1
y (k) dy)(det(l—zA))

where (1/ det(l — zA)) [ k] stands for the coefficient of order k in the series 1/ det(l — zA).

Proof The proof relies on a very general combinatorial sieve. Let Hy := {h € H : £(h) = ¢}
be the set of hikes of length ¢, P C H be a set of primes and P*?% the set of all self-
avoiding hikes constructible from P. Let S(H,, P) be the number of hikes in H, which
are not right-divisible by any prime of P. The semi-commutative extension of the sieve of
Erathostenes-Legendre yields

SHe,Py= Y wd)|Mql,
de'PSAaA
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with | M| the number of multiples of d in H,. Furthermore, 11 (d) is the Mobius function
on hikes, which is (Giscard and Rochet 2017)

(=1)®®™, if h is self-avoiding,

h) =
ik 0, otherwise,

where Q (k) is the number of prime divisors of %, including multiplicity. O

In order to progress, we seek a multiplicative function prob(.) such that |My| =
prob(d)|H¢|+r(d), |He¢| := card(H¢). In this expression, prob(d) approximates the prob-
ability that a hike taken uniformly at random in H, is right-divisible by d. If edge-weights
are present, the hikes are not all uniformly probable but follow a distribution depen-
dent on these weights. In any case, no knowledge of this distribution is required here
and the meaning of prob(.) is only mentioned to help the reader understanding. Simi-
larly, m(d) = prob(d)|H,| is the expected number of multiples of d in H,. Finally, r(d)
is the associated error term, arising from the fact that | M| is not truly multiplicative.
Supposing that we can identify the z(.) function, we would obtain

SHe,PY= ) wdm@d + Y wdr@).

depsa depsa

Contrary to number theory, the first term does not admit any simpler form without fur-
ther assumptions on P. This is because of the possible lack of commutativity between
some elements of P. We note however that since u(d) is non-zero if and only if 4 is self-
avoiding, and since we have required that m(.) be multiplicative, then it follows that the
first term is entirely determined from the values of m(.) over the primes of P.

We therefore turn to determining m(y ) for y prime. The set of left-multiples of y in H
is {hy, h € H}, which is in bijection with the set {# € H, £(h) > £(y)}. Thus, the number
of left-multiples of y in Hy, is exactly |H¢—¢(y)|. Then

r(y) [ He—e)l
prob(y) + — = —————.
[Hel [Hel
Seeking the best possible probability function prob(y), let us suppose that once this func-
tion has been chosen, the error term of the above equation vanishes in the limit £ — oo.

If this is true, then we obtain

|HZ—€(V) |
rob(y) = lim —————
prob(y) = lim ol
In order to progress, we make an important observation regarding the cardinality of the

set Hy:

Lemma 1. Let G be a finite (directed) graph. Let H, := {h € H : £(h) = £} be set of all
hikes on G of length €. Then, there exists A € R™ and a bounded functionf : N — R such
that limy_, o f (£) exists and for £ € N* we have exactly

[Hel = A ().
If the absolute value of the largest eigenvalue ) of G has multiplicity g, then A = 8.

Proof This follows directly from the ordinary zeta function on hikes ¢((z) =
det (I — zA) ™1, from which we have

1 A . . . .
|Hz|=<det(l_zA))[e]= ooz =at >0 Aoy

i1, iNFL i1, iNFL
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where the sums run over all positive values of i; > 0 such that Zj ij=+{and A = A1 is the
eigenvalue of the graph with the largest absolute value. We assume for the moment that A
is unique and let f (¢) := Zi1,~-~,iNl—l kil_zkl; . )»K}’. This function is clearly bounded and

Zlim f@&) = lim (1 —-2zA)¢(2),
—00 z—A1

exists and is finite. If || is not unique and has multiplicity g, then one should pick A¢ for
the scaling constant together with f(£) = ¢(z)[ €] A7¢%. In all cases the Lemma follows.
O

Proceeding with the result of Lemma 1 and assuming that the largest eigenvalue is
unique for simplicity, the existence of the limit for f gives

A (0 — 2(y)) — 31—t
(0 -

The prob(.) function is multiplicative over the primes—recall these are the simple

prob(y) = lim
{— 00

cycles—as desired. It yields m(y) = |H, IA~¢®) and the associated error term is

r(y) = [He—ei| — [Hel A ™8 = 2550 (£ (€ — e(y)) = £(0)).

To establish the validity of these results, we need only verify that they are consistent
with our initial assumption concerning the error term, namely that r(y)/|H,| vanishes in
the limit £ — oco. The existence of the limit of / implies lim;—, o |[f (£ — £(y)) —f(£)| =0
and therefore that

@— i —t(y) _ B _
Jim = = Jim 27 (f (€ - k) - f©) =0,

as required.

We are now ready to proceed with general self-avoiding hikes. Let d = y;---y,
be self-avoiding. Then since m is multiplicative and the length is totally additive over
H, m(d) =[],m(y) =1~ 2iti) = )~t@ The associated error term follows as

r(d) = Moo — He A" @D = 255D (£ (0 — £(d)) — f(0)) .

Inserting these forms for m(d) and r(d) in the semi-commutative Erathostenes-

Legendre sieve yields the sieve formula

S(He, P) = [Hel Y w@dr™ @ 428 " w(@r™"@ (ft — @) —f(©)).
depsa depsa

We can now progress much further on making an additional assumption concerning
the nature of the prime set P. We could consider two possibilities: i) that P is the set of all
primes on an induced subgraph H < G; or ii) that P is a cut-off set, e.g. one disposes of all
the primes of length £(y) < ©. Remarkably, in number theory, if i) is true then ii) is true
as well, and the sieve benefits from the advantages of both situations. In general however,
i) and ii) are not compatible and while ii) could be used to obtain direct estimates for the
number of primes of any length, a problem of great interest, we can show that this makes
the sieve NP-hard to implement. We therefore focus on the first situation.

Let H < G be an induced subgraph of the graph G and let that P = Py be the set of all
primes (that is simple cycles) on H. Remark that ) depss w(d)r~t@ is therefore the sum
over all the self-avoiding hikes on H, each with coefficient w(d)r =@ 1t follows (Giscard
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and Rochet 2017) that Zdepﬁa pu(d)r—t@ = det(l — A~ Ap). Concerning the error term,

AT w@daT D (- ed) —£(0),
dePy
we note that since H is finite,? the above sum involves finitely many self-avoiding hikes d.
In addition, given that lim,_, o f (£) exists by Lemma 1, limy—, o f(£ — £(d)) —f(£) = 0
as long as £(d) is finite, which is guaranteed by the finiteness of H. We have consequently
established that the error term comprises finitely many terms, each of which vanishes in
the £ — oo limit. As a corollary, the first term becomes asymptotically dominant:

S(He, P) ~ |He| det (I - A_IAH) as £ — oo.

We can make this more explicit on using the ordinary form of the zeta function on hikes
£(z) = 1/ det(l — zA). Then |H¢| = ¢(2)[ €] is the coefficient of order £ in ¢ (z), see also
the proof of Lemma 1.

Remark 1. The error term can be given a determinantal form upon using a finite difference
expansion of f or a Taylor series expansion of it if one smoothly extends its domain from N
to R. Writing

VEIf1 (€
f—t@d)—fy=y % @)ty »
k>1 :
with (@ = f-:ol(a — i) the falling factorial and V the backward differ-

ence operator. Now we use the properties of the Mobius function on hikes to write
Y depsa w(d) (L)) 2@ = (L)* det(l — zAy) and finally

1 VEf (@ 1
S(He, P) = Ml det(l - AAH> +203° % det™ <| — /\AH> :

k>1

Here det® (I — %AH) is a short-hand notation for {(d%)k det(l — zAH)} |Z:)\71 .

To conclude the proof of the Theorem, we now need only choose H correctly. Recall

that we seek to count those walks which are left-multiples of a chosen simple cycle y. But
for w = hy to be a walk, the hike /7 must be such that none of its right-prime divisor
commutes with y. This way, y is guaranteed to be the unique prime that can be put to
the right of %, hence the unique right-prime divisor of w, making w a walk. Then the sieve
must eliminate all hikes % with are left-multiples of primes commuting with y. Observe
that all such primes are on H = G\y.
Remark 2. The construction presented here is much more general than appears at first
glance. In particular, it can be extended to any additive function p : H +— R over H other
than the length, provided an equivalent of Lemma 1 exists for p. Infinite graphs may also
be considered, provided additional constraints on the notion of determinant are met. These
generalisations have further applications which will be presented elsewhere.

Comparison with Everett and Borgatti’s group-centralities

Motivations and context

In our previous work on the centrality ¢(H) (Giscard and Wilson 2017b), we have
presented comparisons with centralities obtained for H upon summing up the vertex cen-
tralities of individual vertices involved in H. We have shown the comparative failure of
these approaches which could not, for example, detect even the major crisis affecting the
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insurance—finance—real-estate triad in input-output networks over the period 2000-2014
period.

In this section, we propose to further compare c(H) with the notion of group centrality
as it was introduced by Everett and Borgatti in 1999 (Everett and Borgatti 1999). The
authors of this study proposed to extend any vertex centrality to groups of vertices by
summing up the centrality of the vertices of the group as calculated on a graph where
other members of the group have been deleted. For example, the degree group centrality
of an ensemble H of vertices is equal to the external degree of H in G. Essentially, this
approach is expected to characterise the importance of the group with respect to the rest
of the graph but will not be sensitive to the inner structure of the group. As a consequence,
it is easy to construct synthetic graphs where group-centralities ’fail’ to identify a group
that should clearly be the most central. For example, a sparse graph with a single large
clique can be built such that this clique is less central than a small outlier group of nodes.
In our opinion however, these limitations are more theoretical than practical and it is
much more important to study the behaviour of the proposed measures on real-world
networks.

The centrality c(.) as an extension of the eigenvector centrality

Incidentally, Everett and Borgatti provide a strong motivation for the development of a
centrality akin to the one we propose here. Indeed, noting the lack of extension for the
eigenvector centrality to groups of nodes in their work, they explain that “[The eigenvec-
tor centrality] is virtually impossible to generalise along the lines presented earlier”, that
is, lest one resorts to node-merging, a procedure not without problems (Everett and Bor-
gatti 1999). Now recall that the centrality presented here c(H) induces the eigenvector
centrality on singleton subgraphs comprising exactly one vertex H = {i}, a requirement
which, following Everett and Borgatti, is sufficient to call ¢(.) a proper extension of the
eigenvector centrality to groups of nodes. In fact, this observation is itself a special case
of a more general construction relating the centrality of simple paths with entries of the
projector onto the dominant eigenvector:

Proposition 1. Let G be a finite undirected graph with {. = A1, Ay, - - - , AN} its spectrum.
For simplicity, we assume that the largest eigenvalue A of G is unique. Let W : £ > RT
be the weight function, sending edges of the graph to their weights. If G is not weighted
then W is identically 1. Let P, be the projector onto the dominant eigenvector of G and
=[N, = Ai/). Then

NPy =y A PWp)ep),

pii—j

where the sum runs over all simple paths from i to j and the weight of a path is the product
of the weights of the edge it traverses.

Remark 3. When i = j, the only simple path from i to itself is the length 0 path that
is stationary on i. The weight of the empty path is the empty product with value 1 and
therefore we recover the result of (Giscard and Wilson 2017b)

neig(i)® = 1 (Py); = c({i}),

where eig (i) is the ith entry of the dominant eigenvector.
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Proof This relation follows from e.g. the path-sum formulation of the resolvent function
R(z) := (I — zA) ! (Giscard et al. 2013). We have

det(l — ZAg\p)

R@y = 2 00 =g

pri—j

In particular, the case i = j gives the well-known adjugate formula for the inverse
R(z);; = det (I - zAG\,«) / det(l — zA). Introducing the adjugate matrix Adj(l — zA); :=
det(I — zA)R(z); explicitly we have

Adj(1—zA); = Y Z'PW(p) det (1 - zAc\p),
pri—j

and the result follows on noting that lim,_.1 /5 Adj (I — zA) = nP,.
O

We can go further to establish the centrality c(.) as an extension of the eigenvector
centrality to groups of nodes along broadly similar lines as those advocated by Everett and
Borgatti. To introduce the main result here, we need to present the (intuitive) definitions
of union and intersection of subgraphs.

Let H, H' be two subgraphs of G. We designate by H U H' the subgraph of G whose
vertex set is the set-theoretic union of the vertex sets of H and H', V(H U H') = V(H) U
V(H'). Similarly H N H' is the subgraph of G with vertex set V(H) N V(H').

Proposition 2. Let G be a finite graph with no negative weights and {H,, - - - H,} be a set
of connected induced subgraphs of G. Then

@) )

{1,--- ,n} ses

Proof This follows from the definition of ¢(H) as the fraction of all network flows
intercepted by H. A direct application of the inclusion-exclusion principle gives the
result. O

An immediate corollary then explicitly shows how the centrality ¢(.) of any group of
nodes arises from the interplay between their eigenvector centralities
Corollary 1. Let G be a finite graph with no negative weights. Let Vi := {v1,--- ,v,} €V
be a group of nodes on G. Then

c({vi, v =7 Zeig(vi)2 - Z S (tvivi}) + Z f(vovivid) =+,
i=1

ijeVy ij,keVy

where f ({vi, Vj, vk, - - - }) is the fraction of all network flows intercepted by all of v;, v}, vy, etc.

Wolfe’s dataset

We begin our concrete comparison with group-centralities on the Wolfe primate dataset
(UCINET IV Datasets 2018), a small real-world network which was studied by Everett
and Borgatti. This dataset provides the number of times monkeys of a group of 20 have
been spotted together next to a river by the anthropologist Linda Wolfe.
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Our results are shown in Table 1. Here the properties that c is always between 0 and
1 and that its values have actual meaning are clearly advantageous. For example, we can
now not only tell that the age group 10—13 is the most central, as Everett and Borgatti
noted, but we can concretely assert that 67% of all flows of interactions between mon-
keys involved at least one member of this group. By flow (or chain) of interactions, we
mean successions of interactions between monkeys, including interactions that may occur
simultaneously. For example, we can have monkey 1 interact with 3, who then interacts
with 8; while concurrently 2 meets 4 etc.

Similarly, we note that almost 95% of all flows of interactions involved at least one
female, while this percentage dropped to 64% for males, in spite of male 3 being the most
central individual monkey in the entire group by all measures. Thus, according to c¢(H)
and contrary to all the group centralities reported here,* females are quantitatively more
important in mediating social interactions than the males. Here, it may help to know that
the monkeys observed by Wolfe were feral Rhesus macaques (Macaca mulatta), a species
where females stay in the group of their birth, providing its dominance rank structure,
while males must change group when reaching sexual maturity, around 4 years old. Fur-
thermore, during the mating season, females favour multiples interactions with different
males including low ranking ones (Lindburg 1971). Finally, females typically outnumber
males, sometimes by as much as 3 to 1. These observations suggest that females should
indeed account for a larger share of the all interactions between monkeys than the males.

Another point of importance for the comparison is the age group 7—9, which is ranked
higher than the age group 14—16 by c¢(H) while the group-centralities consistently yield
the opposite order. On this point, we observe that Rhesus macaques are peculiar in
that younger females have higher social ranks than their older peers (Hill and Okayasu
1996, Wall 1993). In the closely related Japanese macaques (Macaca fuscata), domi-
nance rank is known to be positively correlated with the frequency of social interactions
(Singh et al. 1996).

Yeast PPl network and protein complexes

In this section we study the PPI network of the yeast Saccharomyces cerevisiae, using
high quality data from (Hart et al. 2007), which provides a network comprising 5303
interactions between 1689 individual proteins. These proteins are known to belong to

Table 1 Comparison between several of Everett and Borgatti's group centralities (Everett and
Borgatti 1999) and the centrality c(H). The centrality values for c(H) are given here in % as they give
the proportions of all successions of interactions between monkeys involving at least one member
of the group. The centralities c(H) were computed by the FlowFraction algorithm available on the
Matlab File Exchange (Giscard and Wilson 2017a)

Centralities of groups of monkeys in Wolfe's dataset

Group Members c(H)in % Degree Average closeness Group
group centrality group centrality betweenness
Age 10—13 2381216 67% 11 15 435
Age 7—9 459101517 57% 5 13.7 0
Age 14—16 16111319 49% 8 18 284
Age 4—6 7141820 34% 5 20.5 0
Females 6—20 95% 4 6.4 0.5

Males 1—-5 64% 10 16 24.34




Giscard and Wilson Applied Network Science (2018) 3:9 Page 11 of 15

complexes, a curated list of which is provided by the Munich Information center on Pro-
tein Sequences (MIPS) (Giildener et al. 2006). The authors of (Hart et al. 2007) have
shown that some of the MIPS complexes could be recovered from a run of the MCL
clustering algorithm running on the network. Our goal here is twofold: i) to show that
the centrality c(.) can also be used to recover MIPS protein complexes, for which it
provides additional informations; and ii) that the degree group centrality fails to do so.
Here, we focus specifically on the degree group centrality as the degree centrality is
the vertex measure of importance which has seen the most success in biology, see e.g.
(Mukhtar and et al 2011).

Analysis

We analysed the PPI in three steps. Firstly, we found all edges (that is connected pairs
of vertices) connected triplets (triangles and paths on 3 vertices) and connected quadru-
plets of proteins on the network.” Secondly, we calculated the centralities c(.) of these
objects. To present the third step of our analysis, we invite the reader to observe the dis-
tribution of centrality values, which we show at the top of Fig. 2 in the case of triplets.°
Clearly, high triplet centralities fall into separate plateau-like ensembles. Therefore, the
third and final step of our analysis is to gather the list of all proteins appearing in all
the triplets whose centrality values placed them in the same plateau. We then compare
these lists of proteins with the biological complexes found in curated databases (Pu et al.
2009). Remarkably, these lists of proteins correspond to actual biological complexes. We

summarise our observations as follows :

1) Plateaus, i.e. groups of triplets with similar centrality values, correspond to actual
protein complexes;

2) Conversely, all triplets belonging to an actual complex are in the same plateau, i.e.
they scored roughly the same in centrality values;

3) Consider a triplet t whose centrality value c¢(¢) is in one of the top plateaus. Then all
three proteins forming t are part of the same biological complex.

4) Triplets with small centrality values, outside of plateaus, tend to belong to no
particular complex or several complexes at once (i.e. one protein in one complex, the

other two in another).

We emphasise that in our analysis the complexes are determined entirely from the
plateaus of centrality values. That these so-determined complexes correspond to actual
biological complexes demonstrates the quality of the analysis provided by the centrality
proposed here.

Mathematically, the fact that biological complexes lead to clustered plateau-like cen-
trality values for triplets means that the frequency with which proteins belonging to
these complexes are involved in successions of proteins reactions depends first and fore-
most on the complexes themselves. In other terms, the frequency of protein activation is
determined at the complex level.

Identified complexes

The dominant complex, here denoted Col, comprises 30 proteins’ and is found in both
the MIPS database and in (Pu et al. 2009), where it is known as the mitochondrial small
ribosomal large subunit. Interestingly, Col is identical with the third largest complex
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Fig. 2 Distributions of triplet centralities. Top: normalised triplet centralities c(t) / max; iplet (¢(t)), bottom:
normalised degree group centrality g(t)/ max; triplet (9(t)) introduced in (Everett and Borgatti 1999)

recovered by the MCL algorithm running on the same dataset (Hart et al. 2007), with
the addition of the proteins ASF1 and MAM33, a nucleosome assembly factor and a
protein of the mitochondrial matrix involved in oxidative phosphorylation, respectively.
In the latter case, we note that several complexes involving the MAM33 and proteins of
mitochondrial small ribosomal large subunit have been proposed in experimental studies
(Yeast Resource Center 2018). Complex Co2 comprises 21 proteins.® It includes the entire
complex C17 determined by the MCL method (Hart et al. 2007), together with 6 addi-
tional proteins all which are been proposed to form complexes (in particular the HIR and
Rad53p-Asflp complexes) with one or more proteins of C17 in separate studies (Pu et al.
2009) as well as in the MIPS database. Complex Co3 comprises 64 proteins and overlaps
significantly with the nucleosomal protein and CID 14 and complexes of (Pu et al. 2009),
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the latter of which includes the Casein kinase II, RNA polymerase II and Cdc73/Pafl
complexes.’

An advantage of the classification method employed here is that, contrary to MCL, it
allows for overlapping complexes, i.e. proteins which functions in different complexes, as
is expected biologically. At the same time, a drawback is that small centrality values are
not segregated well enough to clearly distinguish clusters of values and hence complex
boundaries. At least three more complexes Co4, Co5 and Co6 could possibly be distin-
guished, all of which can be found in MIPS database, however these are less clear cut
than the first three complexes and so are left out from this work. Empirically, we found
that this problem could be somewhat reduced by looking at quadruplets, quintuplets
etc., but this comes at a great computational cost given the number of such objects. A

random sampling scheme may be able to bypass this difficulty.

In comparison, the distribution of degree group centrality shows no trace of the under-
lying protein complexes and reveals little more than the simple distribution of vertex
degrees. While we do not recommend the use of the centrality c(.) as a clustering tool
owing to its greater computational cost than algorithms such as MCL, we believe that its
performance in this domain bears witness to the sensitivity of the proposed centrality to
underlying network features. Conversely, the notion of group-centrality may be too coarse
to perceived such features in the data, at least in the case of PPL

Conclusion

In this second work on the centrality c(.), we have rigorously established its meaning as a
fraction of network flows intercepted by any chosen ensembles of nodes. The centrality
¢(.) not only induces the eigenvector centrality on vertices, but it is a proper extension of it
through an application of the inclusion-exclusion principle on network flows. Finally, we
have shown on two real-world networks that the centrality c(.) is more sensitive to critical
network features than existing group-centralities. In particular, the centrality of triplets of
proteins in the PPI network of the yeast was sufficient to distinguish protein complexes
found in curated databases of experimental results. We recall that in our previous study
(Giscard and Wilson 2017b), the centrality c(.) already produced the best available model
for pathogen targeting in Arabidopsis thaliana, yielding a 25% improvement of the state-
of-the-art model of (Mukhtar and et al 2011). We hope that these results will spur further
research on the use of the centrality in biology.

Endnotes

1We refer to the area under the ROC curves for both the model based on the centrality
c(.) and the state of the art one. These are 0.97 and 0.73 respectively.

2 But not necessarily totally multiplicative.

3G is finite and so are all its induced subgraphs.

*Everett and Borgatti also discuss normalisations of the group-centralities. In the case
of the degree group-centrality, the normalisation is defined to be the degree group
centrality divided by the number of nodes which do not belong to the group under
consideration. Normalisations tends to rank females ahead of males as c(H) does, but
they represent non-linear transformation of the original group-centralities, making their
interpretation more difficult.
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>While the subgraph centrality is defined on arbitrary subgraphs, including non-
connected ones, here we only consider only connected ensembles of proteins as these
may have biological activities.

6Edges and quadruplets give broadly similar distributions. While complexes Col, Co2
and Co3 are just as markedly visible in quadruplet data as in triplet data, quadruplets do
lead to better segregation of complexes Co4, Co5 and Co6.

It comprises proteins ASF1, EHD3, FYV4, MAM33, MRP1, MRP4, MRP10, MRP13,
MRP21, MRP51, MRPS5, MRPS8, MRPS9, MRPS16, MRPS17, MRPS18, MRPS28,
MRPS35, NAM9, PET123, RSM7, RSM10, RSM18, RSM19, RSM22, RSM23, RSM24,
RSM25, RSM26 and RSM27.

8 These are ASF1, CDC48, CKA1, HAT1, HAT2, HHF1, HHF2, HHT2, HIF1, HIR2,
PDS5, POB3, PSE1, PSH1, RAD53, RTG2, RTT106, SPT16, YDL156W, YILO70C and
YKU70.

This complex is ASF1, CDC34, CDC48, CDC53, CDC73, CDC9, CHD1, CKAl,
CKA2, CKB1, CKB2, CTR9, DOA1, GRR1, HAT1, HAT2, HHF1, HHF2, HHT2, HIF1,
HIR1, HIR2, HOT1, HPC2, HTA1, KAP114, LEO1, MET30, MKT1, MRF1, NAP1, NPL4,
ORC2, ORC3, ORC4, ORC5, PAF1, PDS5, PEX19, POB3, POL12, PSE1, PSH1, RAD27,
RAD53, RPS1B, RRP7, RTF1, RTG2, RTT101, RTT106, SHP1, SKP1, SPO12, SPT16,
TOP1, UFD1, ULP1, UTP22, YDL156W, YDR049W, YGR017W, YKU70 and YKU80
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