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Abstract

We describe a methodology for characterizing the relative structural importance of an
arbitrary network edge by exploiting the properties of a k-shortest path algorithm. We
introduce the metric Edge Gravity, measuring how often an edge occurs in any possible
network path, as well as k-Gravity, a lower bound based on paths enumerated while
solving the k-shortest path problem. The methodology is demonstrated using
Granovetter’s original strength of weak ties network examples as well as the well-known
Florentine families of the Italian Renaissance and the Krebs 2001 terrorist networks. The
relationship to edge betweenness is established. It is shown that important edges, i.e.
ones with a high Edge Gravity, are not necessarily adjacent to nodes of importance as
identified by standard centrality metrics, and that key nodes, i.e. ones with high
centrality, often have their importance bolstered by being adjacent to bridges to
nowhere–e.g. ones with low Edge Gravity. It is also demonstrated that Edge Gravity
distinguishes critically important bridges or local bridges from those of lesser structural
importance.

Keywords: Bridges to nowhere, Edge betweenness, k-shortest path (KSP), Edge Gravity,
k-Gravity, Node centrality, Path enumeration, Social network analysis, Strength of weak
ties, Structural importance, Ties that bind

Introduction
Much attention has been given to assessing the importance of actors–i.e., the nodes–in a
social network. This focus coincides with norms of contemporaryWestern culture, which
place a higher value on individual achievement, competition, and personal prowess than
on cooperative achievement, collaboration, and the forging of strong relationships. In this
paper, we eschew node importance and instead consider the question, How important is
an arbitrary network edge? Motivating our interest is the fact that relationships are the
very essence of social networks; the interpretation of an edge as a relationship tie or link
between people distinguishes social networks from the graphs used to model and analyze
transportation systems, the Internet, scheduling and sequencing problems, and various
other applications.
The notion of social network edge importance has existed throughout history, although

it has not always been studied algorithmically via networkmodels and analytics. Consider,
for example, cultures that practice arranged marriages, where matchmaking is a means
of connecting families to ensure the passage of wealth, establish power, perpetuate fam-
ily business interests, and so forth (Hussain 1999). In a social setting, structural changes
typically occur when an existing relationship is severed (divorce, the end of a friendship,
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leaving an organization) or a new one created (marriage, making a new friend, profes-
sional networking). Relationships are often easier to form or dissolve in groups where
people remain fairly constant. On the other hand, adding or removing nodes–actors in the
social network–is more difficult and often carries a higher cost, whether that be the hiring
process in business or the loss of an individual in a personal network. Quantification of
the importance of a relationship, either existing or proposed–independent of the impor-
tance of the actors–appears to be useful for the maintenance of existing relationships and
the cultivation of new ones.

The edge importance problem

This work was inspired by the research question, How important is an arbitrary individual
edge in a network? After thoughtful consideration, we realized that first and foremost,
meaningful quantification of edge importance, distinct and separate from node centrality,
is essential.
In social network theory, edge betweenness–a metric based on shortest paths–is the

predominant metric for characterizing the importance of a relationship between actors.
Other notable notions of edge importance to network structure are those of bridges and
local bridges. The designation of a bridge is a form of edge structural importance, albeit
a binary one. The mathematical concept of bridging was first introduced by Harary et al.
(1965). For undirected graphs, an edge (i, j) is a bridge when (i, j) is the only path from
i to j. The removal of a bridge disconnects a network. The concept of local bridging
was explored in a sociological context by Granovetter in (1983) and (1973). Granovetter
remarked that true bridges are unlikely in large social networks, where alternate paths are
common. However, such alternate paths may be rather long and thus inefficient routes for
information transmission. A local bridge is an edge whose removal would not necessar-
ily disconnect the network but would still be significantly disruptive to information flow.
More precisely, local bridges are edges (i, j) where the next shortest path from i to j has a
length of at least three. Hence, local bridges facilitate information flow between parts of
the network that would otherwise be distant and difficult to reach.
Granovetter (1973) further noted that every local bridge is a “weak tie”, though not every

weak tie is a local bridge. Hence, weak ties in a social network can play an important role
in information diffusion when they serve as local bridges between more well-connected
portions of the network. The key idea is that actors with strong ties are likely to havemany
mutual friends and to be privy to the same information flow, and hence do not bridge the
gaps between disparate groups. On the other hand, weak ties aremore likely to be effective
paths for disseminating new information between groups of individuals that have strong
ties to one another within, but not between, the groups. Today, the idea that weak ties are
most significant in helping job seekers to successfully find employment is a well-accepted
notion in social network theory. (See, for example, Jackson (2005) or Granovetter (1995)).
Granovetter (1973) remarked that local bridges earn their significance by creating

more paths. This is based on the idea put forward by Davies (1966) that information
flow from one person to another is directly proportional to the quantity of all possible
paths between those two actors–unlike with transportation, the Internet, scheduling and
sequencing, and various other network applications where paths play an important role
in route planning. The insights of Granovetter and Davies are consistent with the notion
that information flow in a social network is rarely prescribed along a designated path in
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advance–as might be the case in route planning, for example, when navigating a vehicle
from a point of origin to a destination on a roadway network.
Following the insights of Granovetter and Davies, the concept of Edge Gravity emerged

as a natural metric that can be computed algorithmically as the number of paths in a net-
work that rely on a particular edge. Edge Gravity extends the notion of edge betweenness
while elevating appreciation for edges that are involved in alternate paths (of any length).
Indeed, Edge Gravity provides a way of assessing the structural importance of an edge
based on how often that edge appears in any path, rather than restricting attention only
to shortest paths, as is the case with edge betweenness.
Our methodology provides a systematic approach to identifying and ranking the most

structurally important edges in a given network and is based on observing and quantifying
the number of times a particular edge appears in any possible network path. For networks
where all paths can be enumerated, Edge Gravity can be computed exactly in polynomial
time by an adaptation of the k-shortest path algorithm. For networks where not all paths
can be enumerated, a lower bound for Edge Gravity is found in polynomial time by the
same algorithmic approach. In either case, the gravity of an edge, or its lower bound, is
useful for ranking the importance of an edge, leading to an exact or estimated ranking
respectively.
We were motivated by the remark of Granovetter that local bridges earn their signifi-

cance by creating more paths.We tested this hypothesis to see whether Edge Gravity could
effectively identify and rank the local bridges of Granovetter’s examples. Our results were
positive; in fact, they indicate that it is very practical to use path enumeration to quantify
and rank relative edge importance.
Due to the uncertain nature of information flow in a social network, more paths gener-

ally mean more transmission efficiency–a notion that is mathematically consistent with
established research in the field of network reliability and communications. See, for exam-
ple, Ball (1980) and Colbourn (1987), who also note the NP– and �P–completeness of
problems and computations where full-path enumeration is required for exactness. Here,
we leverage Miaou and Chin’s observation (Miaou and Chin 1991) that a k-shortest path
algorithmmay find all paths for a large network. They observed that solving the k-shortest
path problem can be used for generating alternate paths in large transportation net-
works and showed that sometimes (depending on the selection of k), a polynomial time
algorithm ends up enumerating all paths in the network.
We exploit these properties of k-shortest path algorithms for computing the Edge Grav-

ity metric exactly, or finding a lower bound (called, k-Gravity) to indicate the relative
importance of a network edge.We infer from Eppstein’s work (Eppstein 1998) that solving
the k-shortest path problem while enumerating all possible network paths is possible in,
for example, O(m + n log n + kn) time. As is common in graph theoretical applications,
we sidestep the computational issues posed by an underlying intractable problem (in our
case, complete path enumeration) by noticing that most of the time, the worst case is rare.
(See, for example, Chandrasekaran et al. (2008) and Liu et al. (2012)).

General motivation and domain relevance

Edge Gravity and its implications for structural importance of social network components
is relevant to several application domains where finding and prioritizing edges may help
to solve entrenched societal problems. For example, proposing new edges or isolating
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existing ones could be a promising way to advance diplomacy or public policy when
echo chambersmay be responsible for perpetuating divisive attitudes. Conversely, finding
important existing or potential edges between otherwise isolated populations is already
known to be helpful in quarantining fast-spreading infectious diseases. In general, Edge
Gravity offers a quantification and ranking approach that may be helpful for new socio-
logical studies aimed at improving the deeper understanding of how relationships pertain
to the effectiveness of human activities such as job-seeking, fund-raising, and more.

Paper organization

The rest of the paper is organized as follows. The next section details the methodology:
an algorithm for quantifying the importance (gravity) of a network edge. We also show
how the ranking of edges by gravity leads to straightforward ways to identify important
local bridges (i.e., a subset of Granovetter’s weak ties), which we nickname ties that bind,
as well as structurally unimportant bridges, which we nickname bridges to nowhere. We
apply the algorithm to a small network in order to illustrate all the mechanical steps of
the methodology, including path enumeration. The third section, Case Studies, applies
the Edge Gravity Algorithm and associated methodology to four well-known social net-
works: two of Granovetter’s examples (Granovetter 1973), the Florentine families network
of the Italian Renaissance (Wasserman and Faust 1999), and the Krebs terrorist network
(Krebs 2002). The fourth section revisits the case study examples from the perspective
of comparing the Edge Gravity analysis to that of established edge metrics. In the final
section, we compare and contrast our findings with those of other researchers, past and
present, and offer a summary of the main points of this paper, general conclusions, and
suggestions for future work.

Methodology
This section describes the methodology used to quantify edges, either exactly or as a
lower bound, and then rank them, either exactly or approximately, by their importance
as measured by gravity. The gravity labels are then used to isolate an edge set that we
have nicknamed ties that bind. We also discuss how isolating the ties that bind helps to
distinguish bridges of lesser importance, which we have nicknamed bridges to nowhere.
We show that the algorithm produces its results very efficiently.

Definitions and notation

Noting that we can convert any undirected network to a digraph by replacing each
undirected edge with a directed arc in each direction, we develop the more general
methodology for digraphs. We begin with the following definitions:

Edge Gravity is a non-negative integer value calculated for a specific edge, representing
the number of times the edge occurs in any network path. For a digraph D (V ,A)

with vertex set V and arc set A, we denote � (a) as the gravity label for an arc a ∈ A.
Edge Gravity Ranking is found by ordering the arc set A according to the descending

value of � (a).
Ties that Bind is the subset of edges that have a high gravity value. We call the most

important edges, identified by the gravity edge metric, ties that bind because they
are the edges that locally bridge portions of a network which might otherwise be
disconnected or difficult to reach.
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Bridges to Nowhere is the subset of edges that are bridges but have a low gravity value.
Bridges are typically considered important because the removal of a bridge discon-
nects the network. However, the disconnection caused by the removal of a bridge
in this set is less important because the disconnection is only to a relatively small
component (e.g., a single node or a small node subset).

Miaou and Chin (1991) showed that it is possible to use a k-shortest path algorithm to
generate alternate paths for large road transportation networks. A side result of Miaou
and Chin (1991) was the discovery that given a sufficiently large value of k, the complete
collection of all possible network paths can often be obtained in polynomial time. For the
undirected case, edge labels are formed by summing the replacement arc labels.
Let k∗ denote the smallest k for which implementing the k-shortest path algorithmmay

produce all possible network paths. When the k-shortest path algorithm terminates by
finding at most the h-shortest paths, with h < k, for every origin-destination pair, then
k∗ is observable. In fact, this termination condition indicates that all paths have been
enumerated and that k∗ is equal to the value of h. The Edge Gravity Algorithm described
in the next section determines all the gravity labels for edges while finding k∗ when k is
adequately large. When k∗ is not found, the labels can be used to find lower bounds for
Edge Gravity and an approximate edge ranking.

The Edge Gravity algorithm

Given digraph D (V ,A) with node set V, arc set A, n = |V |,m = |A|, and positive integer
k, the following algorithm creates a non-negative integer label � (a) for each a ∈ A and
specifies the value of k∗ if found.

Initialization Step: Set � (a) ←− 0 for all a ∈ A, and set k∗ ←− Undefined.
For each r ∈ V , repeat the main steps:

Main Steps:

Step 1: Find the k-shortest paths from root node r to every other node i ∈ V .
Step 2: For each path identified in Step 1, let P ⊆ A denote the set of arcs in the

path. For each a ∈ P , set � (a) ←− � (a) + 1.
Step 3: Let kr = maxi∈V [ kr,i], where kr,i is the number of paths found from root

node r to node i, for all i ∈ V .

Final Step: Let k̃ = maxr∈V [ kr]. If k̃ < k, then k∗ ←− k̃. (In other words, all paths have
been enumerated.) Otherwise, we know that k∗ ≥ k must be true, but k∗ remains
Undefined.

Because the dominant step is finding the k-shortest paths (i.e., Step 1), the algorithm
complexity follows from the k-shortest path algorithm applied–for example, O(m +
n log n + kn) following Eppstein (1998). Furthermore, note that any algorithm for solv-
ing the k-shortest path problem may be used for this step. In fact, since the earlier works
in this area by Miaou and Chin (1991) and Eppstein (1998), the k-shortest path problem
has received much attention, including more recently by Bhosle (2005), Hershberger et al.
(2007), Feng (2014), Kurz and Mutzel (2016), and Wen et al. (2017).
The set of bridges to nowhere is easily identified by recursively removing edges which

have one endpoint node with degree one. The ties that bind, while not as precisely defined,
are the collection of edges with the largest Edge Gravity. Like edge betweenness, Edge
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Gravity favors edges that connect dense subgroups. The number to include in this group
is similar in concept to that of the number of recalculations of edge betweenness and
removal in Newman and Girvan’s (2004) approach for finding community structure in
networks.

Translation of Edge Gravity labels to undirected edges

The algorithm can be applied to an undirected graph G (V ,E), where V is the set of
nodes and E is the set of undirected edges, in the following way. For each edge (i, j) ∈ E,
we create two arcs, a ≡ (i, j) and à ≡ (j, i), in the set A. The output of the Edge Gravity
Algorithm provides labels for arcs � (a) and � (à), which are the arc gravity metrics for
each arc. The Edge Gravity label is the sum of the two replacement arcs � (a) and � (à).

Interpreting Edge Gravity labels when k∗ is found
Note that Miaou and Chin (1991) demonstrated that k-shortest path algorithms were
capable of generating large sets of alternate paths, sometimes finding and enumerating
all paths. Eppstein (1998) showed that the k-shortest path could be solved on a digraph
D (V ,A) in O (m + n log n + kn) time. The Edge Gravity Algorithm enumerates all paths
in the digraph D (V ,A) if it terminates with k∗ defined. In this case, the arc label � (a)
indicates the number of times the arc is included over all possible paths in the network.

Interpreting Edge Gravity labels when k∗ is not found
For the examples and case studies of this paper, we are able to find k∗ when the Edge
Gravity Algorithm terminates by successively increasing the value of k. For dense social
networks that have large numbers of paths of equal length, it may be that k grows arbitrar-
ily large or that computational resources are exhausted. Since path enumeration belongs
to the class of �P–complete computation problems, it may be that the Edge Gravity Algo-
rithm is unable to enumerate all paths or to terminate with a definite k∗ value. However,
if k∗ remains undefined, then the gravity arc labels � (a) are useful for computing valid
lower bounds on the true number of times the arc is included over all possible paths in
the network. This is because at least a subset of all paths is revealed.
Note that when k∗ is found, then for undirected networks, � (a) and � (à) measure

the use of the edge by all paths, in one direction and then the other, and thus will be
equal. If k∗ remains Undefined, then a greater lower bound on an edge’s gravity is given
by 2max{� (a), � (à)} instead of � (a) + � (à). This is due to the symmetry of path usage
when k∗ is found. We call this lower bound the k-Gravity of a.
It is interesting to note that � (a) > � (à) implies that � (a) is more frequently involved

in shorter paths than � (à). For the undirected edge that was replaced by � (a) and
� (à), this has implications for higher frequency of the edge’s use in one direction for
shorter paths. This also suggests the need for exploration of the use of the algorithm
for deeper insights into information transmission and efficiencies, which we leave for
future work.

Illustration of Edge Gravity concepts

We begin by examining simple examples in order to illustrate the details of our method-
ology and to develop intuition for analysis of the results. For reference, Table 1 pro-
vides a list of network examples and case studies to be used in this section and the
following.
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Table 1 Network examples and case studies used in this paper–i.e., a summary of inputs with their
sources when applicable

Network example Nodes (n) Edges (m) Network visualization Data source

Small example A 5 6 Fig. 1 a

Small example B 8 10 Fig. 4 a

Granovetter ’73 example A 10 21 Fig. 7 Granovetter (1973)

Granovetter ’73 example B 25 41 Fig. 8 ibid.

Florentine families 16 20 Fig. 13 Wasserman and Faust (1999)

Florentine families–reduced 16 15 Fig. 13 ibid.b

Krebs 19 27 Fig. 18 Krebs (2002)

Krebs–augmented 19 33 Fig. 18 ibid.

The indicator a denotes a network example created for this paper. The indicator b denotes a modification within this paper of the
sourced network example

Example illustrating path enumeration and the Edge Gravity labels

To illustrate the Edge Gravity Algorithm, the value of the underlying path enumeration,
and the related methodology, consider the simple five-node example in Fig. 1. The list of
all possible paths in the network–from each node to all other nodes, enumerated while
executing the k-shortest path solution (see Main Steps, Step 1) of the Edge Gravity
Algorithm–are shown in Table 2. Note that 58 total paths were found and that k∗=4. In
other words, we found that the Edge Gravity Algorithm terminated with a defined k∗, and
that all 58 paths are enumerated for any evocation of the Edge Gravity Algorithm with
k ≥ 4.
The bar chart in Fig. 2 shows the edge labels and ranking after the Edge Gravity Algo-

rithm terminates, evoked with any k ≥ 4. The only bridge in this network is edge
(3, 5). That is, (3,5) is the only edge whose removal would increase the number of sub-
components; this edge deletion would disconnect node 5 from the rest of the network.
However, Fig. 2 shows that according to Edge Gravity, (3, 5) is a relatively unimportant

Fig. 1 An example used to illustrate the Edge Gravity Algorithm
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Table 2 Path enumeration for the small example in Fig. 1

From → To Paths From → To Paths From → To Paths

1 → 2 {(1, 2)}** 2 → 4 {(2, 4)} ** 4 → 2 {(4, 2)} **
1 → 2 {(1, 3), (3, 2)} 2 → 4 {(2, 3), (3, 4)} 4 → 2 {(4, 3), (3, 2)}
1 → 2 {(1, 3), (3, 4), (4, 2)} 2 → 4 {(2, 1), (1, 3), (3, 4)} 4 → 2 {(4, 3), (3, 1), (1, 2)}
1 → 3 {(1, 3)}** 2 → 5 {(2, 3), (3, 5)} ** 4 → 3 {(4, 3)} **
1 → 3 {(1, 2), (2, 3)} 2 → 5 {(2, 1), (1, 3), (3, 5)} 4 → 3 {(4, 2), (2, 3)}
1 → 3 {(1, 2), (2, 4), (4, 3)} 2 → 5 {(2, 4), (4, 3), (3, 5)} 4 → 3 {(4, 2), (2, 1), (1, 3)}
1 → 4 {(1, 2), (2, 4)} ** 3 → 1 {(3, 1)} ** 4 → 5 {(4, 3), (3, 5)} **
1 → 4 {(1, 3), (3, 4)} ** 3 → 1 {(3, 2), (2, 1)} 4 → 5 {(4, 2), (2, 3), (3, 5)}
1 → 4 {(1, 3), (3, 2), (2, 4)} 3 → 1 {(3, 4), (4, 2), (2, 1)} 4 → 5 {(4, 2), (2, 1), (1, 3), (3, 5)}
1 → 4 {(1, 2), (2, 3), (3, 4)}
1 → 5 {(1, 3), (3, 5)} ** 3 → 2 {(3, 2)} ** 5 → 1 {(5, 3), (3, 1)} **
1 → 5 {(1, 2), (2, 3), (3, 5)} 3 → 2 {(3, 1), (1, 2)} 5 → 1 {(5, 3), (3, 2), (2, 1)}
1 → 5 {(1, 2), (2, 4), (4, 3), (3, 5)} 3 → 2 {(3, 4), (4, 2)} 5 → 1 {(5, 3), (3, 4), (4, 2), (2, 1)}
2 → 1 {(2, 1)} ** 3 → 4 {(3, 4)} ** 5 → 2 {(5, 3), (3, 2)} **
2 → 1 {(2, 3), (3, 1)} 3 → 4 {(3, 2), (2, 4)} 5 → 2 {(5, 3), (3, 1), (1, 2)}
2 → 1 {(2, 4), (4, 3), (3, 1)} 3 → 4 {(3, 1), (1, 2), (2, 4)} 5 → 2 {(5, 3), (3, 4), (4, 2)}

3 → 5 {(3, 5)}** 5 → 3 {(5, 3)} **
2 → 3 {(2, 3)} ** 4 → 1 {(4, 2), (2, 1)} ** 5 → 4 {(5, 3), (3, 4)} **
2 → 3 {(2, 1), (1, 3)} 4 → 1 {(4, 3), (3, 1)} ** 5 → 4 {(5, 3), (3, 2), (2, 4)}
2 → 3 {(2, 4), (4, 3)} 4 → 1 {(4, 3), (3, 2), (2, 1)} 5 → 4 {(5, 3), (3, 1), (1, 2), (2, 4)}

4 → 1 {(4, 2), (2, 3), (3, 1)}
All 58 paths were found by executing the Edge Gravity Algorithm with any k ≥ 4 (k∗ = 4). The subset of shortest paths are
indicated by **

edge. This reveals that although edge (3,5) is the most important (and only) relationship
for node 5, other edges that rank more highly with respect to Edge Gravity contribute
more to the totality of paths in the network and therefore represent relationships that are
more structurally important to the potential for information dissemination. For this small
example, we designate edge (3, 5) as a bridge to nowhere.

Fig. 2 Edge Gravity (EG), Edge Betweenness (EB), and rankings for the network example in Fig. 1
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For this example, edges (1, 2) and (2, 4) have the greatest EdgeGravity (tied), followed by
edges (1, 3) and (3, 4) (also tied). The most important edges may be formed by these four
edges, and removing either sequential pair (1, 2) and (1, 3) or pair (2, 4) and (3, 4) would
disconnect the network. Note that removing the top two edges, (1, 2) and (2, 4), would
not disconnect the network–illustrating an important distinction between Edge Gravity
and cut sets (see Colbourn (1987) for a definition of a network cut set). It is interesting to
note that the edges with the highest Edge Gravity are also the edges farthest away from
the bridge to node 5.
To further illustrate the Edge Gravity Algorithm and related methodology, we applied

the algorithm successively for k = 1, 2, 3, 4. Figure 3 shows the progress of the Edge Grav-
ity labels for each edge in this series. In the special case when k = 1 and all shortest
paths are unique, the k-shortest path solution is equivalent to the shortest path solution
for the network. Shortest paths, used to compute edge betweenness, are indicated by **
in Table 2.
It was easy to enumerate all network paths and thus find k∗ = 4. By successively solving

the Edge Gravity Algorithm for k = 1, 2, 3, 4, we were able to illustrate the methodology
points regarding the case where k∗ is not found. First, we observe from Fig. 3 that the Edge
Gravity labels are, as expected, monotonically increasing in k, which emphasizes their
utility as valid lower bound values for Edge Gravity. Next, we observe that the ranking of
the edges by gravity score changes for k = 1, 2, 3 but is the same for k = 3 and k = 4, even
though the Edge Gravity magnitudes are different. In this case, solving for k = 3 would
have found the Edge Gravity ranking while not enumerating all network paths.

Extending the example: ties that bind and bridges to nowhere

The analysis of the small example in Fig. 1 suggests that a bridge such as (3, 5), which con-
nects a network to only one additional node, is not a very interesting bridge. We observed
that although the bridging edge is the most important (and only) relationship for node 5,
it is the least beneficial to the rest of the network in terms of creating alternate path struc-
ture and facilitating information flow. In this sense, we can view edge (3,5) as a bridge to

Fig. 3 Edge Gravity solutions for the network example in Fig. 1, found by solving successively with
k = 1, 2, 3, 4 (k∗ = 4)
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nowhere, since the information passing over the bridge has no place farther to travel after
reaching node 5. The analysis also raises the issue of how the importance of bridge (3,5)
may be impacted by the discovery of additional nodes connected to the bridging node 5.
We turn to this question next.
To extend the small example, suppose we discover that the isolated node 5 is indeed

connected to additional nodes. We investigate such a scenario in the network represented
in Fig. 4. The gravity solutions, as well as the intermediate solutions found by successive
iterations of the Edge Gravity Algorithm, converge with k∗ = 6 (180 total paths) and k∗ =
12 (296 total paths) respectively. In the extended example, we see that edge (3,5) suddenly
becomes the most important edge when, as a more interesting bridge, it spans the gap
between two groups of nodes that would not otherwise be connected to one another (see
Figs. 5 and 6). In the extended example, edge (3, 5)may now be considered a tie that binds.

Case studies
Next, we apply the Edge Gravity Algorithm and methodology to several well-known
examples from the social network literature. The examples under consideration are the
hypothetical examples of Granovetter (1973), the Florentine families network of the Ital-
ian Renaissance ((Wasserman and Faust 1999), and the Krebs terrorist network (Krebs
2002). We chose to examine these well-known small networks because doing so pro-
vides an opportunity to develop insights about the types of structural features that can be
revealed by Edge Gravity. Furthermore, the well-known case studies allow us to compare
Edge Gravity to previous methodologies, in order to gain a better understanding of the
fundamental differences in the way Edge Gravity works compared to existing metrics. In
particular, the insights gained allow us to identify and address shortcomings of existing
methods, such as edge betweenness.

Fig. 4 Extension considered for the example of Fig. 1
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Fig. 5 Edge Gravity (EG) and Edge Betweenness (EB) solutions for the example extension in Fig. 4

Granovetter’s examples

We examine the two network examples given by Granovetter (1973) when he introduced
the concept of the strength of weak ties. These examples are given in Figure 7 and Figure 8.
The dashed purple lines represent weak ties that are not local bridges, while the dashed
orange represent weak ties that are local bridges. The Edge Gravity labels and ranking for
the Granovetter examples can be seen in Figs. 9, 10, 11, and 12.
For Example A (Fig. 7), we see that the edges with the highest Edge Gravity ranking

are indeed the local bridges (A,B) and (E,I) discussed by Granovetter. Notice in Figs. 9
and 10 that the local bridges (A,B) and (E,I) are involved in significantly more paths than
any other edges in the network. Indeed, edge (A,B) is included in 8,664 paths (59% of all
paths) and edge (E,I) is included in 7,884 paths (53% of all paths). However, the edges
ranked third and fourth in this example only appear in 5,174 paths each (35% of all paths).
This observation supports the validity of Granovetter’s conjecture that local bridges are
important because of their involvement in many network paths.
Similarly, for Example B (Fig. 8), we observe that the Edge Gravity Algorithm identi-

fies the local bridges (I,L), (A,B), (F,Y), (Q,R), and (R,T) of Granovetter; the local bridges
enjoy the highest ranking and are included in a significantly larger number of total paths
than the other edges, as evidenced by Figs. 11 and 12. The local bridges identified by Gra-
novetter in each of these examples are indeed the ties that bind the networks together, as
demonstrated by the Edge Gravity Algorithm.
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Fig. 6 Edge Gravity solutions for the example extension in Fig. 4 when solving the Edge Gravity Algorithm
successively for k = 1, 2, 3, . . . , 12. k∗ = 12

Fig. 7 Granovetter’s 1973 Example A network
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Fig. 8 Granovetter’s 1973 Example B network

Notice that the fourth- and fifth-ranking edges–(Q,R) and (R,T)–are both required to
span the gap between node Q and node T. Node R therefore enjoys a high level of bro-
kerage, since any information passing from node Q to node T must pass through node R.
Indeed, according to the methods of Valente and Fujimoto (2010) and Everett and Valente
(2016), node R ranks highest in terms of brokerage. However, each of these individual
edges (Q,R) and (R,T) are ranked lower than the other three local bridges of this example.
In other words, the relationships (I,L), (A,B), and (F,Y) are each more structurally impor-
tant to the network because they are able to reduce distances on their own. Considered
individually, the relationships (Q,R) and (R,T) are weaker in terms of their contribution
to overall network structure because they must function together, with the help of node
R acting as an intermediary broker, in order to transmit information.
Observe that both of Granovetter’s examples include local bridges, but not true bridges.

As such, these examples do not contain any bridges to nowhere, which can be easily veri-
fied by visual inspection of Figs. 9, 10, 11, and 12. Indeed, while the top-ranked ties that
bind separate themselves significantly from the other edges, no edges stand out at the
bottom of the ranking as being included in significantly fewer paths. Instead, the decline
in path inclusion among the edges in these examples is gradual, except for the decline
following the top-ranked edges (ties that bind).

Florentine families network

We analyze the classic example of the Florentine families network, following the use of
this example byWasserman and Faust through several chapters of their book (Wasserman
and Faust 1999). Illustrated in Fig. 13, the network represents marriage relationships
among families with political, economic, and social power during the Italian Renaissance.
The Edge Gravity Algorithm was applied, and successfully enumerated all paths (a total
of 4,128) when executed for any k ≥ 33 (i.e., k∗ = 33 was found).
Indeed, the bar chart of Fig. 14 shows the final labels and ranking for all edges in the net-

work, as assigned by the Edge Gravity Algorithm. The highest-ranking edge with respect
to Edge Gravity–i.e., the edge that appears in the most paths–is (4, 7), Bischeri-Guadagni
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Fig. 9 Edge Gravity (EG) and Edge Betweenness (EB) solutions for Granovetter’s Example A

(appearing in 2,102 paths, or 51% of all paths). The closest actor to Medici in this pair
is Guadagni: The shortest path from Medici to Guadagni has length 2, and the shortest
path fromMedici to Bischeri has length 3. The second highest-ranking edge with respect
to Edge Gravity is (13, 15), Ridolfi-Strozzi (appearing in 1,960 paths, or 47% of all paths).
The edge ranked third is (3, 5), Barbadori-Castellan (appearing in 1,860, or 45% of all
paths). The top three edges, while not individually bridges, can be considered ties that
bind: Note that if all three are removed, they disconnect two subcomponents of families.
Furthermore, in Fig. 13, note that the top three edges are each 4-local bridges.
Figure 15 reveals that the top three edges (ties that bind) as well as the bottom five

edges (bridges to nowhere) separate themselves in a significant way from the rest of the
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Fig. 10 Edge Gravity solutions for Granovetter’s Example A when solving KSP for k = 1, 2, 3, . . . , 416

edges. That is, while “average” edges enjoy a gradual decline of path inclusion, the ties that
bind stand out as being included in significantly more paths than a typical edge, while the
bridges to nowhere stand out as being included in significantly fewer.
The House of Medici, represented by node 9 in Fig. 13, is widely understood to be

the most important node in this network. It is well-known that the Medici family ranks
highest for several standard social network node centrality analytics. It is interesting to
note that according to the Edge Gravity ranking, the top seven edges do not involve the
Medici family. Indeed, the Medici family first appears in the edge ranked eighth (out of
a total of 20 edges), which is edge (3, 9), Barbadori-Medici. Observe that although the
Medici family enjoys high node degree and centrality measures, this importance derives
in part from edges (10,14) and (1,9), which are bridges to nowhere, as well as edge (9,14),
which becomes a bridge to nowhere after edge (10,14) is removed. These three edges,
while important for the individual nodes reached by the bridges, have little impact on
the relationship structure of the network as a whole. These edges, as well as edges (2,6)
and (7,8), also bridges to nowhere, are indicated by blue lines in Fig. 13. We removed
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Fig. 11 Edge Gravity (EG) and Edge Betweenness (EB) solutions for Granovetter’s Example B

the bridges to nowhere and reanalyzed the resulting network structure to discover that
edge (4,7) remains the highest-ranking edge, while the edges ranked second and third
change places with each other. Edge (3,9), Barbadori-Medici, increases slightly in rela-
tive Edge Gravity and is ranked fourth in the new network (out of a total of 15 edges).
The Edge Gravity Algorithm solution for k∗ = 33, found by solving successively for
k = 1, 2, 3, . . . , 33, is shown in Figs. 16 and 17. Notice that once the bridges to nowhere
have been removed, no edges stand out as being involved in dramatically fewer paths than
the rest.
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Fig. 12 Edge Gravity solutions for Granovetter’s Example B when solving KSP for
k = 1, 100, 200, 300, . . . , 17400, 17500

Krebs 2001 terrorist network

Finally, we analyze the terrorist network data set assembled by Krebs (2002), which
models the relationships between the 19 hijackers held responsible for the attacks on
September 11, 2001. We considered two versions of the network: the original central
network as collected by Krebs, and the augmented version in which Krebs introduced
another six edges representing contacts that participated in crucial meetings such as the
one that took place in Las Vegas. Figure 18 shows both networks, with the original edges
in solid black lines and the augmented edges in dashed red lines.
The Edge Gravity Algorithm labels and ranking for the original Krebs network are given

in Figs. 19 and 20. A total of 15,114 paths were found with k∗ = 244. Analysis reveals
that edge (9, 13)–i.e., the edge between Ahmed Al Haznawi and Ziad Jarrah–appears in
the most paths. Notice that if the edge between node 9 and node 13 is removed, the next
shortest path connecting nodes 9 and 13 has length 5. Thus, edge (9, 13) is very important
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Fig. 13 Network model of the Florentine families of the Italian Renaissance

for reducing distances in the network, and is what Granovetter would refer to as a 5-
local bridge. The edge appearing in the second-highest number of paths is (16, 17)–i.e.,
the edge between Abdul Aziz Al-Omari and Waleed Alshehri. This edge is a true bridge,
whose removal would disconnect the network.
Notice that there is a stark difference in the importance level of these top two edges.

Indeed, the highest-ranking edge, (9,13), appears in 65.6% of all paths, whereas the second
highest-ranking edge, (16,17), appears in only 50% of all paths. Hence, edge (9,13) is a tie
that binds and carries a significantly higher importance to the overall path structure than
the second-highest-ranking edge, (16,17)–a true bridge whose absence would disconnect
the network.
Nodes 4 and 7 rank highly according to several standard node centrality metrics, includ-

ing degree, closeness, betweenness, reach, and information centrality. However, nodes 4
and 7 are not adjacent to any top-ranking edges according to Edge Gravity. The three
lowest-ranking edges in Fig. 19–i.e., edges (4,5), (7,10), and (1,2)–are clearly, from Fig. 18,
bridges to nowhere. As with the Florentine families case, centrality for nodes 4 and 7
appears to be bolstered by bridges to nowhere (4,5) and (7,10).
For the augmented version of the Krebs network, a total of 174,588 paths were found

and k∗ = 1, 614, as shown in Figs. 21 and 22. The red bars in the bar chart in Fig. 21
represent the added edges for the augmented network. The introduction of the six aug-
mented edges to the network greatly reduces the relative importance of edge (9, 13) with
respect to Edge Gravity. Nevertheless, edge (9,13) remains the highest ranking, and edge
(16, 17) remains the second highest ranking. However, while edge (9,13) appears in a total
of 78,950 paths (45%), edge (16, 17) appears in nearly as many: a total of 78,700 paths
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Fig. 14 Edge Gravity (EG) and Edge Betweenness (EB) solutions for Florentine families network

(45%). In the original network, the difference between the number of paths for the top
two edges accounts for 15.6% of the total network paths; this difference is reduced to only
0.14% in the augmented network. Hence, the additional edges in the augmented network
changed the path structure significantly enough that both (9,13) and (16,17) serve as ties
that bind. Inspection of Fig. 18 reveals that the augmented edges create new paths from
nodes 17, 18, and 19 to the rest of the graph, many of which bypass edge (9, 13). Hence, in
the augmented version of the network, the exceptional importance of edge (9,13) relative
to edge (16,17) is greatly reduced.
It is interesting to note that the new edges themselves do not carry high Edge Gravity

rankings individually, yet their introduction to the network has a significant, measurable
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Fig. 15 Edge Gravity solutions for the Florentine families network when solving successively for
k = 1, 2, 3, . . . , 33

impact on the path structure as a whole. Notice that in the series representation in Fig. 20,
edge (9,13) separates itself as the clear front-runner early on for small values of k. In the
augmented version of the network, edge (16,17) ranks highest for edge betweenness based
on shortest paths (see Fig. 21); every shortest path from node 17, 18, or 19 to the rest of
the graphmust include edge (16,17). However, edge (16,17) is middle-ranking for much of
the first half of the solution series shown in Fig. 22. The ranking of edge (16,17) increases
significantly in the latter portion of the time series. This suggests that many of the new
paths including edge (16,17) that were introducted by the augmentation are fairly long.
The augmentation also increased the Edge Gravity ranking of (4,5) to 19th (out of 33

edges), as it is no longer a bridge to nowhere after the addition of edges (13,5) and (14,5).
Edges (7,10) and (1,2) remain bridges to nowhere and continue to exhibit exceptionally low
rankings in Figs. 19 and 21. Indeed, observe that the ties that bind as well as the bridges
to nowhere separate themselves in a significant way from the rest of the pack, and do so
fairly early in the time series representation.
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Fig. 16 Edge Gravity and Edge Betweenness solutions for the Florentine families network with bridges to
nowhere removed

Computational results

Table 3 summarizes the computational results for examples and case studies in this
paper. The solution was implemented in ANSI standard C, compiled with GCC
(https://gcc.gnu.org/), Ubuntu operating system (16.04–64 Minimal for VSI), and exe-
cuted on an Intel(R) Xeon(R) CPU E3-1270 v6 @ 3.80GHz; 64 GB RAM.

Comparison to other edgemetrics
Edge betweenness

Edge betweenness, first introduced by Girvan and Newman (2002), is an extension of
Freeman’s node betweenness to measure edge centrality. Edge betweenness is currently
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Fig. 17 Edge Gravity solutions for the Florentine families network, with bridges to nowhere removed, when
solving the Edge Gravity Algorithm for k = 1, 2, 3, . . . , 33 (k∗ = 33)

the predominant edge importance metric in social network analysis. The betweenness
of an edge (i, j) is a function of the number of shortest paths that include (i, j). Multiple
shortest paths between a particular pair of vertices are handled in the following way: If
there are exactly m-many shortest paths between nodes r and s, then each shortest path
is assigned a weight of 1/m.
Edge Gravity extends the idea of edge betweenness to include the entire path structure

of the network, rather than focusing only on shortest paths. The additional informa-
tion uncovered by Edge Gravity provides deeper insight into potential communication
path structures that may be overlooked by node centrality and edge betweenness metrics
based on shortest paths alone. Figures 2, 5, 9, 11, 14, 16, 19, and 21 provide a com-
plete comparison of edge betweenness and Edge Gravity for all of the examples and
case studies examined in this paper. Both Edge Gravity and edge betweenness can be
computed for disconnected networks–a condition that challenges other metrics, specif-
ically any that rely on the existence of at least one path between every pair of nodes.
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Fig. 18 Krebs 2001 terrorist network. To illustrate the augmented terrorist network–the result of additional
meetings–red dashed lines were added

This is demonstrated by the Florentine families case study (see Figs. 13, 14, and 15, and
specifically node 12–the Pucci family).
Analysis of Granovetter’s Example A (Fig. 7) reveals that the local bridges (A,B) and (E,I)

of Example A rank highest for both edge betweenness and Edge Gravity metrics, although
the order is reversed (see Fig. 9). This illustrates that the structural importance derived
from inclusion in shortest paths can be consistent with the structural importance derived
from inclusion in all paths quantified by Edge Gravity.
On the other hand, Granovetter’s Example B (Fig. 8) contains five local bridges. Edge

Gravity identifies all five local bridges: The top-ranked edges according to Edge Gravity
are the local bridges (I,L), (A,B), (F,Y), (Q,R), and (R,T), in that order. On the other hand,
edge betweenness fails to include local bridge (I,L) in its top five ranking, even though
edge (I,L) appears in more paths than any other edge in the network. Instead, edge (B,F)
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Fig. 19 Edge Gravity (EG) and Edge Betweenness (EB) solutions for the original Krebs network

ranks fourth for edge betweenness yet, by contrast, ranks only 14th for Edge Gravity (see
Fig. 11).
A case-by-case analysis of the remaining examples reveals that edge betweenness and

Edge Gravity metrics often provide significantly different results from each other. In par-
ticular, edge betweenness rankingsmay be exaggerated by the presence of adjacent bridges
to nowhere. On the other hand, Edge Gravity ranks the most essential edges without being
unduly influenced by the presence of adjacent bridges to nowhere.
For the small example described in the Methodology section of this paper, edge (3,5) is

a bridge to nowhere and also ranks highest for edge betweenness (see Figs. 1 and 2). By
contrast, the Edge Gravity metric reveals edge (3, 5) to be the least important edge to the
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Fig. 20 Edge Gravity labels and ranking for the original Krebs network, when solving for k = 1, 2, 3, . . . , 244

network path structure as a whole. This is because as a bridge to nowhere, it does little to
enhance the overall network structure since there is no place farther for information to
travel after reaching node 5.
Notice that edge (3,5) appears in every path from node 5 to any other node in the net-

work, since it forms a bridge to the isolated node 5. Therefore, edge (3,5) appears in many
shortest paths. However, if we shift our attention to include all paths (Edge Gravity) and
not just shortest paths, then the abundance of potential information pathways between
nodes 1, 2, 3, and 4 is revealed and the relative structural importance of edge (3,5) is
greatly diminished. The low ranking of edge (3,5) according to Edge Gravity reveals its
status as a bridge to nowhere rather than as a bridge of high structural importance. This
example suggests that edge betweenness alone is not sufficient to distinguish structurally
important bridges from bridges to nowhere; we observe similar results in the Florentine
families and Krebs examples below.
Indeed, for the Florentine families example, we see from Fig. 14 that edges (9, 14) and

(2, 9) are the top two edges according to edge betweenness. However, edge (9,14) ranks
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Fig. 21 Edge Gravity (EG) and Edge Betweenness (EB) solutions for the augmented Krebs network

only 16th according to Edge Gravity, while edge (2,9) ranks 12th. Note also that the top
three edges for Edge Gravity rank only fourth, seventh, and 14th for edge betweenness.
Observe that edge (9,14) is a bridge between the main component of the network and a

bridge to nowhere. It appears that this bridge to nowhere places undue importance on edge
(9,14) with respect to edge betweenness. Similarly, the edge betweenness rank of edge
(2,9) appears to be bolstered by the existence of several bridges adjacent to nodes 2 and 9:
(1,9), (2,6), and (9,14). Once the bridges to nowhere are removed, as in the example of the
reduced Florentine families network, edge betweenness and Edge Gravity both identify
(4,7) as the most structurally important edge. In fact, the two metrics identify the same
set of edges in their top four rankings, albeit ordered differently.
For the augmented Krebs network, Fig. 21 shows that edge (16,17) ranks highest for

edge betweenness and ranks second for Edge Gravity. On the other hand, edge (4,15)
is the third-ranking edge according to edge betweenness but ranks only 25th according
to Edge Gravity. Similarly, edge (4,7) ranks fourth for betweenness but ranks only 28th
with respect to Edge Gravity. Observe that node 7 is adjacent to a bridge to nowhere, the
presence of which appears to have a boosting effect on edge betweenness for (4,7).
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Fig. 22 Edge Gravity when solving the k-shortest path (KSP) for the augmented Krebs network, when solving
for k = 1, 25, 50, 75, 100, 125, 150, . . . , 1600, 1625

Table 3 Summary of computational results, executed on an Intel(R) Xeon(R) CPU E3-1270 v6 @
3.80GHz

Network case
Edge betweenness Edge Gravity

Maximum
shortest
paths

CPU
time
(seconds)

k∗ Total
paths
found

Maximum
path
lenght

CPU
time
(seconds)

Small example A 2 0.000060 4 58 4 0.000082

Small example B 2 0.000162 12 296 7 0.000200

Granovetter ’73 example A 4 0.000567 416 14,796 9 0.031664

Granovetter ’73 example B 7 0.006522 17,480 2,130,510 24 124.306396

Florentine families 3 0.000633 33 4,128 12 0.004312

Florentine families–reduced 3 0.000269 33 2,048 9 0.001798

Krebs 5 0.001920 244 15,114 16 0.031513

Krebs–augmented 5 0.002096 1,614 174,588 17 1.152244
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It is interesting to note for the augmented network that although (9,13) is the highest-
ranking edge according to Edge Gravity, edge (9,13) ranks only 11th according to edge
betweenness. Recall from the case study in the previous section that (9,13) stood out
in the original Krebs network as being included in significantly more paths than any
other edge. Since (9,13) also enjoyed the highest ranking for edge betweenness, we know
that the dramatic boost in path inclusion for (9,13) in the original version was due in
part to its inclusion in many shortest paths. The proportion of total path inclusion for
(9,13) was greatly diminished in the augmented network, although (9,13) remained the
top-ranking edge according to Edge Gravity. This suggests that the introduction of new
edges provided shorter alternatives to formerly shortest path structures that depended
on edge (9,13). Indeed, the role of edge (9,13) was as a connector between two ser-
pentine ends of the network. Figure 18 shows that the new edges in the augmented
version provide shorter alternate routes from opposite ends of the network that bypass
edge (9,13).

The k-local bridge metric

The k-local bridge metric of UCINET (Borgatti et al. 2002) provides a binary means of
identifying bridges and local bridges but does not provide a means of ranking edges in
terms of structural importance. The k-local bridge metric cannot distinguish a bridge to
nowhere from amore critically important edge. Similarly, the k-local bridgemetric cannot
distinguish a critically important local bridge from local bridges of lesser importance. It
will also overlook structurally important edges that are not bridges or local bridges.
In the Florentine families example (Fig. 13), there are several true bridges, as well as

4-local bridges and 3-local bridges. There are four 4-local bridges in this example: (3,5),
(3,9), (4,7), and (13,15). These edges happen to coincide with the top four ranking edges
according to Edge Gravity in the reduced version of the example. In the original version
of the example, Edge Gravity identifies the 4-local bridges (4,7), (13,15) and (3,5) as the
top three ranking edges, while (3,9) ranks eighth.
The original Krebs example (Fig. 18) contains several 5-local bridges: (9,13), (7,11),

(11,12), and (12,14). However, only (9,13) emerges as a top-ranking edge for Edge Gravity;
edges (12,14), (11,12), and (7,11) rank sixth, seventh, and eighth respectively.
In the augmented version of Krebs, edge (9,13) becomes a 4-local bridge, while the other

three remain 5-local bridges. However, edge (9,13) remains most structurally important
with respect to Edge Gravity, while the 5-local bridges rank fifth, eighth, and 13th respec-
tively. Instead of these 5-local bridges, Edge Gravity identifies the 4-local bridge (9,13)
and the true bridge (16,17) as being the most essential to network path structure.
It is interesting to note that edge (9,13) and the 5-local bridges (7,11), (11,12), and

(12,14) are all members of a 6-cycle whose removal would disconnect two serpentine
ends of the original network. The edges introduced in the augmented version provide
new alternate shortcuts between extreme ends of the network. However, in order to tra-
verse the middle section, information must pass either through edge (9,13) or through the
entire edge sequence (7,11), (11,12), and (12,14). Nodes 9 and 13 are both connected to
triads; once information leaves either node 9 or node 13, it has multiple paths available
to traverse. However, if information begins traveling along the sequence (7,11), (11,12),
and (12,14), it must complete this path of length 3 before reaching a node with multiple
connections. While the k-local bridge metric cannot distinguish between the individual
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structural importance of these local bridges, Edge Gravity reveals that local bridge (9,13)
is more effective at shortening distances between opposite ends of the network than any
of the individual local bridges (7,11), (11,12), and (12,14).
Notice that in both versions of the Krebs example, the third- and fourth-ranking edges

according to Edge Gravity are neither bridges nor local bridges. To the contrary, these
edges are part of triads adjacent to top-ranking edges (9,13) and (16,17). These results
indicate that the binary identification of local bridge status alone is not enough to assess
or rank edges according to their importance to overall path structure. Indeed, the k-local
bridge metric focuses on the effect of an edge’s removal on shortest paths but does not
consider the larger network structure including all paths. The Edge Gravity metric, in
addition to being aligned with Granovetter’s local bridges/weak ties conjecture, provides
different and meaningful results because it exploits all network paths instead of just the
shortest paths.

Literature review, discussion and conclusions, and future work
Literature review

Some attention has been given in the literature to the general problem of edge impor-
tance, albeit usually not in the context of social network analysis. One approach to edge
importance is to study the impact of edge deletion on some network-level property, such
as connectivity or diameter. Work in this area includes Barefoot et al. (1987), Bagga
et al. (1992), Bollobás (1968), and Boesch et al. (1981), and is used in the study of network
reliability and vulnerability. These types of methods seek the minimum number of edges
whose deletion is required to disconnect the network or increase its diameter. This dif-
fers from our approach in that we seek edges which are individually important to overall
network path structure, yet whose individual removal may not necessarily disconnect the
network or increase its diameter.
Edge vitality identifies the edge whose removal from the network would have the max-

imum impact on increasing the geodesic distance between a pair of fixed nodes. Papers
on vitality include: Nardelli et al. (2001), Malik et al. (1989), Lubore and Scilia (1971), and
Ball et al. (1989). Our method measures the impact an edge has on all network paths,
rather than on a particular shortest path.
The survey paper (Melançon and Sallaberry 2008) compares several edge importance

metrics and seeks to organize them into a taxonomy. The focus, however, is on local met-
rics that are based on network structure in a neighborhood around a particular edge.
Our approach, by contrast, is a global edge metric that takes information about the entire
network into account.
Hershberger and Suri (2001) considered edge importance, but not in the context of a

social network. In their paper, they examined a network model of the Internet, and con-
sidered the importance of an edge with respect to pricing in a computer-implemented
auctioning algorithm. Hershberger and Suri assumed that shortest paths are always
unique–which is generally not a good assumption for social networks, where alternate
paths of the same length are both common and desirable.
Most well-known centrality analytics focus on the importance of actors–i.e., the nodes

of the network rather than the edges. The canonical example is Freeman’s betweenness
centrality (Freeman 1977; 1978), whichmeasures node importance using the frequency in
which a particular node appears in a geodesic. Girvan and Newman extended Freeman’s
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betweenness centrality to define edge betweenness and used the iterative removal of
edges to develop algorithmic methods for detecting community structure in Girvan
and Newman (2002), Newman and Girvan (2003, 2004). Edge betweenness relies on
shortest paths only, rather than considering the global network structure created by all
network paths, and can lead to very different results, as explored in the case studies
of this paper.
Bonacich (1987) generalized the concept of node centrality by proposing a param-

eterized family c(α,β) of node centrality metrics. The parameter β can be adjusted
according to the context of the application: A zero value for β correlates to degree cen-
trality, while β > 0 correlates to conventional centrality metrics such as closeness or
betweenness. Negative values of β are appropriate for negative exchange scenarios such
as bargaining. Each of these metrics is designed to measure the power of an individ-
ual, appropriate to a specific context. Rather than focusing on context-specific individual
(node) power/centrality, we sought the most important relationship for global network
structure and information flow. We observed in the case studies that the most impor-
tant edges with respect to path inclusion (Edge Gravity) may not be adjacent to the most
central nodes.
Holme and Ghoshal noted (Holme and Ghoshal 2008) that there is a cost associated

with maintaining social ties. They assert that in contexts such as diplomacy, an actor
will want to simultaneously maximize their power and influence (as measured by close-
ness centrality, which is strongly correlated with degree) while minimizing the number of
social ties necessary to maintain. Identifying which ties are the most important and which
may be discarded is an interesting problem–and one which can be addressed using the
Edge Gravity Algorithm.
Valente and Fujimoto (2010) introduced a metric for node importance that is based on

removing edges from a social network and calculating the impact of each edge removal
on network cohesion. Every node is then assigned a brokerage metric, the value of which
is determined by averaging the effect that each of its adjacent edges has on network cohe-
sion. Everett and Valente modified this approach using betweenness centrality rather than
average shortest path length in Everett and Valente (2016). Their approach differs from
ours by focusing on node importance rather than on edge importance, and by determining
edge relevance to network cohesion using only shortest paths rather than all paths.
We note that social information (e.g., gossip or disease transmission) does not necessar-

ily follow a geodesic route from one person to another. This emphasizes the significance of
counting all possible paths instead of just finding the shortest paths. Most of the metrics
described in the literature are based on shortest paths (geodesics). However, Stephenson
and Zelen (1989) recognized that in a social network, information does not always travel
a geodesic route. They proposed a node centrality measure based on the information
contained in all paths rather than in just the shortest paths. In contrast to our method,
Stephenson and Zelen did not enumerate all paths to quantify and rank important edges.
Instead, they defined a special matrix to capture the information contained in all paths
and used it to define a metric of node (rather than edge) importance.
Recognizing the need to include all paths rather than just geodesics, Alahakoon et al.

(2011) introduced a node centrality metric called κ-path centrality. This method defines
node centrality based on the number of times a node appears in a self-avoiding ran-
dom walk of length κ . De Meo et al. (2012) extended this idea to define a similar κ-path
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centrality metric for edges. De Meo’s algorithm seeks to rank edges according to their
potential for enabling information diffusion; the method depends on random walks and
is applied to large networks.
The Main Path Analysis method–introduced by Hummon and Dereian (1989)–

identifies and ranks important edges in citation networks. Recognizing several limitations
to the original method, Liu and Lu (2012) proposed several variations to enhance the
methodology. These methods apply only to directed acyclic graphs.

Discussion and conclusions

Relationships between people are the essence of social networks. The ties between people
are what bind a social network together and enable the effective dissemination of infor-
mation and ideas without predetermined route planning. The social network literature
reveals that important information is often transmitted over pathways between people
who are not strongly connected to one another and whose personal contacts have little
overlap.
Much research has been done to identify important (well-connected, central) nodes in a

network. Work has also been done to identify nodes whose removal (along with their ties)
would maximally fragment a network or disrupt network cohesion; see Borgatti (2003,
2006). However, both of these approaches view networks through the lens of placing a
higher value on individual nodes (people) than on the edges (relationships) between them.
These approaches ignore the fact that a particular node’s importance may be drawn from
the significance of one of its incident edges, and that the removal of that particular edge–
not necessarily the node itself–is the essential action that disrupts the network.
Indeed, when two actors have a relationship to each other that forms a bridge,

disrupting the relationship between the two actors may be seen as the key to dis-
rupting the network. Through this lens, the removal of relationships as a by-product
of removing actors can be viewed as the essential act in disrupting a network via
node removal. Furthermore, when the focus is on network fragmentation, deleting
a particular actor might seem significant due to an increase in subcomponents. In
contrast, an edge that serves as a local bridge may be more important to overall
network communication efficiency, even though its deletion may not create any new
subcomponents.
Granovetter observed that local bridges serve as important information pathways by

reducing overall distances, yet their removal does not necessarily fragment the network.
Local bridges provide shorter, more effective routes for information to be exchanged
between actors in different portions of the network, but they are not the only possi-
ble way for information to travel. The Edge Gravity Algorithm quantifies Granovetter’s
insight that local bridges earn their significance from their inclusion in many paths.
The edge that appears most often in any path in the network can thus be viewed
as the most structurally important for information diffusion. Edge Gravity identifies
the edges that appear in the most paths, and hence have maximum impact on dis-
semination in terms of reducing distances and enabling potential information flow
along many possible alternate paths. Computing Edge Gravity systematically identifies
and ranks the most structurally important edges in a social network, the removal of
which maximally disrupts potential information flow without necessarily disconnecting
the network.
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We demonstrated the Edge Gravity Algorithm on a simple hypothetical network in
order to better illustrate the concept in practice and to develop intuition for under-
standing the results. We applied the algorithm to Granovetter’s hypothetical examples,
as well as to well-known empirical examples. The algorithm successfully identified essen-
tial network edges, and provided a ranking of their relative structural importance to the
network.
We found that the most important relationships are often between nodes or actors

that do not carry the highest centrality metrics. That is, the most important relation-
ship ties for overall network structure do not always involve the most important, most
well-connected, or most central individual people or nodes. To the contrary, the most
essential ties that bind a network together may be those between actors of average indi-
vidual importance, as was revealed in the examples of the Florentine families and the
Krebs 2001 terrorist networks.
A comparison of Edge Gravity to edge betweenness revealed that although these two

metrics may provide similar results under certain circumstances, they can also yield
results that are strikingly different. In particular, edge betweenness rankings are suscep-
tible to distortion by the influence of adjacent bridges to nowhere. Edge Gravity addresses
this shortcoming of edge betweenness. Indeed, the case studies reveal that Edge Gravity
identifies and ranks structurally important edges in a stable way that is not skewed by
the presence of bridges to nowhere connecting to isolated nodes that do little to improve
overall network structure and information flow.
Additionally, Edge Gravity effectively identifies bridges to nowhere. In each case study,

the bridges to nowhere were the lowest-ranking edges according to Edge Gravity. In fact,
the Edge Gravity scores for bridges to nowhere were consistently significantly lower than
the scores of other edges, as seen in Figs. 15, and 20. Moreover, the Granovetter B and
Krebs examples reveal that Edge Gravity can distinguish structurally important local
bridges (ones that reduce distances in the network on their own) from local bridges of
lesser importance (ones that require the help of intermediary actors to span a particular
gap).
Following the insights of Granovetter (1973), Davies (1966), and also Stephenson and

Zelen (1989), we note that social information does not always follow a prescribed route
or travel over shortest paths. Granovetter noted that local bridges earn their significance
from their inclusion in many paths. The Edge Gravity metric uses all paths rather than
just shortest paths, thus providing an opportunity for deeper analysis of this insight.

Future work

Webelieve that numerous areas for future work are suggested by the findings in this paper.
As with edge betweenness, Edge Gravity has high computational demands. In fact, since
Edge Gravity seeks all paths (or many paths, for the bound version), as opposed to just the
shortest paths sought by edge betweenness, both execution and memory requirements
are naturally more demanding. That Edge Gravity relies on the implicit path enumeration
action of k–shortest path solution algorithms suggests that focus on computation and
memory efficiency in the lower bounding problem is most worthwhile and is likely to be
necessary for exploration and study of large networks.
From our examples and case studies, it appears that the EdgeGravity rankingmay some-

times be found before k∗ is determined. An approach such as Probably Approximately
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Correct learning (PAC) may be useful when an accurate edge importance ranking really
matters. PAC was first suggested as a computational theory by Valiant in the mid-1980s
(Valiant 2013) and has become known in machine learning methodology as a statistical
framework for finding polynomially bounded approximate conclusions when the under-
lying problem is intractable in either memory or computational time; see Shalev-Shwartz
and Ben-David (2014).
In this paper, we used known networks to build the intuition of the Edge Gravity met-

ric as well as to compare and contrast with edge betweenness–intuition building that
necessitates examination of smaller networks. Preliminary exploration of large networks
suggests that there is a trade-off between execution time and active memory, which is
required for saving the path lists. Choice of a specific k–shortest path algorithm for enu-
merating the paths appears to be a factor and presents an interesting set of extension
studies. Examination and improvement in computation time for Edge Gravity is necessary
to address larger static and single-layer networks, which necessarily prefaces complexity
that includes time-evolving and multi-layer networks.
The Edge Gravity metric favors edges that are between communities, and because–by

design–it embraces alternate paths of all lengths, the importance metric defined by Edge
Gravity appears to be better at disfavoring edges within densely connected subgroups.
These observations indicate that Edge Gravity, and the Edge Gravity bounds, may be use-
ful building blocks for identifying community structures, extending the work of Girvan
and Newman (2002) and Newman and Girvan (2004).
Another area for future work relates to one of the original hypotheses of this study: that

there would be a low number of edges in a network that had a very high quantified impor-
tance. We found evidence suggesting this phenomenon, which is analogous to the power
law for node importance (see, for example, Adamic et al. (2001)). However, based on the
size of the networks we examined, the evidence is not conclusive. The study of a power
law effect for edge importance is left for future work, as it requires the examination of
very large networks. For this paper, we chose to focus on well-known networks from the
literature, with the intention of gaining insights to complement established understand-
ing. Indeed, we discovered, not unexpectedly, that the Edge Gravity metric placed a high
importance on edges that were not adjacent to central nodes.
Finally, we return to a point from the Introduction to this paper: that motivating

our research was the notion that in a network, the structural implications of relation-
ships are important, and may in fact be more important than the stature of individual
nodes. Having reflected upon our work as well as the research of others, we feel that
more understanding is needed with respect to interaction patterns in social networks.
By introducing Edge Gravity, we give a concrete and intuitively interpretable metric
that quantifies the structural relevance of an edge without regard for how influential
its endpoints are. Given the societal tendency to place undue emphasis on an indi-
vidual’s prominence, we hope that this will seed more and deeper exploration of the
significance of relationships and give these social network components the attention
they deserve.
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