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Abstract
Constructing effective and scalable protection strategies over epidemic propagation is
a challenging issue. It has been attracting interests in both theoretical and empirical
studies. However, most of the recent developments are limited to the simplified
single-layered networks. Multiplex social networks are social networks with multiple
layers where the same set of nodes appear in different layers. Consequently, a single
attack can trigger simultaneous propagation in all corresponding layers. Therefore,
suppressing propagation in multiplex topologies is more challenging given the fact
that each layer also has a different structure. In this paper, we address the problem of
suppressing the epidemic propagation in multiplex social networks by allocating
protection resources throughout different layers. Given a multiplex graph, such as a
social network, and k budget of protection resources, we aim to protect a set of nodes
such that the percentage of survived nodes at the end of epidemics is maximized. We
propose MULTIPLEXSHIELD, which employs the role of graph spectral properties, degree
centrality and layer-wise stochastic propagation rate to pre-emptively select k nodes
for protection. We also comprehensively evaluate our proposal in two different
approaches: multiplex-based and layer-based node protection schemes. Furthermore,
two kinds of common attacks are also evaluated: random and targeted attack.
Experimental results show the effectiveness of our proposal on real-world datasets.

Keywords: Multiplex networks, Graph mining, Epidemic contagion, Node
immunization

Introduction
Real-world networks reveal the existence of multiple levels relationships. For instance,
in social networks, an individual can possess membership of several communities which
range in different functionalities from intimate (e.g., families, friends, clubs) to more seri-
ous (e.g., businesses, schools). In social networks, one can categorize edges based on the
nature of the relationships (i.e., ties) or actions that they represent (Kivela et al. 2014).
Reducing a social system to a network in which actors are connected in a pairwise fashion
by only a single type of relationship is often a crude approximation of reality. Furthermore,
the current insights in complex network analysis does not only consider networks as iso-
lated graphs, but also characterizes how a network interacts with other networks and how
this interaction affects epidemic spreading that occur on top of them (Kivela et al. 2014).
Multiplex social networks are social networks with multiple layers where the same

set of nodes appears in different layers (Abraham et al. 2013). Each layer describes
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the different types of interactions. An example of a multiplex network is a social net-
work in which the different layers represent different types of social relationships. For
instance, we can assign friendship ties, family ties, and co-worker ties in three different
layers.
Capturing the role of multiplex topologies to understand the dynamic of complex net-

works is still a challenging task (Wu et al. 2016). Given a multiplex graph, such as social
network, and k budget of protection resources, we aim to protect a set of nodes such
that the percentage of survived nodes at the end of epidemics is maximized. If protec-
tion is given to a certain node v in graph G, then v could not be infected by its neighbors
at any timestamp during epidemic. Specifically, all corresponding edges of v in G are
removed, which means v is effectively isolated during epidemic. The epidemic spread-
ing in a multiplex network can occur throughout the connection of all corresponding
layer. Thus, the protection scheme in multiplex networks can be classified into two basic
classes: multiplex-based and layer-based node protection schemes. Figure 1 illustrates
this classification (see “Problem formulations” section for a detailed protection scheme
classification).
The goal of our work is to develop an effective and efficient method that is scalable

for protecting multiplex networks. Firstly, we allocate a novel nodes importance ranking
score which combines the benefit of algebraic connectivity and degree centrality of graph
structure. Intuitively, using those two benefits, we can define both of the connectivity and
the centrality role of a certain node. Thus, under k limited budget, we can select a set that
consists of k nodes which have the role as bridges and centers of the graph. We consider
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Fig. 1 Schematic Illustration of Different Protection Scheme. a Input graph. b Initial epidemics and
protection condition at timestamp t = 0. c Infected nodes start to infect their neighbors at timestamp t = 1.
d Input graph. e Initial epidemics and protection condition at timestamp t = 0. f Infected nodes start to
infect their neighbors at timestamp t = 1
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nodes that having the highest degree centrality role as centers. We also assume nodes with
the highest value of connectivity, measured by random walk normalized Fiedler vector
(von Luxburg 2007), as bridges. This idea is depicted in Fig. 2 (see “MULTIPLEXSHIELD:
Pre-Emptive Spectral Graph Protection” section for our detailed proposal). To this end,
we got the most suitable nodes to be protected. This node score consists of the corre-
sponding random walk normalized Fiedler vector of nodes in graph, degree value, and
layer-wise epidemic stochastic propagation rate. We use SIS model in our work. In SIS
propagation model (Gray et al. 2011), we calculate the stochastic propagation rate from
the ratio between the infection probability of one node to infect its neighbor and the
recovery probability of infected node. This rate represents the strength of propagation
and exhibits how quick the epidemics will spread. Prakash et al. (2011) showed that the
strength of propagation in SIS model, as well as in SIR, SIRS, and SEIR model depends on
this rate.
The main contributions of our paper can be summarized as the following three points:

Problem formulations

We formalize the problem of suppressing propagation spreading in multiplex network by
allocating protection resources throughout the different network layers. We define the
Multiplex Graph Protection Problem as a discrete combinatorial optimization. We also
introduce that the problem is NP-Hard. To the best of our knowledge, we are the first to
analyze the hardness of this multiplex graph protection problem. Furthermore, we also
specify two different protection scheme to consider different epidemic spreading scenario
in multiplex networks.

a b

c d
Fig. 2 Schematic Illustration of Finding Centers and Bridges in Graph. The red dots represent the protected
nodes. Shaded lines represent the removed edges. a Initial Input Graph. b Protecting the Bridges, nodes with
highest value of RandomWalk Normalized Fiedler Vector (μ). c Protecting the Centers, nodes with highest
value of Degree Centrality (d). d Combining (b) and (c) objectives in MultiplexShield
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Effective and scalable algorithm

We develop an effective and scalable algorithm to suppress the epidemics spreading on
multiplex networks, called MULTIPLEXSHIELD. We find that MULTIPLEXSHIELD is scal-
able for large graphs and gives more effective protection compared with other competing
methods such as Acquaintance Vaccination (AV) (Wang et al. 2015), Targeted Immuniza-
tionMethod (TIM) (Buono and Braunstein 2015), SpreadingDegree (Zhao et al. 2014) and
Random Immunization (Zuzek et al. 2015; Wu et al. 2016; Zhao et al. 2014). In addition,
we also show the analysis of our proposal, including the complexity of memory alloca-
tion and computational complexity. To the best of our knowledge, we are also the first to
develop multiplex graph protection strategy by considering and evaluating not only the
effectiveness but also the scalability of method for large size graph application.

Extensive evaluations

We perform comprehensive experiments on multiple real-world network datasets.
Our proposed algorithms outperform other competing methods. We also show that
MULTIPLEXSHIELD is scalable with respect to the changing of graph size in terms of
number of nodes and edges, which means it is suitable for large size graphs.
The remainder of this paper is organized in the following manner: We review the recent

most related studies in “Related work” section. We formalized the problem and defini-
tion in Problem Formulation section. We present and analyze our proposed methods
in “MULTIPLEXSHIELD: pre-Emptive spectral graph protection” section. The result of
experimental simulations are provided in Evaluations section. Finally, we elaborate the
limitation and possible future challenges of our work in the “Discussions” section and
provide concluding remarks in “Conclusions”.

Related work
In this section, we review the related work, which can be categorized into three parts:
graph protection, influence maximization, and influence blocking maximization.

Graph protection

Most of the recent work in graph protection focused on the single-layered graph
and does not provide much consideration on multiplex topologies. In single-layered
graph protection scheme, there are two common approaches: pre-emptive and post-
emptive protection. Two pre-emptive algorithms have been proposed, called NetShield
(Tong et al. 2010) and Netshield+ (Chen et al. 2016) which employ the properties of
matrix perturbation to find a set of nodes to be immunized (Tong et al. 2010). Later, in
2016, Chen et al. improved the batching strategy of NetShield and demonstrated a bet-
ter performance using Netshield+ (Chen et al. 2016). In 2017, GraphShield method was
proposed by taking into account the role of infection flow, graph connectivity, and out-
degree centrality (Wijayanto and Murata 2017). Meanwhile, some approaches to post-
emptive graph protection also have been proposed in (Zhang and Prakash 2014; 2015;
Song et al. 2015). Zhang and Prakash (2014; 2015) introduced DAVA and DAVA-fast,
two polynomial-time heuristics algorithms. NIIP (Song et al. 2015) extracts a maxi-
mum directed acyclic graph from the graph then performs a Monte Carlo simulation
to estimate the distribution of k over each time point t given the probability of a
healthy node being infected. Nevertheless, compared to these simplified single-layered
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isolated assumptions, the multi-layered approach is more realistic due to the common
interconnected properties of human social network.
The most related work to ours is multiplex graph protection. Zuzek et al. investigated

random immunization method to protect k random functional nodes (Zuzek et al. 2015;
Wu et al. 2016; Zhao et al. 2014). Wang et al. proposed acquaintance method which
selects a set of random neighbor of a randomly chosen node (Wang et al. 2015). Later,
Buono et al employed top k high-degree nodes for protection, termed Targeted Immu-
nization Method (TIM) (Buono and Braunstein 2015). Similarly, Zhao et al. introduced
an improvement of TIM, called Spreading Degree (Zhao et al. 2014). More recently, two
independent work investigated several protection methods and concluded in favor of
Explosive Immunization (EI) and Simulated Annealing (SA) methods (Osat et al. 2017;
Zhao et al. 2017). The former method removed all the vertices the gradually reinserted
to the network but aiming to prevent the formation of the giant connected component
(GCC), until a stage where the GCC formation is inevitable. To add a new node, each
node is measured and then chosen by a predefined kernel function. A major disadvantage
of this method is that its total iteration get computationally costly, especially for large size
network (Osat et al. 2017). The later method reintroduced one type of a traditional meta-
heuristic, which unfortunately not scalable and required a significant amount of running
time to converge (Nourani and Andresen 1998; Du and Swamy 2016). Thus, both of EI
and SA are not promising for large size network application.
All of these works on multiplex graph protection assumed that the infection would

start from a random node, which called random attack. In contrast, our work enhances
this assumption by also investigating the more powerful type of attack, targeted high-
degree attack. Also, contrary to previous approaches which accomplish protection
strategy without scalability objective, we aim to develop a more effective and faster
method that scales to large size network. Furthermore, the elaboration of spectral
properties of the graph as our proposal has not been considered in these recent
literatures.

Influence maximization

The influence maximization task in multi-layered topology shares a similar goal with
ours. It aims to find a set of vertices to control the influence propagation in the
network. However, while the influence maximization task aims to maximize the influ-
ence spreading (Nguyen et al. 2013; Zhang et al. 2016; Zhang and Zhang 2015),
the graph protection tries to encounter and limit those spreading process. Nguyen
et al. (2013) demonstrated a coupling scheme to reduce the multiplex graphs into a
single layer graph by maintaining the influence properties, therefore applying influ-
ence maximization task in the reduced network. Despite the benefit of that lossless
coupling scheme, Zhang et al. (2016) introduced a lossy coupling scheme of multi-
plex influence maximization to overcome the running time and memory consumption
issues.

Influence blocking maximization

He et al. (2012) introduced the influence blocking maximization (IBM) problem to elab-
orate the competitive influence propagation in social networks under the competitive
linear threshold (CLT) model. In IBM problem, one entity aims to block the influence
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propagation of its opposing counterpart as much as possible by strategically selecting a set
of seed nodes to initialize its own influence. IBM problem is another type of competitive
influence maximization under the constraint of opposing effect of each party’s influence.
For instance, when a negative rumor spreads in the social network about an institution,
the institution needs to respond quickly by choosing other seed nodes to inject posi-
tive opinions about the institution. The positive opinions spreading are expected to fight
against the negative rumor. Thus, in IBM problem, the positive opinions also spread over
the network with a certain infection probability. While in our graph protection problem,
each protected set of nodes are selected pre-emptively and have no probability to transmit
the protection attributes to their neighbors.
To summarize, none of these literatures focused on the study of suppressing the

epidemic spreading via pre-emptive spectral graph protection in multiplex networks.

Problem formulation
In this section, we will formalize the definitions and problems used throughout this paper
and describe the classification of protection scheme in multiplex networks. We summa-
rize the terms and notations in Table 1. With the above terms and notations, we can
formally describe definitions and problems as follows:

Definition 1 Multiplex network is denoted by G = (V ,E1, . . . ,EL) where V =
{v1, . . . , vn} is the node set and El = {e1,l, . . . , em,l} is the set of edges corresponding to layer
l. The edge set E in a multiplex network is the union of edge sets El for l = {l1, . . . , lL}. We
can fully describe the structure of G by considering the set of adjacency matrices

Table 1 Summary of terms and notations

Notation Definition and description

G = (V , E1, . . . , EL) Multiplex graph G with the node set V and the edge set E1,...,L
A Multiplex supra adjacency matrix of graph G

L(A) Combinatorial Laplacian matrix of A

Lsym(A) Symmetric normalized Laplacian matrix of A

Lrw(A) Random walk normalized Laplacian matrix of A

n Number of nodes in each multiplex layer

m Number of edges in each multiplex layer

N Number of nodes in graph G

M Number of edges in graph G

L Number of layers in graph G

d(i) Degree value (or outdegree value in directed graph) of node i

PV(i) Protection Value of node i

α Algebraic connectivity ofLrw

μ(i) Corresponding Fiedler vector ofLrw for node i

β(i) Infection probability at layer i

δ(i) Recovery probability at layer i

φ Number of initial infected nodes in a graph

k Number of available protection resources

S Set of nodes selected for protection

ηG(S) Number of survived nodes of graph G at the end of epidemics

θG(S) Percentage of survived nodes of graph G at the end of epidemics

θave Average of θG(S)

θstd Standard deviation of θG(S)
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G ≡ A = {A1,A2, . . . ,AL}, (1)

where Al = aij,l be the adjacency matrix of layer l, with aij,l > 0 if node i and j in layer l
share a relationship type of l and aij,l = 0 otherwise. Let consider the coupling matrices or
inter-layer adjacency matrices as identity matrix I, when all nodes in graph G participate
in all multiplex layer or commonly defined as the fully-aligned multiplex network (Kivela
et al. 2014). Thus, we can also obtain the multiplex supra-adjacency matrix of G as

A =

⎡
⎢⎢⎢⎢⎣

A1 I · · · I
I A2 · · · I
...

...
. . .

...
I I · · · AL

⎤
⎥⎥⎥⎥⎦

=
L⊕

l=1
Al + I (2)

To maintain consistency and brevity, unless specified otherwise, we define G as the undi-
rected network for all proofs and explanations in this paper. However, the generalization to
the directed case can be performed without difficulty.

Definition 2 Susceptible-infected-susceptible (SIS) propagation model. SIS model
defined that each node in graph G = (V ,E) with N number of nodes, would be in one
of the following two states: susceptible and infected. Let S(t) be the number of susceptible
nodes, and let I(t) be the number of infected individuals at time t. At each timestamp t,
susceptible nodes can be infected by their infected neighbors with probability β . Also, each
infected node can get recovered to susceptible state with recovery probability δ. This model
can be formalized as nonlinear differential equations:

ds
dt

= −βis,
di
dt

= βis − δi, (3)

being s(t) = S(t)/N and i(t) = I(t)/N the respective proportions of states at time t.

Definition 3 Multiplex graph protection problem. The input is given as follows: an
undirected multiplex graph G = (V ,E1, . . . ,EL) with node set V and edge set E, SIS propa-
gation model with infection probability β and recovery probability δ and an integer budget
of k protection. Let us denote S, a subset of k nodes from graph G selected for protection.
We define θG(S) to be the percentage of survived nodes of graph G at the end of epidemics
given that S was protected. Our goal is to find S ∈ V such that θG(S) is maximized, subject
to the size of S is equal to constraint k, i.e. calculating the following discrete combinatorial
optimization:

S∗ = argmax
S∈V

θG(S)

s.t.|S| = k
(4)

Theorem 1 Multiplex graph protection problem is NP-Hard.

Proof Zhang and Prakash (2014) have presented that Data-Aware Vaccination (DAV)
problem is NP-Hard by reducing Minimum K-Union (MinKU) set problem (Vinterbo
2004) which was proven to be hard. In Wijayanto and Murata (2017), the authors proved
the special case of MinKU, called FAVP, to be hard. They reduced the MinKU problem to
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an instance of FAVP problem with δ = 1 and β = 1, given that MinKU has instance a set
S where Si ⊆ V and positive integer k. The Multiplex Graph Protection problem can be
derived as a generalization of FAVP problem where L > 1 for any given δ and β .
In the minimum k-union (MinKU) problem, we are given a set system with s sets and

have to select k sets to minimize the size of their union. As in MinKU problem there
is no specification of changing the state of each set as well as no transmission of state
be specified, then we can reduce MinKU to an instance of multiplex graph protection
problem in SIS model with β = 1, δ = 1, and the number of layer L = 1. We can spec-
ify that this MinKU problem as a special case of multiplex graph protection problem.
However, in the multiplex graph protection problem, the value of β and δ may vary as
well as the number of layer L > 1. While MinKU problem has proven to be NP-Hard
(Vinterbo 2004), we can demonstrate that multiplex graph protection problem under SIS
propagation model with any values of β and δ and consists of multiple layers is also
NP-Hard.

Protection scheme

Here we will specify the classification of protection scheme in multiplex networks. Recall
that due to the interconnected properties of a multiplex network, the epidemic spread-
ing can occur along the link of all corresponding layer of the network. Hence, the node
protection scheme can be classified into two basic classes:

• Layer-based Node Protection Scheme, where each protected node is uninfectable by
its neighbors in a certain layer and meanwhile, its corresponding nodes in other
layers still can get infected by their neighbors. This scheme can approximate the
situation when the protection means an isolated state from infection spreading
(Wu et al. 2016; Zhao et al. 2014). Thus, the isolation is only applicable in such layer.
For instance, in a multiplex social network of neighborhood and colleague relation-
ship, a person who is isolated from his/her office will lose connections to all of
his/her colleagues, but still likely keeps connected with his/her neighbors. Thus the
person is still infectable by his/her neighbors. In computer virus spreading, the office
may provide personalized proxy or firewall for some of their employees’ notebook
under WiFi connection. However, his/her notebook may still got infected at home or
somewhere else. Another example, for a certain type disease without any proven
vaccination, one student may got instructed to wear face mask at school. But, he/she
may still got the disease from his/her neighbors.

• Multiplex-based Node Protection Scheme, where each protected node is uninfectable
during the contamination spreading in all corresponding layers. This scheme is most
suitable for multilayer graph where each individual nodes are in the same certain
awareness (Wu et al. 2016; Zhao et al. 2014). Thus, giving a protection to a certain
node will change its states of corresponding nodes in all layers.

We illustrated these protection schemes in Fig. 1. In Fig. 1a, we are given a multiplex
graph as input for Layer-based Node Protection Scheme. Let the number of available pro-
tection resources k = 2 and the number of initial infected nodes φ = 2 which are equally
allocated at each layer, we got the current epidemics spreading and protection at times-
tamp t = 0 as illustrated in Fig. 1b. Since it is layer-based node protection scheme, all of
corresponding nodes of the protected nodes in other layers are still remain functional, i.e.
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not protected. Then, each of infected nodes has β probability of infecting its neighbors.
Fig. 1c shows the example of current epidemics at timestamp t = 1.
On the other hand, we provide the schematic illustration of the Multiplex-based Node

Protection Scheme in Fig. 1d-f. For comparability, we are also given the same multiplex
graph as input, as shown in Fig 1d. Additionally, we also use the same setting of k and
φ to be equally allocated at each layer. As illustrated in Fig. 1e, each protected node is
uninfectable during the contamination spreading in all corresponding layers, which give
more protection benefit.
In this paper, we consider and investigate both of these protection schemes.

MULTIPLEXSHIELD: pre-Emptive spectral graph protection
In this section, we will describe our proposed pre-emptive spectral graph protection and
justify our approach. Recall that our goal is to develop an effective and efficient method
that is scalable for protectingmultiplex networks.We introduce a novel nodes importance
ranking score as a basis for determining k set of protected nodes S. Specifically, this rank-
ing score intent to quantify the importance of set S, and the impact of their protection to
the rest of the graph.With consideration of the spectral properties of multiplex topologies
and epidemic propagation rate, we introduce this ranking based on three objectives.
Firstly, we aim to determine the nodes having the role as bridges connecting sub struc-

tures or spectral clusters in graph. Inspired by the benefit of algebraic connectivity of
graph, graph partitioning task and spectral clustering problem, we propose the random
walk normalized Fiedler vector to find such nodes in multiplex graph.
Secondly, we aim to find the nodes have the centers role in multiplex graph. We assume

that this role can be determined based on the highest degree centrality value of nodes.
Thirdly, we aim to anticipate the different epidemic propagation rate in multiplex

topologies. We propose to calculate the layer-wise stochastic propagation rate from the
ratio between the infection probability of one node to infect its neighbor and the recovery
probability of infected node. This rate represents the strength of propagation and exhibits
how quick the epidemics will spread.
Figure 2 illustrates the simplified example of schematic representation to implement

our first and second objectives. Let an initial epidemic graph in Fig. 2a is given as input,
which we may assume as a subset of a layer in an arbitrary multiplex graph. Intuitively, we
want to localize any incoming epidemic spreading in the future by disconnecting spectral
clusters of graph. In Fig. 2b, we select node v6, which has the highest value of the random
walk normalized Fiedler vector, to be protected. Specifically, all corresponding edges of
v6 in graph are removed. This means v6 is effectively isolated during epidemic. Thus, also
localized the future epidemic spreading into three disconnected clusters. Then, in Fig. 2c,
we aim to protect the centers by selecting the nodes with highest value of degree centrality.
Subsequently, we combine the Fig. 2b-c objectives to protect the whole given graph.
Next we will describe the key components of our proposed method and clarify the

justification in more detail.

Protecting bridges: randomwalk normalized Fiedler vector

To determine most suitable nodes for protection, we can intuitively localize any epidemic
spreading by disconnecting sub-structures or clusters of the network. Motivated by the
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insight in graph partitioning and spectral clustering (Brouwer and Haemers 2012; von
Luxburg et al. 2008), we introduce random walk normalized Fiedler vector to obtain the
nodes having the role as bridges in a graph.
Let G = (V ,E) be an undirected graph with non-negative weights, N number of nodes

and an adjacency matrix A. We can denote the degree matrix D as the diagonal matrix
with the degree values d1, . . . , dN on the diagonal, I as the identity matrix and define the
combinatorial Laplacian matrix as L = D − A. We order the eigenvalues of L so that
0 = λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λN with corresponding mutually orthonormal eigenvectors
v1, v2, . . . , vN . We refer to λ2 and v2 as the algebraic connectivity and the Fiedler vector of
the Laplacian, respectively.
Assuming that D is invertible, we can define two different normalized Laplacian matri-

ces: the symmetric normalized Laplacian matrix Lsym and the random walk normalized
Laplacian matrix Lrw, as follow:

Lsym := D−1/2LD−1/2 = I − D−1/2AD−1/2 (5)

Lrw := D−1L = I − D−1A (6)

We denote the symmetric normalized Laplacian matrix Lsym as it is a symmetric matrix,
and the random walk normalized Laplacian matrix Lrw as it is associated with the
transition matrix of stochastic graph random walk, P = D−1A.
The Lrw has the non-negative real-valued eigenvalues which can be ordered so that

0 = α1 ≤ α2 ≤ α3 ≤ . . . ≤ αN with corresponding mutually orthonormal eigenvectors
μ1,μ2, . . . ,μN . We refer to α2 and μ2 as the random walk normalized algebraic connec-
tivity and the random walk normalized Fiedler vector, respectively. For simplicity, we will
use the notation α and μ to denote α2 and μ2.
The multiplicity ω of the eigenvalue 0 of both Lsym and Lrw are equivalent to the num-

ber of connected components in graph (von Luxburg 2007).While, the Fiedler vector of all
L,Lsym andLrw can be used to separate graphG (Driessche and Roose 1995; von Luxburg
et al. 2008), in the sense of selecting separator among clusters or subgraphs. An essential
question then arises, which of the three Laplacianmatrices should be used to compute the
Fiedler vector? We clarify our proposal of involving the random walk normalized Fiedler
vector as follows:

1. Graph partition point of view

In graph partitioning task, a graphG = (V ,E) can be partitioned into two disjoint subsets,
X,Y , where X ∪ Y = V ,X ∩ Y = ∅, by removing edges connecting the two subsets. A
straightforward approach to construct this partition is by solving the mincut problem.
Let denote the weighted adjacency matrix of the graph is the matrix W. In the mincut
problem, we denoteW (X,Y ) := ∑

i∈X,j∈Y wij, where wij is the weight of edges connecting
node i and j. We also denote the complement of a subsetX ⊂ V as X̄. Themincut problem
aims to choose partitions X1, . . . ,Xk for a given number k of subsets which minimizes

cut(X1, . . . ,Xk) := 1
2

k∑
i=1

W (Xi, X̄i) (7)
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Even though the mincut problem is obviously solvable, it does not guarantee satisfac-
tory partitions. In many practical cases, the solution simply separates a single node
from the rest of the graph. To overcome this issue, two common objectives func-
tions had been proposed to improve the partition quality: RatioCut and NCut. Given
that |X| denote the size of a subset X measured by its number of nodes, we can
also denote vol(X) as the weights of all edges in X. These objective functions aim to
minimize:

RatioCut(X1, . . . ,Xk) := 1
2

k∑
i=1

W (Xi, X̄i)

|Xi| =
k∑

i=1

cut(Xi, X̄i)

|Xi| (8)

NCut(X1, . . . ,Xk) := 1
2

k∑
i=1

W (Xi, X̄i)

vol(Xi)
=

k∑
i=1

cut(Xi, X̄i)

vol(Xi)
(9)

Using the Rayleigh-Ritz theorem, the solution of RatioCut minimization can be approx-
imated by the Fiedler vector of L unnormalized Laplacian of graph G. And by applying
the similar approximation to NCut minimization, we can achieve both the Fiedler vector
of Lsym symmetric normalized and Lrw random normalized Laplacian of graph G (von
Luxburg 2007).
Recall that in Eq. 8, the minimization of RatioCut which employs unnormalized

Laplacian can specify partitions such that nodes in the different cluster are dissimilar
to each other. This means that RatioCut can minimize the similarities between clusters.
While the NCut, as stated in Eq. 9, which employ the normalized Laplacian not only can
achieve the same objective as RatioCut, but also able to maximize the similarities within
clusters. The best partition of graph has low similarities between clusters and high simi-
larities within clusters. To this end, Lrw and Lsym are in favor as the Fiedler vector base,
than L.

2. Statistical consistency

Looking at the statistical consistency differences between the two normalized Fiedler
vector of Lrw and Lsym, von Luxburg (2007); von Luxburg et al. (2008) investigated the
spectral clustering algorithms results of Lrw and Lsym. The eigenvectors of Lrw are clus-
ter indicator vectors �Ai . However, the eigenvectors of Lsym are additionally multiplied
withD1/2, whichmight lead to undesired convergences. Empirical results of spectral clus-
tering are also in favor of Lrw. As using Lsym does not have any computational benefits,
selecting Lrw is more preferable.

3. Regular and irregular graph applicability

Let us consider the degree distribution of the similarity graph. The utilization of Laplacian
matrix L can provide a satisfactory result for partitioning the regular graphs. If the graph
G = (V ,E) is very regular and most nodes have approximately the same degree, then
all the Laplacians L, Lrw and Lsym will deliver similar and consistent result. In contrary,
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if the degree distribution of graph G are very broadly distributed, the partitions of using
Fiedler vector of L are considerably worse than that of Lrw. Therefore, the random walk
normalized Laplacian Lrw are applicable in irregular graphs as well as in regular graphs
(von Luxburg 2007).

Protecting centers: degree centrality

The role of degree centrality in networks has been discussed by some recent studies
(Solé-Ribalta et al. 2014; Buono and Braunstein 2015; Zhao et al. 2014). There are many
benefits of prioritizing the high degree nodes among others. In this work, we incorporate
the benefit of this centralization to our method. Regard to the directed multiplex net-
works, the outdegree centrality is preferable. Outdegree centrality counts the number of
neighbors that a certain node can infect.

Layer-wise epidemic stochastic propagation rate

Given an arbitrary epidemic network, nodes can possess different states depending
on the epidemic model. The model we simulate in this work is SIS model. In the
SIS model, each node would belong to either susceptible or infected state. Suscep-
tible nodes can be infected by their neighbors with infection probability β at each
time stamp, and each infected node can recover to susceptible state with recovery
probability δ.
In multiplex networks, different infections spread along different layer with specific

stochastic propagation rate. Intuitively, this is the speed of spreading infection. In our
work, we consider β(i)

δ(i) as stochastic propagation rate at layer i.

Lemma 1 In multiplex network, stochastic propagation rate of layer-wise epidemic
spreading is defined by β

δ

Proof We consider a multiplex network G = (V ,E1, . . . ,EL) with L number of layer.
Let us recall the nonlinear differential equations of SIS, ds

dt = −βis, didt = βis − δi. In
any particular layer l, given that s + i = 1, we can reformulate s as a function of i as
follows:

di
dt

= βi(1 − i) − δi = (β − δ)i − βi2 (10)

This is an instance of a logistic equation. We can show that β
δ
determine i(t) using this

logistic equation. If i(0) > 0, it can be inferred that when β
δ

≤ 1, then limt→+∞ i(t) = 0.
If β

δ
> 1, then limt→+∞ i(t) = 1 − δ

β
.

Prakash et al. also demonstrated in empirical simulations that the δ
β
takes the role as

constant dependent of epidemic threshold not only in SIS, but also in SIR, SIRS, and SEIR
model (Prakash et al. 2011). Epidemic threshold is an intrinsic property of a network.
When the strength of the virus is greater than the epidemic threshold, then the epidemic
would breakout (Prakash et al. 2011).
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Algorithm 1:MULTIPLEXSHIELD-M (for Multiplex-Based Protection Scheme)
Data: Multiplex Graph G = (V ,E1, . . . ,EL)
Input: supra adjacency matrix A, an integer k, infection probability β and recovery δ

Output: a set S of k vertices

1 Let D be the degree matrix of A and d(i) be the vector element of degree values for
i = 1, . . . ,N ;

2 Compute L = D − A;
3 Compute Lrw = D−1L;
4 Compute the algebraic connectivity α of Lrw using Power method approximation;
5 Let μ be the corresponding Fiedler vector of α where μ(i) (i = 1, . . . ,N);
6 Initialize S to be empty;
7 begin
8 PV = 0
9 for i ← 1 to n do

10 for j ← 1 to L do
11 PV (i) ← PV (i) + d(i) · μ(i) · β(j)

δ(j)
12 end
13 end
14 for iter = 1 to k do
15 Let j ← argmaxiPV (i), add j to set S;
16 end
17 return S
18 end

MultiplexShield algorithms

Let us recall our goal to develop an effective and efficient method that scalable for
protecting multiplex networks. Here we will describe our proposal, MULTIPLEXSHIELD

algorithms. We define a novel nodes importance ranking score, called Protection Value
(PV), as a basis for determining k set of nodes S to be pre-emptively protected. The
higher score of the ranking, the higher importance of nodes to be selected under
MULTIPLEXSHIELD. Protection Value is composed by considering the three previously
explained objectives: protecting bridges of graph by random walk normalized Fiedler vec-
tor value; protecting centers of graph by degree centrality value; and layer-wise epidemic
propagation rate.
In addition, to distinguish two classifications of protection scheme in multiplex net-

works, we consider two implementation versions. The MULTIPLEXSHIELD-M Algorithm
is specified for multiplex-based protection scheme. We calculate the Protection Value of
node i under assumption that the benefit of finding bridges and centers in the graph are
equally important. Therefore, given a multiplex networkGwith L number of layer, the PV
of nodes i is given by:

PV (i) =
L∑
j=1

d(i) · μ(i) · β(j)
δ(j)

, (11)
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being β(j) and δ(j) the respective infection probability and recovery probability at layer j,
while μ(i) is the i-th element of μ vector.

μ vector consists of n elements at size of the number of nodes in the graph. The cor-
responding eigenvector of second smallest Laplacian of the graph dictates the optimal
partition of the graph, which each element determine each node belong to a certain
subpartition (Shi and Malik 2000; Ng et al. 2001). Using the nature of μ vector which
approximates the minimization of normalized cut (Ncut), it forces nodes to create natural
subpartition of graph based on μ(i) value (Shi and Malik 2000).
The more detail of MULTIPLEXSHIELD-M is given in Algorithm 1. It requires the adja-

cency matrix A and an integer k as the input and provides a set S of k vertices as the
output. We compute the random walk normalized Fiedler vector in step 4-5. The posi-
tive and negative values of the randomwalk normalized Fiedler vector are treated equally.
Then we initialize empty set S in step 6. The Nx1 vector PV measures Protection Value
of each individual node. Then, in each iteration of steps 14-16, we select top k nodes and
add it into set S according to PV (step 11).
Furthermore, our implementation versions of layer-based protection scheme is

MULTIPLEXSHIELD-L Algorithm. Assuming that the graph G has n number of nodes in
each multiplex layer, we calculate layer-wise PV of node i in layer j as:

PV (i + n · j) = d(i + n · j) · μ(i + n · j) · β(j)
δ(j)

(12)

Algorithm 2 explains the detailed procedure of MULTIPLEXSHIELD-L. Given the adja-
cency matrix A and an integer k as the input, it results a set S of k nodes.
Next, we will provide the analysis of MULTIPLEXSHIELD algorithm in terms of compu-

tational complexity and cost of space.

Computational time complexity analysis

We will analyze first the computational time complexity of MULTIPLEXSHIELD-M algo-
rithm (for Multiplex-Based Protection Scheme). In Algorithm 1, the cost of calculating
the second smallest eigenvalue of random walk normalized Laplacian (step 4) is O((N +
M).(logN)O(1)) using the Power method approximation (Trevisan 2014). If the graph is
sparse and approximation error threshold (ε) is defined small, then the time needed will
be almost linear, O

( 1
ε
m log n

)
. We know that the cost of step 1,3,5, and 6 are constant.

Steps 8-13 cost O(n). For steps 14-16, its cost is O(k).

cost(MULTIPLEXSHIELD-M) = O
(
1
ε
M logN

)
+ O(N) + O(k)

= O
((

1
ε
M logN

)
+ (N + k)

) (13)

Consequently, akin to Algorithm 1, we can also infer the computational time complexity
of Algorithm 2

cost(MULTIPLEXSHIELD-L) = O
((

1
ε
M logN

)
+ (N + k)

)
(14)
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Algorithm 2:MULTIPLEXSHIELD-L (for Layer-Based Protection Scheme)
Data: Multiplex Graph G = (V ,E1, . . . ,EL)
Input: supra adjacency matrix A, an integer k, infection probability β and recovery δ

Output: a set S of k vertices

1 Let D be the degree matrix of A and d(i) be the vector element of degree values for
i = 1, . . . ,N ;

2 Compute L = D − A;
3 Compute Lrw = D−1L;
4 Compute the algebraic connectivity α of Lrw using Power method approximation;
5 Let μ be the corresponding Fiedler vector of α where μ(i) (i = 1, . . . ,N);
6 Initialize S to be empty;
7 begin
8 for i ← 1 to n do
9 for j ← 1 to L do

10 PV (i + n · j) ← d(i + n · j) · μ(i + n · j) · β(j)
δ(j)

11 end
12 end
13 for iter = 1 to k do
14 Let j ← argmaxiPV (i), add j to set S;
15 end
16 return S
17 end

Memory allocation complexity analysis

The required memory allocation or space cost of steps 1-5 in Algorithm 1 are O(N +
M + 1) : O(M) for storing the graph, O(M) for storing the degree matrix, O(N + M) for
running the eigen-decomposition algorithm, O(1) for storing α, O(N) for storing μ, and
O(N) for storing the degree (d). The cost for step 6 is O(1). The space cost of steps 8-13
is O(N) which re-usable during the iteration. Lastly, to store the output S set of nodes,
we need O(k). By ignoring the constant term, we can summarize that the space cost of
Algorithm 1

space(MULTIPLEXSHIELD-M) = O(N + M + k) (15)

Similarly, we can also infer the space cost of Algorithm 2

space(MULTIPLEXSHIELD-L) = O(N + M + k) (16)

Evaluations
In this section, we will provide experimental evaluation of MULTIPLEXSHIELD. The goal
of this evaluation was to answer the following questions:
1. (Effectiveness)How effective is the proposedMULTIPLEXSHIELD in suppressing prop-

agation spreading of real multiplex graphs? We define the measurement of effectiveness
using the percentage of survived nodes of graph at the end of epidemics (θG(S)).
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2. (Scalability) How scalable is the proposed MULTIPLEXSHIELD with respect to the
changing of graph size (n andm) and different k budget size?

Datasets

We run our experiments on various real multiplex network datasets, which summarized
in Table 2.

• Florentine Families consists of 2 layers (marriage alliances and business relationships)
describing Florentine families in the Renaissance (Padgett and Ansell 1993).

• Krackhardt HighTech is the multiplex social network between managers of a
high-tech company consists of 3 kinds of relationships (Advice, Friendship, and
“Reports to”) (Krackhardt 1987).

• Vicker 7thGrader is the multiplex social network of 29 seventh grade students in a
school in Victoria, Australia (Vickers and Chan 1981).

• Lazega LawFirm dataset is the multiplex social network consists of 3 kinds of
(Co-work, Friendship and Advice) between partners and associates of a corporate law
partnership (Lazega 2001).

• Physicians Innovation is the dataset representing the multiplex social network of a
sample of physicians in 4 US towns: Illinois, Peoria, Bloomington, Quincy, and
Galesburg (Coleman et al. 1957).

• C.Elegans represents the multiplex neuronal network of the nematode
(“Caenorhabditis Elegans”) which consists of 3 layers corresponding to different
synaptic junctions: electric (“ElectrJ”), chemical monadic (“MonoSyn”), and polyadic
(“PolySyn”) (Chen et al. 2006).

• Kapferer TailorShop is the dataset of interactions in a tailor shop in Zambia (then
Northern Rhodesia) over a period of ten months. Layers represent two different types

Table 2 Statistics of dataset

Name #Layers #Nodes #Edges Density Type

Florentine Families 2 16 35 0.0726 undirected

Krackhardt HighTech 3 21 312 0.1470 directed

Vicker 7thGrader 3 29 740 0.1211 directed

Lazega LawFirm 3 71 2,223 0.0589 directed

Physician Innovation 3 246 1,551 0.0062 directed

C.Elegans 3 279 5,863 0.0064 undirected

Kapferer TailorShop 4 39 1,018 0.0572 directed

CS Aarhus 5 61 620 0.0223 undirected

Structure of each layer

Name #Edges of layer Average degree of layer

Florentine families 20; 15 1.3333; 1.0000

Krackhardt HighTech 190; 102; 20 9.0476; 4.8571; 0.9524

Vicker 7th grader 361; 181; 198 12.4483; 6.2414; 6.8276

Lazega LawFirm 892; 575; 1104 12.5634; 8.0986; 15.5493

Physician innovation 480; 565; 506 1.9917; 2.3444; 2.0996

C.Elegans 1031; 1639; 3193 3.6953; 5.8746; 11.4444

Kapferer TailorShop 316; 446; 109; 147 8.1026; 11.4359; 2.7949; 3.7692

CS Aarhus 193; 124; 21; 88; 194 3.1639; 2.0328; 0.3443; 1.4426; 3.1803
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of interaction, recorded at two different times (seven months apart) over a period of
one month (Kapferer 1972).

• CS Aarhus is the multiplex social network consists of five kinds of online and offline
relationships (Facebook, Leisure, Work, Co-authorship, Lunch) between the
employees of Computer Science department at Aarhus (Magnani et al. 2013).

Method comparisons

Recall that we consider two different stochastic propagation settings in multiplex pro-
tection: multiplex-based and layer-based node protection schemes. Here we compare the
performance of the following methods:

• Random Immunization: this method gives protection to k uniformly random
functional nodes. This method was introduced in multiplex-based (Zhao et al. 2014;
Wu et al. 2016) and layer-based protection scheme (Zuzek et al. 2015)

• Acquaintance Vaccination (AV) : this methods picks a set of random neighbor of a
randomly chosen node (Wang et al. 2015).

• Targetted Immunization Strategies (TIM) : this method chooses k based on their
degree ranking and combine the corresponding degree values of node in all layer
(Buono and Braunstein 2015). Basically, TIM is introduced for multiplex-based
protection scheme, but in this evaluation, we also implement the methods for
layer-based scheme by selecting top k high-degree nodes.

• Spreading Degree: which select k nodes having the highest multiplication of degree
values and transmissibility of epidemics (β) in all layer (Zhao et al. 2014). This
method can be implemented in multiplex-based and layer-based protection scheme.
This is the current state-of-the-art method in multiplex graph protection.

• MultiplexShield : our proposed method to select k nodes based on spectral
properties, degree ranking and stochastic propagation rate in each layer. We use
MULTIPLEXSHIELD-M in multiplex-based protection scheme and
MULTIPLEXSHIELD-M in layer-based protection scheme.

Evaluation metric

We measure the protection effectiveness result using a percentage of survived nodes of
graph at the end of epidemics (θG(S)). We compare the effectiveness of our proposed
MULTIPLEXSHIELD methods against the baseline algorithms (Random Immunization,
AV, TIM, and SpreadingDegree). On the other hand, we measure the scalability by eval-
uating the computational time of MULTIPLEXSHIELD on various value of the budget k to
check how it scales with the changing of graph size (n andm).

Effectiveness evaluation

Here we will evaluate the effectiveness of our proposed methods. To comprehensively
evaluate and compare methods, we provide simulations for 4 different settings: random
nodes attack scenario (both for multiplex-based and layer-based protection scheme) and
targeted high-degree nodes attack (both for multiplex-based and layer-based protection
scheme as well). In random nodes attack, nodes are picked randomly, while in targeted
high-degree nodes attack, the nodes with highest degree values are selected. Note that,
common to previous literatures, they only evaluate on random attack scenario and do
not consider the targeted attack (Wu et al. 2016; Zuzek et al. 2015; Buono and Braunstein
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2015; Zhao et al. 2014). Even the evaluation in single-layered graph protection literatures
(Chen et al. 2016; Zhang and Prakash 2014; Wijayanto and Murata 2017; Song et al. 2015;
Zhang and Prakash 2014), which are more mature, were still limited to random attack.
For the sake of comparability and repeatability, we use the common settings in single-

layered graph protection literatures (Chen et al. 2016; Zhang and Prakash 2014a, b;
Wijayanto andMurata 2017; Song et al. 2015). Number of budget k = 0.25 of n, stochastic
infection probability (β) and recovery probability (δ) were set incrementally in all layers
under range 0.5 ≤ β ≤ 0.9 similarly 0.5 ≤ δ ≤ 0.9 as commonly used by (Chen et al. 2016;
Zhang and Prakash 2014a, b; Wijayanto and Murata 2017; Song et al. 2015). Note that in
multilayer network the stochastic probability may be different in all layers. Here we will
report the result of average and standard deviation of 100 times simulations equally for
all comparison methods.

• Random nodes attack scenario
In random nodes attack scenario, a set of φ nodes are randomly infected to initialize
the epidemics spreading. Refer to previous literatures (Wijayanto and Murata 2017;
Chen et al. 2016), we also set φ = k to initialize the epidemic process. The result can
be described as follows:
Firstly, in Multiplex-Based Protection Scheme, it can be seen from Table 3, that in all
datasets MULTIPLEXSHIELD can achieve better performance than other competing
methods. Note that the three last methods: TIM, SpreadingDegree, and
MultiplexShield can consistently select the same k set of nodes in all 100 times
simulations. This is due to their consistent selection criteria. On the other hand,
Random Immunization and AV, due to their randomness nature, resulted different
set of nodes which leads to it worst performance.
Secondly, under Layer-Based Protection Scheme, our proposed MULTIPLEXSHIELD

also outperform other competing methods, as can be inferred from Table 4.
Interestingly, we can analyze that under the same settings, multiplex-based
protection scheme provides a better environment for all methods to achieve better
effectiveness performance than in layer-based scheme.

• Targeted high-degree nodes attack scenario
While random attacks are commonly evaluated, we should note that scale-free
networks are more vulnerable to high-degree attack due to its power-law degree
distribution (Albert et al. 2000). Here we simulate a set of φ = k high-degree nodes as
targeted initial infection. Also note that the aforementioned insight in random attack
scenario also occurs in this scheme. MULTIPLEXSHIELD gives the consistent
selection of k set protected nodes. The result of simulation in targeted high-degree
attack can be summarized as follows:
Under Multiplex-Based Protection Scheme, Table 5 depicted that our proposed
MULTIPLEXSHIELD shows higher effectiveness than other competing methods in
almost all of the datasets. In C.Elegans datasets, despite its slightly lower performance
compared to degree-oriented methods (TIM and SpreadingDegree), our
MULTIPLEXSHIELD is still competitive. The intuition of MULTIPLEXSHIELD result
on this dataset under multiplex-based scheme is that the combination of all layer
protection value for each node (which covers equally findings of best centers and
bridges) are not suitable. This issue left us future investigation. Instead of equally
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Table 3Multiplex-based protection scheme, random nodes attack scenario

Methods Florentine Families Krackhardt HighTech Vicker 7thGrader

θave θstdev θave θstdev θave θstdev

Random immunization 82.09 5.60 76.94 2.20 77.99 1.89

AV 80.59 2.96 76.81 2.91 78.07 1.30

TIM 86.31 3.74 78.40 1.59 78.60 1.77

SpreadingDegree 86.38 4.86 78.44 1.47 78.56 1.26

MULTIPLEXSHIELD 88.22 4.88 80.11 2.11 80.85 1.25

Methods Lazega LawFirm Physician Innovation C.Elegans

θave θstdev θave θstdev θave θstdev

Random immunization 77.85 1.01 78.94 0.49 78.90 0.35

AV 77.95 1.04 78.86 0.38 78.96 0.41

TIM 78.51 0.83 79.23 0.38 80.13 0.62

SpreadingDegree 78.51 0.76 79.63 0.32 80.20 0.70

MULTIPLEXSHIELD 79.43 0.68 80.01 0.43 81.05 0.44

Methods Kapferer TailorShop CS Aarhus

θave θstdev θave θstdev

Random immunization 80.78 0.72 82.32 0.57

AV 81.19 0.70 82.48 0.55

TIM 81.31 0.67 82.71 0.60

SpreadingDegree 81.42 0.71 82.72 0.55

MULTIPLEXSHIELD 82.07 0.75 83.21 0.74

Table 4 Layer-based protection scheme, random nodes attack scenario

Methods Florentine Families Krackhardt HighTech Vicker 7thGrader

θave θstdev θave θstdev θave θstdev

Random immunization 74.88 2.47 73.49 2.73 73.87 1.49

AV 77.38 3.05 73.92 1.38 74.24 1.29

TIM 85.34 5.79 74.63 1.63 74.18 1.51

SpreadingDegree 85.41 5.12 74.94 1.55 74.26 1.96

MULTIPLEXSHIELD 87.25 8.98 76.25 2.04 76.05 1.33

Methods Lazega LawFirm Physician Innovation C.Elegans

θave θstdev θave θstdev θave θstdev

Random immunization 73.53 0.80 73.96 0.33 73.97 0.47

AV 74.12 0.74 74.41 0.33 73.81 0.29

TIM 74.27 0.69 74.76 0.46 74.73 0.78

SpreadingDegree 74.49 0.90 74.52 0.70 74.85 0.66

MULTIPLEXSHIELD 75.15 0.71 75.72 0.56 75.36 0.52

Methods Kapferer TailorShop CS Aarhus

θave θstdev θave θstdev

Random immunization 75.95 0.84 78.70 0.71

AV 76.17 1.02 78.69 0.74

TIM 76.42 0.82 78.82 0.83

SpreadingDegree 76.46 0.75 78.86 0.70

MULTIPLEXSHIELD 77.12 0.94 79.33 0.61
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Table 5Multiplex-based protection scheme, targeted high-degree nodes attack scenario

Methods Florentine Families Krackhardt HighTech Vicker 7thGrader

θave θstdev θave θstdev θave θstdev

Random immunization 83.28 3.06 76.86 1.28 77.97 1.18

AV 78.56 2.22 77.46 2.08 78.43 1.22

TIM 87.91 1.06 78.90 1.43 78.46 1.23

SpreadingDegree 88.13 1.26 78.67 1.43 78.62 1.34

MULTIPLEXSHIELD 89.66 1.45 80.25 1.44 80.10 1.35

Methods Lazega LawFirm Physician Innovation C.Elegans

θave θstdev θave θstdev θave θstdev

Random immunization 78.60 0.81 78.99 0.43 79.42 0.41

AV 78.68 0.85 79.23 0.34 78.82 0.32

TIM 78.85 0.69 79.37 0.45 81.44 0.40

SpreadingDegree 78.93 0.67 79.57 0.52 81.96 0.46

MULTIPLEXSHIELD 79.21 0.59 80.03 0.36 81.20 0.34

Methods Kapferer TailorShop CS Aarhus

θave θstdev θave θstdev

Random immunization 80.74 0.94 82.73 0.65

AV 80.95 0.75 82.81 0.32

TIM 81.25 0.70 82.82 0.53

SpreadingDegree 81.30 0.69 82.88 0.46

MULTIPLEXSHIELD 82.41 0.89 83.11 0.51

assigned, what is the most suitable proportion of weighting for centers and bridges
weight for each different graphs in our methods.
Under Layer-Based Protection Scheme, the average result of percentage of survived
nodes at the end of epidemics shows the higher effectiveness of the
MULTIPLEXSHIELD, as depicted in Table 6. We know that the layer-based protection
scheme has similar properties of structure with single-layered except the stochastic
epidemic transmission probability.

Scalability evaluation

Let us recall our second evaluation goal, which aims to measure how scalable is the
proposed MULTIPLEXSHIELD with respect to the changing of graph size and different k
budget size. Here we report the result of scalability evaluation. All of the experiments
were simulated on the same machine with Intel i5-2520M CPU @ 2.50GHz x 4 and 4 GB
memory, running Linux (2.6 kernel) 64-bit. The computational running time is used for
this scalability evaluation of MULTIPLEXSHIELD with respect to n (number of nodes) and
m (number of edges), respectively. We evaluate on multiplex graph consisting of synthetic
random graph in such a way that we can change the number of nodes but still maintain the
number of edges and vice versa. Different values of k were used to evaluate the scalability
in different scale of protection set.
To perform simulation by changing the number of nodes with a fixed number of edges

(and vice versa), we generate multiplex networks using Erdos RenyiG(n,m) model (Erdos
and Renyi 1959). The degree distribution of each generated layer follows the normal
distribution.
From Fig. 3, we can infer the scalability of MULTIPLEXSHIELD in two different protec-

tion schemes. Firstly, in both of multiplex-based and layer-based scheme, the running
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Table 6 Layer-based protection scheme, targeted high-degree nodes attack scenario

Methods Florentine Families Krackhardt HighTech Vicker 7thGrader

θave θstdev θave θstdev θave θstdev

Random immunization 77.03 3.12 74.84 1.55 73.80 1.91

AV 77.09 1.99 73.92 2.08 73.78 1.81

TIM 87.78 0.90 75.08 1.33 74.16 1.49

SpreadingDegree 87.88 1.02 75.11 1.41 74.77 1.18

MULTIPLEXSHIELD 85.66 2.31 76.13 1.43 76.06 1.75

Methods Lazega LawFirm Physician Innovation C.Elegans

θave θstdev θave θstdev θave θstdev

Random immunization 72.94 0.90 74.36 0.45 74.56 0.41

AV 73.92 0.57 74.78 0.34 74.31 0.34

TIM 74.36 0.66 75.13 0.66 75.88 0.33

SpreadingDegree 74.37 0.94 75.18 0.47 76.11 0.26

MULTIPLEXSHIELD 75.14 0.70 76.03 0.31 76.60 0.42

Methods Kapferer TailorShop CS Aarhus

θave θstdev θave θstdev

Random immunization 75.46 1.01 78.72 0.47

AV 76.03 1.16 78.73 0.49

TIM 76.47 0.80 78.77 0.53

SpreadingDegree 76.53 0.91 78.80 0.71

MULTIPLEXSHIELD 77.32 0.92 79.58 0.69

time of MULTIPLEXSHIELD scales linearly with respect to the number of nodes. In
left subfigures of Fig. 3, we illustrate the changes of the number of nodes (n) and
fix the number of edges (m = 10, 000) in a 3 layer multiplex graph. The number
of nodes is changed from n = {100; 1000; 2000; 3000; 4000; 5000; 6000}. The average
degree of each layer is {99.00; 20.00; 10.00; 6.67; 5.00; 4.00; 3.33} Secondly, we change
m and fix n = 1, 000 in a 3 layer graph, as shown in the right subfigures. The
number of edges is changed from m = {1000; 2000; 10, 000; 20, 000; 100, 000; 200, 000}.
The average degree of each layer is {2.00; 4.00; 20.00; 40.00; 200.00; 400.00} It can
be inferred that MULTIPLEXSHIELD scales linearly with respect to the number of
edges in both multiplex-based and layer-based scheme. Hence, the MULTIPLEXSHIELD

scalable with the changing of graph size, which means it is suitable for large
graphs.

Discussions
We have analyzed and evaluated our proposed methods to suppress the propagation of
epidemic in multiplex social networks. In substance, our approaches may have limita-
tions which rely on two essential assumptions: static network and pre-emptive protection
scheme.
Firstly, we assume that the underlying network structure is static and remains

unchanged as the contamination spreading arises. However, real-world social networks
evolve dynamically with some users joining and leaving the networks, and relationships
among users being formed and removed over time. This condition requires more complex
analysis and modeling to incorporate the network evolution.
Secondly, we focus on the pre-emptive scheme by protecting the most critical nodes in

a network before the epidemic started, aiming to inhibit its spreading. Given a limited k
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Fig. 3 Scalability evaluation of proposed MULTIPLEXSHIELD

budget, we spend all the available budget prior any infection occurs. Despite its effective
prevention, in existing large social networks such as Facebook and Twitter, protecting a
particular set of nodes adaptively against the occurring contamination is more realistic.
Instead of determining the set of protected nodes in a single time point, we can gradually
select a node to respond adaptively the new incoming contaminant which changes over
time. In this setting, a different contaminant may receive different protection scheme as
a response.
Therefore, extending our algorithms into an adaptive scheme and accommodating the

temporal dynamics of propagation into our analysis and model will become an interesting
future direction.

Conclusions
In this paper, we have addressed the problem of suppressing the epidemic propagation in
multiplex social networks using the pre-emptive spectral graph protection. We consider
the role of graph spectral properties, degree centrality and layer-wise stochastic prop-
agation rate to pre-emptively select k most suitable nodes for protection. Thus, we
proposed an effective and scalable algorithm, called MULTIPLEXSHIELD. We have eval-
uated our proposal in two different approaches: multiplex-based and layer-based node
protection schemes. Besides, two kinds of common attacks have also evaluated: random
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and targeted attack. Results on various real-world multiplex datasets show that our pro-
posed MULTIPLEXSHIELD not only effective but also scalable to suppress the epidemic
spreading in multiplex networks.
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