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Abstract

Spatial embeddedness and planarity of urban road networks limit the range of their node
degree values. Therefore, pursuing analysis based on the distribution of node degrees e.g.
scale free aspect could not be accomplished in urban road networks. We have inspected
the distribution of degree, betweenness centrality, weighted degree (based on incident
link capacities), and alpha weighted degree for eight urban road networks across the
world. These networks are abstracted from Philadelphia (USA), Berlin (Germany), Chicago
(USA), Anaheim (USA), Gold Coast (Australia), Birmingham (UK), and Isfahan (Iran). Our
results show that although the degree (weighted and unweighted) distributions of these
networks are totally different, they all show power law distributions in betweenness
centrality. Thus, scale free aspect could be observed in the betweenness centrality
distribution. We then analyzed the collapse of network as a result of node removals.
The collapse patterns suggest that critical nodes of urban road networks could not
be detected solely based on betweenness centrality. Therefore, we conclude that the
concept of betweenness centrality in urban road networks is more of functional merit
than topological merit. In other words, central nodes play an important role in transmitting
the flow but their loss would not harm the connectivity of urban networks. This claim is
supported by analyzing the correlation among node flow and node betweenness in
Isfahan and Anaheim.
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Introduction and methodology
In an urban context, by abstracting intersections as nodes and streets as links, an

urban road network is developed. Urban road networks have certain differences with

some other critical infrastructures. These differences are mainly due to two aspects of

urban road networks. Firstly, urban road networks are spatially embedded and planar.

Moreover, these are finite networks, and width of the roads the links represent are

non-vanishing. Therefore, the range of variation of their node degrees is limited.

Secondly, the nature of route selection and the effect of congestion on link traversal

cost are not the same as other infrastructure networks such as power and data trans-

mission networks. In urban road networks, every traveler aims to select the shortest

path to travel from her origin to destination. On the other hand, the travel time of each

link depends on the number of travelers moving on it. Hence, every traveler selects her

path according to the prevailing conditions of the network flow and also affect the pre-

vailing conditions of the network once she starts her trip. In many non-transportation
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networks, the link travel times are independent of their loads. These aspects of urban

road networks make the application of many concepts and methods of the complex

network literature cumbersome. For instance, the degree of an urban network node is

an integer within the range of 1 through 12. Values of 1 and 12 are barely observed.

Therefore, fitting a power-law distribution or a log-log equation of node degrees would

be statistically impossible due to the insufficiency of observations (by “observation” we

mean the realization of node degrees. One gets at most only 12 observations which is

not sufficient for fitting a regression with two parameters to estimate). This implies that

the concept of scale free networks could not be easily pursued in urban road networks.

In order to overcome obstacles caused by the limited range of node degree values, we

analyze other network metrics and see if global patterns could be detected in them

across different urban contexts. We abstracted the network by assuming intersections

as nodes and streets as links.

Many indices have been developed to quantify the centrality of network nodes. These

indices could be classified into structural and iterative refinement centralities (Lü et al.

2016). Structural centralities in turn, may be categorized into neighborhood-based and

path-based. Neighborhood-based centralities including degree, LocalRank (Chen et al.

2012), ClusterRank (Petermann and De los Rios 2004), coreness (Kitsak et al. 2010), H-

Index (Hirsch 2005), etc., focus on the number and influence of the nodes connected

to each node. On the other hand, path-based centralities including eccentricity (Hage

and Harary 1995), Katz centrality (Katz 1953), information index (Stephenson and

Zelen 1989), betweenness centrality (Bavelas 1948), subgraph centrality (Estrada and

Rodriguez-Velazquez 2005), etc. consider the position of a node in the network and the

paths which the node is part of. Iterative refinement centralities include eigenvector

centrality (Bonacich and Lloyd 2001), PageRank (Brin and Page 2012), LeaderRank (Lü

et al. 2011), HITs (Kleinberg 1999), SALSA (stochastic approach for link structure analysis)

(Lempel and Moran 2000), etc.

Opsahl et al. (2010) developed Alpha weighted degree which considers both degree

and the weights of links to assess the centrality of a node. Kazerani and Winter (2009a)

and Kazerani and Winter (2009b) developed modified betweenness centrality measures

to predict and explain traffic flow in transportation networks.

Centrality measures are used to rank the nodes of networks according to their importance

(Wasserman and Faust 1994; Scott and Carrington 2011). We calculated the values of four

major measures and analyzed them for eight different cities around the world. These four

centrality measures include degree, betweenness centrality, weighted degree based on link

capacities, and alpha degree. Hence, we have analyzed two neighborhood-based, one path-

based, and one combined index.

Degree (di) represents the number of neighbors of node i. Betweenness Centrality

(CB(i)) “measures the extent to which a node lies on the shortest paths between any pair

of nodes” (Newman 2010). The betweenness centrality of node i (CB(i)) is formulated as:

CB ið Þ ¼
X

s≠t

σ st ið Þ
σ st

ð1Þ

where σst is the number of shortest paths between nodes s and t, and σst(i) is the number

of those paths that go through node i (Opsahl et al. 2010).

Akbarzadeh et al. Applied Network Science  (2018) 3:4 Page 2 of 11



The sum of the weights of edges of a node is called its strength or weighted degree (Barrat

et al. 2004). By weighting degree based on capacity of incident links, major intersections of

a city can be distinguished.

Alpha weighted degree (Cwα
D ðiÞ) has been developed to evaluate the centrality of a node

based on the number and the importance of its neighbors (Opsahl et al. 2010):

Cwα
D ið Þ ¼ d i−αð Þ

i � sαi ð2Þ

Here Si is the flow entering node i from its incident links and α is a positive parameter.

We assumed α to be equal to 0.5 which involves degree and strength to the same extent.

Network abstraction

We studied networks of Chicago, Philadelphia, Anaheim, Birmingham, Gold Coast,

Berlin (central district), and Isfahan (Iran). These cities are located in different areas of

the world with different urban and social structures and different network sizes. We

adopted the primal approach in abstracting the networks i.e. roads are abstracted as

links and intersections are abstracted as nodes (Porta et al. 2006a, b). The direction of

each link is determined following the direction of its corresponding road in the real

network. For one-way streets, a directed link connects the tail node to the head. For

two-way streets, two directed links are assumed to represent both directions of the

street. We did not consider any weight for links.

The sizes of the networks are presented in Table 1.

Results and discussion
Figure 1 shows the distribution of degrees of eight urban road networks under study.

Limited variety of degree values is evident in the plots. Since the networks are directed,

the node degrees assume odd and even values.

Except for being unimodal, the values of degrees do not show any similar order or dis-

tribution among cities. Moreover, it turns out that no power law distribution is observed

in these networks. Therefore, it is established that for this sample of cities, no universal

pattern could be derived from the degree distribution of urban road networks.

Figure 2 shows the distribution of alpha weighted degrees of urban road networks.

These distributions are even more diverse than degree distributions. Again, nothing

general and similar to power law is observed although Anaheim shows a decreasing

pattern of probability.

Table 1 Size of the studied networks

City Country Number of Nodes Number of Edges

Anaheim USA 416 914

Austin USA 6121 13,289

Birmingham UK 12,300 28,059

Berlin Germany 12,100 19,570

Chicago USA 11,201 35,367

Gold coat USA 4783 11,140

Isfahan Iran 2150 4760

Philadelphia USA 8202 20,467
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Figure 3 shows the distribution of capacity weighted degree of studied urban road

networks. Philadelphia shows a decreasing probability pattern but distributions are far

from anything similar to scale free.

Figure 4 shows the log-log distribution of the betweenness centrality values of the nodes

of urban road networks under study. Plots show a power law distribution. Inset equations

show the determination coefficient (R2) and the power (as the coefficient of x). The power

varies between 1.54 and 2.07. Coefficients of determination are all above 0.75.

These figures show that unlike other investigated centrality measures, betweenness

centrality follows power law and urban road networks are scale free in terms of the be-

tweenness centrality of their nodes. This result is interesting since we have not selected any

specific distribution for degrees. Goh et al. (2001) showed that networks with power law

distribution of degrees show power law distribution of betweenness centrality. For urban

road networks, we show that regardless of degree distribution, betweenness centrality shows

a power law distribution.
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Fig. 1 Degree distribution of studied urban road networks
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A question now arises about the susceptibility of the network to loss of its central

nodes. This is investigated in the following subsection.

Cities are networks that gradually evolve. At the beginning, cities consisted of a main

street and minor streets connecting to it. In these networks, nodes located on the main

corridor had high betweenness value and their failure would cause a breakdown in the

whole network. Gradually, loops started to form in the urban networks. Nodes on the

peripheries would attain low betweenness and moreover, redundancy would keep the

network from breakdown even if the highest central nodes failed. This is of course a

conjecture. We’ll need to work on it in a different research.

The scattering of BC values may suggest an exponential distribution. We fitted exponential

distribution to the data and show the results in Fig. 5.
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Fig. 2 Alpha weighted degree distributions of eight urban transportation networks
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It is evident that the coefficient of determination (R2) is higher in the case of power law

indicating that the data is more similar to power distribution than exponential distribution.

Vulnerability assessment

We adopted the node removal strategy to assess the criticality of nodes with high

centrality values. We used the relative size of the giant component (RSGC) to measure

the amount of damage to the network. For each urban network, we ranked nodes based

on each centrality measure and carried out the node removal procedure in each net-

work based on each four indices. Removals were carried out successively i.e. we did not

update the centrality values at each removal step. Results are presented in Fig. 5. It is

evident from these figures that nodes with highest values of betweenness are not always

the most critical nodes. In Birmingham, after 10% of nodes are removed, and in Isfahan

and Chicago, after 25% of nodes are removed, BC starts showing the most critical
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Fig. 3 Capacity weighted degree distribution of eight urban transportation networks
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nodes. In other networks, BC does not show any specific advantage over other

measures.

Therefore, we conclude that although the distribution of betweenness centrality values

of urban road networks demonstrate power law behavior, this does not mean that nodes

with highest values of BC are the most critical nodes. In other words, studied networks

are not similar in the criterion for critical nodes. On the other hand, network under study

are similar in their pattern of connectivity loss as they all show inverse-sigmoid like

behavior. They all show a plateau for minor node removals followed by a sharp drop for

removals of 5 to 30% node removals and converge to zero as the node removal percentage

goes beyond 50%.

The fact that betweenness centralities follow power law but are not necessarily the most

critical nodes of urban networks implies that the concept of betweenness centrality in

urban road networks is more of functional merit than topological merit. This means that

central nodes play an important role in transmitting the flow (functional merit) but their
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Fig. 4 Log-log betweenness distribution of eight urban road networks
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loss would not harm the network connectivity (topological merit). This could be due to

the path redundancy in urban road networks.

To support our claim, we analyze the correlation among node flow and node betweenness

in Isfahan and Anaheim. These cities were selected because of flow data availability. Figure 6

shows these plots.

Figure 7 shows that nodes having low values of flow have low values of betweenness

centrality but nodes with high values of flow, may have any value of betweenness.

Conclusion
We investigated four node centrality measures including degree, betweenness centrality,

capacity weighted degree, and alpha weighted degree for eight urban road networks. The

planarity and spatial embeddedness of urban road networks limits the range of node degrees

and prevents pursuing scale free characteristic based on degree distribution. Our results

show that regardless of their degree distributions, betweenness centrality of urban network

nodes show power law behavior. This is a more general observation compared to what Goh

Fig. 5 The exponential fitting of the data
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Fig. 6 The change of RSGC against node removals
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Fig. 7 The correlation of normalized values of node flow and betweenness centrality
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et al. (2001) have reported. We also showed that removing nodes with highest betweenness

centrality values does not always significantly diminish the connectivity of networks.

We then analyzed the flow-betweenness correlation of two urban networks and observed

that nodes with low flow necessarily have low centrality but nodes with high flow may or

may not have high centrality.

Adding these two statements, we may conclude that in urban road networks, betweenness

centrality is an important aspect from traffic point of view but not as important in

topological point of view. This may be due the high redundancy of urban road networks.

Nevertheless, power-law in the distribution of betweenness values indicate that there are

few nodes that affect many trips. Detecting these nodes and securing the traffic flow passing

through them would enhance the resilience of urban road networks. Providing redundancy

by planning parallel corridors which in case of failure can carry the flow of vital nodes is

one example of the actions that can be taken for securing the traffic flow passing through

vital nodes. Another example is adopting traffic signal priority strategies. These strategies

assign green time to approaches of neighboring intersections of a vital node such that no

spill back forms in it. Spill back in vital nodes causes extra delay and possibly gridlock which

makes the intersection breakdown. Securing the smooth traffic at these nodes by proper

traffic signal priority and other traffic control strategies could assure the fluent traffic flow

for a large portion of travelers.
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