Bakker et al. Applied Network Science (2018) 3:3 H H
https://doi.org/10.1007/541109-018-0059-2 Ap p l I ed N etWO rk SCI ence

RESEARCH Open Access

Dynamic graphs, community detection, @
and Riemannian geometry

Craig Bakker” ®, Mahantesh Halappanavar and Arun Visweswara Sathanur

*Correspondence:
craig.bakker@pnnl.gov Abstract

Pacific Northwest National A community is a subset of a wider network where the members of that subset are
Laboratory, 902 Battelle Boulevard, .
99352 Richland, WA, United States more strongly connected to each other than they are to the rest of the network. In this
paper, we consider the problem of identifying and tracking communities in graphs that
change over time — dynamic community detection — and present a framework based
on Riemannian geometry to aid in this task. Our framework currently supports several
important operations such as interpolating between and averaging over graph
snapshots. We compare these Riemannian methods with entry-wise linear interpolation
and find that the Riemannian methods are generally better suited to dynamic
community detection. Next steps with the Riemannian framework include producing a
Riemannian least-squares regression method for working with noisy data and
developing support methods, such as spectral sparsification, to improve the scalability
of our current methods.

Keywords: Community detection, Dynamic graphs, Riemannian geometry

Introduction

Graphs and dynamic community detection

Community detection is an important activity in graph analytics with applications in
numerous scientific and technological domains (Girvan and Newman 2002). Given a
graph G = (V, E) with weight function w : E — R, the goal of community detection
(or graph clustering) is to partition the vertex set V into an arbitrary number of disjoint
subsets of V called communities (or clusters) such that the vertices within a community
are tightly connected with each other but sparsely connected with the rest of the graph.
Clustering on G can be represented as C(G), which is a unique mapping of each vertex
to a community. We restrict our work here to undirected, unweighted graphs and to the
disjoint partitioning of vertices into communities. For a detailed treatment of this topic,
the reader is referred to the work by Fortunato (2010).

The relationships between entities in domains such as sociology, finance, cybersecurity
and biology are most naturally modeled with the use of graphs. The inherently dynamic
nature of such data (Fenn et al. 2012) leads to dynamic graph representations. A dynamic
graph changes over time through the addition and deletion of vertices and edges. A snap-
shot of this graph, G, consists of the vertices and edges that are active at a given time
step n. Modifications from time # to n + 1 are represented by AG,. Clustering can be
performed at each time step, C(G,), and as the graph evolves, so do its communities.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

@ Springer Open International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
— reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-018-0059-2&domain=pdf
http://orcid.org/0000-0002-0083-4000
mailto: craig.bakker@pnnl.gov
http://creativecommons.org/licenses/by/4.0/

Bakker et al. Applied Network Science (2018) 3:3 Page 2 of 30

Temporal communities can undergo several different transitions: growth via addition of
new vertices, contraction via deletion of vertices, merging of two or more communities,
splitting of a community into two or more communities, birth and death of a commu-
nity, and resurgence or reappearance of a community after a period of time. Efficiently
detecting these transitions is a challenging problem.

The problem of dynamic community detection has received significant interest in the
academic literature (Cazabet and Amblard 2014). Current approaches for dynamic com-
munity detection broadly fall under two headings: incremental community detection and
global community detection. The approaches in the first category focus on the system-
atic propagation of communities through time, whereas the approaches in the second
category attempt to simultaneously optimize for multiple metrics on several snapshots of
data. Stability of computation and accuracy of results are the fundamental limitations of
the incremental approaches, while memory (space) and computational requirements are
the main limitations of the global approaches (Cazabet and Amblard 2014). Incremental
approaches are fundamentally combinatorial in nature (Tantipathananandh and Berger-
Wolf 2011; Nguyen et al. 2014) and involve methods to track communities through time.
The stochastic nature of these algorithms makes these methods unstable leading to inac-
curate results. Mucha et al. (2010) build on the seminal work of Lambiotte et al. (2014)
for community detection in dynamic multiplex networks by specializing null models in
terms of stability under Laplacian dynamics.

Motivation for a Riemannian framework

There is a well-developed suite of methods for community detection in static graphs,
but it is not always clear how to extend those methods to dynamic graphs in a
way that captures the time-varying nature of those graphs’ communities. The chal-
lenge is to develop methods that vary continuously in time, like the graphs them-
selves, between snapshots. Moreover, if existing methods are extended through time,
it will be beneficial to do so in a way that provides new insight or analytical tools
as well. With that in mind, we propose a Riemannian geometry approach that views
dynamic graphs (and thus dynamic communities) through the lens of Laplacian dynam-
ics on a matrix manifold. Riemannian geometry provides ways of calculating quantities
such as distances between Laplacians and trajectory speeds on the matrix mani-
fold. As such, it provides a clear and consistent way of representing graph dynamics.
This framework is also modular with respect to existing static community detection
methods.

Contributions

In this paper, we provide the background theory needed to describe dynamic graphs in
terms of Laplacian dynamics on matrix manifolds. The primary contribution of this paper
is to bring existing theory to bear on a new application area — dynamic community detec-
tion. We use Riemannian geometry to interpolate between snapshots of dynamic graphs
(using geodesics) and to calculate averages of those snapshots; we explicitly show the for-
mulae for performing these calculations. The interpolated and average graphs are then
amenable to existing static community detection methods. This allows us to use a consis-
tent approach to track community behaviour both between snapshots, via interpolation,
and across snapshots, via averaging.

Bakker et al. Applied Network Science (2018) 3:3 Page 3 of 30

Simply transferring previously derived formulae would not allow us to consider dis-
connected graphs, however, so our contributions also include a way of transforming
disconnected graphs so that they are amenable to the matrix manifold tools. Using both
synthetic and experimental graph data, we experimentally evaluate two different kinds of
geodesics. We identify their strengths, as compared with entry-wise linear interpolation,
and also discuss their weaknesses. Finally, we derive interpolation and extrapolation error
bounds for both geodesics (shown in the Appendix) and identify promising avenues of
future research in this area.

Our framework enables more accurate prediction of community transitions by building
interpolated graphs between snapshots, global community detection through data aggre-
gation, and prediction of future behaviour through extrapolation from given snapshots.
We describe the basics of our framework in the “Riemannian geometry and dynamic
graphs” section, show how it can be applied to dynamic clustering in “A Riemannian
framework for dynamic community detection” section, and compare the Riemannian
methods with an entry-wise linear approach on synthetic and real network data in the
“Computational experiments” section.

The novelty of our approach arises primarily from the application of Riemannian
geometry to dynamic graphs. When combined with existing spectral methods, this also
provides a new interpretation of community splitting and merging as bifurcations in a
gradient flow dynamical system (see the “Dynamic spectral clustering” section). To the
best of our knowledge, the Riemannian framework presented in this paper is the first of
its kind; it is our intent that the research community build from and extend this work to
enable features of dynamic community detection not currently considered here.

Riemannian geometry and dynamic graphs

Riemannian geometry and matrix manifolds

Differential geometry deals with mathematics on manifolds; manifolds are spaces that
are locally Euclidean (i.e., flat), but generally non-Euclidean globally (Boothby 1986). A
Riemannian manifold is a type of manifold that has a metric associated with each point on
the manifold. The traditional methods for calculating angles and distances in flat spaces
have to be modified on manifolds to account for manifold curvature, and the metric is an
integral part of those modifications on Riemannian manifolds.

A key part of Riemannian geometry, for the purposes of this paper, is the geodesic.
Geodesics are the equivalent of straight lines in curved spaces. A geodesic is (locally) the
shortest path between two points. Great circles on a sphere are examples of geodesics on
a curved manifold. Consider a flight from Vancouver, Canada to London, England: the
two cities are at similar latitudes, so on a Mercator projection map, the shortest flight
would seem to be a straight West-to-East trajectory. In reality, however, flights between
the two cities traverse the Pole because that is a shorter route — it is the great circle
route. The discrepancy is due to the curvature of the Earth, which is distorted on a flat
map. From another perspective, a geodesic is the path that a particle on a manifold would
take if it were not subject to external forcing; a geodesic with constant speed has zero
acceleration.

Riemannian geometry can be applied to matrix manifolds. The Grassman and Stiefel
manifolds are perhaps the most frequently encountered matrix manifolds in differen-
tial geometry because they have closed-form solutions for quantities such as geodesics

Bakker et al. Applied Network Science (2018) 3:3 Page 4 of 30

(Absil et al. 2007). Pennec et al. (2006) developed a metric for the manifold of symmet-
ric positive-definite matrices with corresponding expressions for distances, geodesics,
and tangent vector inner products in closed form. These formulae are valuable because
even when there is a well-defined metric on a manifold, distances and geodesics between
points do not usually have closed-form expressions. Such quantities have to be solved for
numerically. Working on this matrix manifold, when appropriate, can be useful: matrix
symmetry provides a reduction in effective dimension, and properties such as symmetry
and positive-definiteness are automatically preserved.

Bonnabel and Sepulchre (2009) extended this framework to include symmetric
positive-semidefinite matrices. The extension essentially worked by decomposing a
positive-semidefinite matrix into a nullspace component (a Grassman manifold) and a

positive-definite component, which could then use the existing metric.

Graph Laplacians and Riemannian geometry

Researchers have previously used non-Euclidean geometries to investigate graphs
(Krioukov et al. 2009, 2010). That work has then been applied to large-scale networks such
as the internet (Boguna et al. 2010). The approach described in this paper differs in a sub-
tle but meaningful way. In those papers, the mappings used treat graph nodes as points in
a hyperbolic space. Our present work, however, treats the entire graph as a single point in
a non-Euclidean space.

The work of Bonnabel and Sepulchre (2009) combined with that of Pennec et al. (2006)
enables us to consider graph Laplacians as points on a manifold of positive-semidefinite
matrices. Each graph is a point, and thus a time-indexed sequence of graphs forms a
trajectory on the manifold. This, in turn, means that we can calculate quantities such
as trajectory velocities, distances between graphs (represented by manifold distances
between their respective points), and relevant geodesics.

Given that we are interested in dynamic community detection, the Laplacian is a nat-
ural object to work with. The Laplacian uniquely defines a graph (up to self-loops), and
there is already a known connection between the Laplacian spectrum and community
structure (Newman 2010). Previous work in dynamic community detection (e.g., Mucha
et al. (2010)) has also worked with the Laplacian. Graph Laplacians have a certain struc-
ture that make them amenable to the Riemannian geometry techniques presented here as
well: Laplacians are symmetric (for undirected graphs) and positive-semidefinite. Adja-
cency matrices, for example, are generally indefinite and thus would not be suitable for
use with the matrix manifolds described here.

We chose to work with the combinatorial Laplacian, L = D—A, because it has a constant
nullspace for connected graphs (Newman 2010). This constant nullspace makes the geo-
metric calculations much simpler than they would be otherwise. It is possible to use other
Laplacians, such as the normalized Laplacian. If these Laplacians do not have constant
nullspaces, though, the interpolation involves extra calculations (detailed by Bonnabel
and Sepulchre (2009)). Assuming no self-loops, the combinatorial Laplacian also has the
virtue of being easy to convert into an adjacency matrix. That being said, as long as a
Laplacian is symmetric positive-semidefinite and has a constant nullspace dimension (for
connected graphs), it is possible to calculate geodesic interpolations for that Laplacian.

There are two other relevant considerations we wish to address here. Firstly, the
Laplacians of unweighted graphs constitute a discrete (and therefore sparse) subset of

Bakker et al. Applied Network Science (2018) 3:3 Page 5 of 30

the matrix manifold. As such, any continuous trajectory will contain weighted graphs.
Secondly, directed graphs do not have symmetric Laplacians, and thus they cannot be
considered within this framework without symmetrizing them somehow (e.g., by ignor-
ing the directionality of edges). For the purpose of community detection, though, edge

direction may not be important.

A Riemannian framework for dynamic community detection

There are two primary components to our framework. The first involves modelling and
analyzing the dynamic behaviour of the graph prior to any community detection. For this,
we show how to calculate an average graph from a collection of snapshots (for use in a
time-averaged community detection) and how to interpolate between time-indexed graph
snapshots (for seeing how the graph evolves over time). In the Appendix, we derive and
analyze bounds on the interpolation error in terms of distance on the manifold.

The second component consists of applying community detection methods to the
dynamic graph. In this paper, we will focus on spectral methods, because they have conve-
nient properties under continuous Laplacian dynamics, and the Louvain method (Blondel
et al. 2008), because of its computational speed and ability to handle disconnected graphs.
However, the Riemannian geometry methods do not require using any one particular
community detection method.

Graph interpolation and averaging

We begin with interpolation between two snapshots. It is possible to do this using an
entry-wise linear approach, L(¢) = (1 — t) L4 + tLp, but there are good reasons not to use
this approach.

Firstly, the Laplacians for a given dynamic graph all exist on a matrix manifold. For
the trajectory L(¢) on that manifold, though, the trajectory speed is not constant, the
trajectory direction is not constant, and it is not the shortest path from L4 to Lp. It
is precisely analogous to the Mercator projection map example given earlier — mov-
ing at a constant velocity (i.e., constant speed and direction) on the map would not
correspond to moving at a constant velocity on the earth because of the earth’s curva-
ture. Experimentally, we have observed that the linear interpolation begins and ends its
trajectory moving very quickly while the bulk of its trajectory moves relatively slowly.
The difference between maximum and minimum velocities can be orders of magni-
tude, depending on the size of the graph and the distance between the two graphs being
interpolated.

Secondly, in connected graphs, the product of the Laplacian’s non-zero eigenvalues (i.e.,
the determinant of the positive-definite component) is concave along the linearly inter-
polated trajectory. If the two points are far enough apart, this product will go through
a maximum between the two points. This maximum can, again, be orders of magnitude
greater than the product at either endpoint; like the trajectory velocity, this variation will
depend on the size of the graphs in question and their distance apart. The geodesic inter-
polation, however, provides a linear variation in the product of the eigenvalues. Pennec
et al. (2006) comment on this in more detail. For a graph, this product relates directly,
by Kirchoff’s matrix tree theorem, to the number of spanning trees in the graph (Harris
et al. 2008). In other words, the linear interpolation increases the overall connectivity of
the graph between snapshots.

Bakker et al. Applied Network Science (2018) 3:3 Page 6 of 30

Finally, the linear interpolation cannot always be used for extrapolation. All of the inter-
polated Laplacians are positive-semidefinite, but it is easy to provide examples where the
extrapolation quickly becomes indefinite.

Instead, we propose using geodesic interpolation. A geodesic interpolation trajectory
has a constant velocity, produces an eigenvalue product that varies linearly between end-
points that are connected graphs, and can be extrapolated indefinitely without leaving the
manifold of positive-semidefinite manifolds (with constant nullspace dimension). Follow-
ing Bonnabel and Sepulchre (2009), we show how to calculate this geodesic between two
snapshots of a given dynamic graph.

Consider the Laplacian L at a point. It can be represented with its eigendecomposition:

DO T
LZ[“S][OOH(;T}:“DQT W

where the columns of & span the range of L. Moreover, the nullspace, &, is always parallel
to (1,1,...,1), and thus span(«) is constant even though « may not be, in general.
Consider the geodesic between Ly and Lg. We can calculate the SVD of aga 4:

OlgOlA = OBO'ABO}; 2)

The diagonal matrix o4p has the principal angles between the subspaces spanned by o4
and op as its diagonal entries. Since those subspaces are the same, o4p = I for any two
Laplacians. We then calculate Uy = «4O04 and Up = agOp. Since 043 is constant, Uy =
Up, and U is constant for all points on the geodesic; « and O are not constant, though.
Furthermore, we can use the same U/ matrix for any Laplacian of a given dynamic graph
without affecting our calculations, because the span of U is constant. We calculate R =
UTLU for Ly and Lp. The geodesic from Ly at t = 0to Lp at t = 1 is then

1 _1 _1 1
R(t) = R} exp (tlnRAzRBRAZ)Rj 3)
L(#) = UxR(®)U; = UpR®OUj)

If there are multiple time-sequenced snapshots, this method can be used to do a piece-
wise geodesic interpolation with ¢ being shifted and scaled appropriately. Note that the
constant Laplacian nullspace means that we can work solely with the R components of L
and ignore the Grassman component. We can also extrapolate with this geodesic simply
by continuing the trajectory for ¢ > 1.

If we are interested in the average behaviour of a dynamic graph, we can calculate the
least-squared-distance mean (the Karcher mean) of a set of graph snapshots. To do this,
we use the R matrices derived from the graph Laplacians as before; each graph i has a
matrix R; associated with it, and we want to determine the ‘average’ matrix S for N snap-
shots. We then list the sum-of-squared-distance function, the distance function itself, and
the gradient of the squared distance (Pennec et al. 2006), respectively:

_ L o _ 1 2 ¢ p
f68) =55 ;f = ;d (S, R;) (5)

2 112
42 (S,R;) = HlnS IR,S”7 6)

VsfD(S) = —2Ing R; 7)

Bakker et al. Applied Network Science (2018) 3:3 Page 7 of 30

We use iterated gradient descent to calculate the mean:

1 1 _1 1 1
Sk+1 = SF exp [N Xi:ln <Sk ’RiS, 2>} S? (8)
According to Pennec et al. (2006), this usually converges quickly.

Alternative Riemannian geometries

Riemannian geometry centers around the Riemannian metric — changing the metric
entails changing properties of the manifold (such distances and geodesics). The current
metric can be described as affine-invariant (Pennec et al. 2006), but it is not the only
metric that could be used for the space of positive-definite matrices. We could also use
a log-Euclidean metric as described by Arsigny et al. (2007). The primary reason to con-
sider using the log-Euclidean metric instead of the affine-invariant one is computational
cost: the formulae for distances and geodesics are simpler and easier to calculate for the
log-Euclidean metric. Those distance and geodesic formulae are, respectively,

d*>(S,R;) = |InR; — In S|)
R(t) =exp((1 —t)InRy + tInRp) (10)

Another computationally beneficial feature of the log-Euclidean metric is the closed-
form expression that it has for calculating the mean of a set of matrices:

S =exp (;[ZlnR,) (11)

To utilize these formulae for interpolating between graphs, we would simply replace
Eq. 6 with Egs. 9, 3 with Eq. 10, and the iterated process in Eq. 8 with a single evaluation
of Eq. 11. There are other expressions that are simpler to evaluate for the affine-invariant
metric, but those quantities may not be needed, and the different invariance properties of
each metric may be valuable in different circumstances.

On a practical level, the two metrics generally produce similar interpolations (Arsigny
et al. 2007): the spectrum of the affine-invariant interpolations tends to be slightly more
isotropic than that produces by the log-Euclidean interpolations, but both interpolate
determinants linearly between interpolation points (see the “Graph interpolation and
averaging” section). For the rest of this paper, we will distinguish the geodesics and
means calculated with the two methods as being either affine-invariant (AI) geodesics or
log-Euclidean (LE).

Disconnected graphs
The methods described in this paper currently assume that the graph in question is con-
nected and remains so at all points of interest. As they stand, they could potentially handle
a graph with a constant number of disconnected components (which would correspond
to the Laplacian nullspace having a constant dimension), but this does not significantly
improve the method’s generality. In order to be widely applicable, the interpolation
methods need to be able to handle changing connectivity.

We can accommodate this by using a bias term with, potentially, a thresholding proce-
dure. For a given adjacency matrix A, we add to each off-diagonal entry a bias term €/n,
where € <« 1 and # is the number of vertices in the graph, to produce a biased adjacency

Bakker et al. Applied Network Science (2018) 3:3 Page 8 of 30

matrix A (which is now connected). We then construct a biased Laplacian matrix from
A, perform the interpolation on the biased Laplacian and subtract €/n from each off-
diagonal entry of the adjacency matrices produced by the biased interpolation. If need be,
we can then apply a threshold to the resulting adjacency matrices or round those matri-
ces to an appropriate number of decimal places. This approach essentially replaces the
Laplacian’s 1 = 0 eigenvalues with A = €.

Empirically, we found that this approach did not significantly change the interpolated
trajectories for connected graphs while also producing reasonable results for discon-
nected graphs. If we consider the properties of the Riemannian metrics discussed in
this paper, we can see why adding this small bias would not significantly disturb a
geodesic trajectory. With these metrics, matrices with zero or infinite eigenvalues essen-
tially exist at infinity. For matrices with finite eigenvalues greater than zero, the distances
between matrices are relative and directly tied to the matrices’ spectra. For example,
the distance from 1 = 107® to A = 107> is comparable to the distance from A = 1
to A = 10. This means that a geodesic, which is a minimum-distance path between
points, will not significantly alter the part of the spectrum associated with A = € val-
ues unless it is absolutely necessary to do so in order to reach the destination. Moreover,
adding a fully connected graph with edge weights of € would not meaningfully change
the community structure because of the separation of scales (presuming a very small
value of €).

In our computational experiments, we found that ¢ = 10~ provided a good balance
between avoiding ill-conditioning and keeping ¢ small, but even increasing € to 1073
did not change the interpolation significantly. As we increased ¢, though, we found that
the geodesic interpolations approached the trajectory of the linear interpolation; at, say,
€ = 10°, they were almost identical. This, too, makes sense: as the eigenvalues become
uniformly larger, the manifold becomes flatter, and the differences between the data
points become smaller. The flatter the manifold, the closer the geodesic is to the linear
interpolation. However, the geodesic interpolation is still guaranteed to remain positive
definite, and the linear interpolation is not. This suggests that if the linear interpolation
were more desirable in a particular application but the application also called for the use
of extrapolation, then using a geodesic with a large bias term could provide the desired
capabilities.

Dynamic spectral clustering

It is possible to use spectral clustering with the first non-trivial eigenvector for commu-
nity detection, but this method can be improved upon by using multiple eigenvectors
(Boccaletti et al. 2006). This approach is convenient for continuous Laplacian dynamics
because as long as the eigenvalues are distinct, we can expect the eigenvectors and eigen-
values to vary smoothly with smooth changes in L. If the eigenvalues of the eigenvectors
in question are not distinct, then the eigenvectors are not uniquely defined, and if eigen-
values whose eigenvectors are being used for spectral clustering cross during the course of
a trajectory, the spectral clustering may experience a discontinuous jump. Disconnected
graphs can provide exactly this kind of behaviour (e.g., with multiple zero eigenvalues).
Moreover, if the number of disconnected components is not constant, then it will not suf-
fice simply to consider the first m non-zero eigenvalues, for the set of such eigenvalues
will not be constant.

Bakker et al. Applied Network Science (2018) 3:3 Page 9 of 30

Assume that the graphs are connected, that there is an ordering of the eigenvalues
of L such that ; < X;11, A1 = 0, and that eigenvector & G 1s associated with A;. We
can then plot each of the graph nodes in i”, where node k has coordinates given by
<“§ (kz), & (I‘B), R (kn +1)>, and use clustering techniques to identify communities.

One way of identifying and tracking communities is through defining a kernel for the
nodes. Summing over all of the nodes then produces a density function. The maxima
of that density function correspond to cluster centroids, and the separatrices between
maxima define community boundaries in the (reduced) eigenspace. With a symmetric
Gaussian kernel, this density function would be

f(X) = ZN(X— Y(k)’o') (12)
‘ 2

where yl(k) =£ (];7 1" Other kernels could be used, but this provides an easily differentiable
density function, and the magnitude of the kernel is not very important — what matters
is the relative changes in density, not the function’s absolute value. See an example of this
in the spectral plot shown in Fig. 1. The format of Fig. 1 is used for all other spectral plots
in this paper.

Changes in the graph’s communities can then be seen as changes in the density func-
tion. The density of a cluster is proportionate to the magnitude of the density function
at the peak (i.e., the cluster centroid). Community growth and contraction can be seen
by points traversing community boundaries (i.e., separatrices). Birth and death corre-
spond to the emergence or disappearance of a peak in the density function. Merging
and splitting correspond to the merging and splitting, respectively, of the density func-
tion peaks. This splitting and merging correspond very closely to pitchfork bifurcations

0.20

0.15 A

0.10 A

0.05 A1

0.00 A

—0.05 4

—0.10 1

—0.15 4

-0.20 T T T T T T T
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

Fig. 1 2-D spectral plot of graph nodes. The graph nodes are plotted as points, the contours show the
magnitude of the density function, and the horizontal and vertical axes correspond to the &) and & s,
components, respectively. This particular plot shows two distinct communities with one node at
approximately (-0.09,-0.11) that does not belong very strongly to either community and a cluster of points
around (-0.07,0.05) that seems close to forming its own community

Bakker et al. Applied Network Science (2018) 3:3 Page 10 of 30

in dynamical systems; more precisely, the pitchfork bifurcation happens to the gradient
flow x = Vf. Birth and death also correspond to pitchfork bifurcations, but this is not as
immediately obvious. It is a corollary of the Poincaré-Hopf theorem: creating a new max-
imum results in the creation of additional saddle points and/or minima (Domokos et al.
2012). To identify death, merging, or splitting, we can track the Hessian of f. If it becomes
singular at a point, that is an indication of a potential bifurcation there. Birth may be
identified in the same way, but searching the space for such a phenomenon may be more
difficult than simply tracking known maxima and monitoring the Hessian at those points.

Once the spectrum has been plotted, techniques such as k-means clustering can iden-
tify communities. This should produce a sufficient approximation of the separatrices
between maxima. However, if two eigenvectors are used, it may even be easier to identify

communities visually.

Computational experiments

Implementation and testing procedure

To demonstrate our methods, we initially created a series of graph snapshots using a syn-
thetic graph process. The dataset was created by generating two Erdgs-Rényi (ER) random
graphs with 100 nodes each, as representing distinct communities, with edge probabil-
ities of pg = 0.15 for both. We then began connecting the nodes belonging to the two
communities through an inter-community edge probability of p;,;; < pg; we increased
Pint all the way to pg to simulate the distinct communities merging. Once the merger was
complete, we gradually decreased p;,; to simulate the splitting of a large community into
smaller ones.

To test our methods on real-world data, we used proteomics data produced by Mitchell
et al. (2013). Networks were produced by identifying subnetworks of upregulated proteins
(p < 0.05 and fold change > 1.5 compared to uninfected mocks) from the overall human
protein-protein interaction network (Keshava Prasad et al. 2008). The network data indi-
cates time-varying linkages between different proteins in human lung epithelial cells that
have been infected by the Severe Acute Respiratory Syndrome corona virus (SARS-CoV).
The proteomics network formed a relatively sparse, highly disconnected graph of 576
nodes, and we used the data snapshots at t = 24, 30, 36,48, 54, 60, and 72, where ¢ is the
number of post-infection hours. Because this graph is disconnected (and severely so), we
use the bias approach described in the “Disconnected graphs” section.

We implemented our methods in Python, making particular use of the matrix expo-
nential and logarithm functions in the SciPy package. To evaluate the interpolation and
averaging results for the synthetic network, we recorded connectivity measurements,
spectral snapshots from interpolated and averaged Laplacians, and the total number of
communities in the interpolated and averaged Laplacians. To measure connectivity, we
used the logarithm (for scaling purposes) of the product of the non-zero Laplacian eigen-
values as mentioned in the “Graph interpolation and averaging” section. For the spectral
snapshots, we used the eigenvectors corresponding to the first two non-trivial eigen-
value to produce plots as described in the “Dynamic spectral clustering” section. These
snapshots provided an evaluation that was more qualitative than quantitative. We then
used the Louvain method to perform community detection. The graph snapshots are
provided in Additional file 1, and the code implementing the methods is provided in
Additional file 2.

Bakker et al. Applied Network Science (2018) 3:3 Page 11 of 30

The spectral snapshots and connectivity measurements were not as useful for the
proteomics network because the proteomics network was highly disconnected, but the
Louvain method was still applicable for community detection. To investigate the inter-
polation and averaging of community structure for this network, we tracked the total
number of communities, the total number of communities with at least five members,
community similarity, and graph energy. Because the network was highly disconnected,
the Louvain method produced many small or single-member communities. Tracking the
number of communities above a certain size helped to reduce the amount of noise due to
that effect. By community similarity, we mean not just the number of communities but
the composition of those communities as well. It can be difficult to measure the degree of
similarity between two graphs’ community structures when there are many communities
and the community labelling is not consistent, but we can look at the pairwise similarity
with the Rand index (Rand 1971).

The Rand index works by using a baseline or ground truth case, considering every
distinct pair of nodes, and determining whether or not they are in the same commu-
nity. It then looks at these same pairs in another graph of interest. If, for a given pair
of nodes, the nodes are either in the same community as each other in both graphs
or not in the same community as each other in both graphs, that pair gets a score
of 1; otherwise they get a score of 0, indicating a dissimilarity between the commu-
nity structures of the two graphs. Summing the results over all pairs and dividing by
the number of pairs yields a score between 0 and 1, where 1 indicates that the two
graph’s community structures are identical. The smaller the value, the less similar the
structures are.

Given that we had no ground truth between the data snapshots, we instead looked at
the changes in this metric from one snapshot to the next. Ideally, there would be a steady
change in this value between points — a sawtooth pattern over the course of the whole
interpolation — as we measured how the interpolation differed from the most recent data
snapshot. Finally, to measure network connectivity, we used graph energy instead of a
Laplacian eigenvalue product. The energy of a graph, E, is defined as the sum of the abso-
lute values of the eigenvalues of the adjacency matrix. Given that it is bounded by the
number of edges, m, in an unweighted graph (Brualdi 2006), we can also use it to bound
the number of edges:

1 1
zﬁgEgzm:iEfmfiEz (14)

and thus it gives us information about both graph spectra and graph connectivity.

For both sets of data, we used thresholding on the edge weights to get unweighted graph
equivalents. This procedure, and especially the threshold value used, was more impactful
on the proteomics data than on the synthetic data.

Synthetic graph results

The graph spectral snapshots are shown in Fig. 2, and we can clearly see the expected
merger and separation of two communities there. We can now interpolate from the third
to the fourth data snapshot and then from fourth to the fifth data snapshot to further
investigate this community merger and separation. Snapshots from the Al geodesic inter-
polation are shown in Fig. 3; the results from the linear and LE geodesic interpolations

Bakker et al. Applied Network Science (2018) 3:3 Page 12 of 30

0.20 0.20
0.15 015
0.10 0.10
0.05 0.05
0.00 0.00
-0.05 -0.05
-0.10 -0.10
°
=0.15 =0.15
-0.20 -0.20
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
0.20 0.20
0.15 0.15
°
0.10 0.10
0.05 0.05
0.00 0.00
o
—-0.05 -0.05
°
-0.10 -0.10
L]
-0.15 -0.15
-0.20 -0.20
-0.20 =0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
0.20 0.20
0.15 0.15
o
0.10 0.10
0.05 0.05
o
0.00 0.00
-0.05 -0.05
-0.10 -0.10
=0.15 =0.15 b
-0.20 - -0.20
-0.20 =0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 -0.20 =0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
0.20
015
0.10
0.05
0.00
-0.05
-0.10
-0.15
-0.20
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
Fig. 2 Synthetic graph spectral plots, frames 1-7. The spectral plots of the synthetic data snapshots are
presented in order from left to right, and top to bottom. They show two communities that are stable and
separate except for the merger shown in the fourth frame. There are also nodes that do not associate closely
with any community at various points in time

were almost identical with these. Increasing the temporal resolution would become
increasingly cumbersome for presentation in a printed format. However, the method
does lend itself well to video presentations of the dynamic community behaviour (see

Additional file 3 for an example).

Bakker et al. Applied Network Science (2018) 3:3 Page 13 of 30

ols 020 ~020 015 010 005 000 005 0lo ol5 020 -020 015 010 -005 000 005 010 015 020

~ o
ols o020 ~020 015 010 005 000 005 010 015 020

020 a
2670 —o1s 010 —oos obo 0bs olo ois 020 -070 015 010 -00s o000 oos olo o0is 020

Fig. 3 Synthetic graph interpolation. The interpolation’s frames are presented from left to right, and top to
bottom. At the top left, the first frame is the third data snapshot, the sixth frame is the fourth data snapshot,
and the eleventh frame is the fifth data snapshot; the interpolated frames are taken at evenly spaced time
intervals between the data snapshots. The interpolated frames show a clear progression of community
merging and splitting as well as some outliers that do not seem strongly attached to any community

In Fig. 4, we can see how the graph connectivity changes over time. The geodesic
curves both interpolate the eigenvalue product linearly between points, whereas the lin-
ear interpolation is slightly concave. For this dynamic graph, the data points are relatively
close to each other, and thus the geodesic and linear interpolations are very similar. If we
interpolate between ¢ = 0, t = 3, and ¢t = 6, we can see the distinction more clearly, as
in Fig. 5.

Thresholding gives us a piecewise constant graph. The graph dynamics consist of an
edge addition phase followed by an edge subtraction phase, so the thresholding parameter
simply determines when that entry flips from 0 to 1 (or vice versa). If we were to use a finer
time resolution, we might see a slight difference between the linear and geodesic inter-
polations with respect to when this transition happens, but the basic behaviour would
remain the same.

In performing community detection, we found that the geodesic interpolations pro-
duced adjacency matrices with negative entries. Almost all of these entries were on the
order of 0.001 to 0.01, and none were larger than 0.1. Negative edges need not be a bar-
rier for community detection (e.g., see Traag and Bruggeman (2009)), but they can cause

Bakker et al. Applied Network Science (2018) 3:3

670 ® data points
—— linear
\ —e— Al geodesic
000} \ —— LE geodesic
650
g
£ 640
]
v
£ 630
o
(v
620
610 -
600 -
0 1 2 3 4 5 6
time
670 - e @oee ® data points
—— linear
—e— Al geodesic
660 1 —— LE geodesic
650
>
3 640
o]
v
€ 630
o
(v
620 A
610 "
!
600 -
0 | 2 3 4 5 6
time
Fig. 4 Logarithm of product of non-zero eigenvalues over time, synthetic graphs. The connectivity results are
shown for the interpolations that do not use a threshold (top) and the interpolations that use a threshold of
0.5 (bottom)

problems for the Louvain method, so in doing community detection, we simply set these
entries to 0. This was only necessary for community detection on graphs that did not
use thresholding. When using a threshold, any value equal to or below the threshold,
including a negative value, was set to 0.

The spectral plots showed two communities merging and splitting with some outliers
along the way. We found that the Louvain method split the merged community into four,
and the outliers sometimes formed very small communities of their own (Fig. 6). The dif-
ference in results between the two methods suggests that in community detection, it may
be worthwhile to be able to assign an ‘unaffiliated’ status to some nodes — nodes that are
not really part of any community. This kind of behaviour is what gives us, for example, the
brief existence of a small community (of size 3) in the LE geodesic interpolation between

Page 14 of 30

Bakker et al. Applied Network Science (2018) 3:3 Page 15 of 30

670 4 ® data points
—— linear
—e— Al geodesic
660 1 —— LE geodesic
650
2 640
2 1
S
[
£ 6301
Q
O
620 1
610 1
600
0 1 2 3 4 5 6
time
Fig. 5 Logarithm of product of non-zero eigenvalues over time with longer interpolation window (no
threshold), synthetic graphs. Interpolating between graphs that are ‘farther apart’ leads to a more apparent
distinction between the geodesic and linear interpolations. The Al and LE geodesic are still indistinguishable
with regards to the connectivity measure, however

t = 1and t = 2. When we use a threshold, these behaviours cease, as we now have a
graph that is piecewise constant in time for all three interpolations.

Finally, we consider the average behaviour of this graph using the mean graphs pro-
duced by each interpolation method. The spectral plots of these graphs are shown in
Fig. 7, and they clearly show two distinct communities. This indicates that the merging
of the two communities was only a transient effect and that the same communities re-
emerged after the temporary merger. The averaging process preseved the structure that
we designed the dynamic graph to have. If the second pair of communities were signifi-
cantly different from the first, then the spectrum of the average graph would not display
two distinct communities so clearly.

Table 1 illustrates the similarities while highlighting the small differences between
the results: the geodesic interpolations consistently have slightly higher modularity and
slightly lower connectivity than the linear interpolations, but thresholding the resulting
graphs reduces those differences. This is not surprising given both the propensity that lin-
ear interpolations have for increasing connectivity and the similarity of the geodesic and

linear interpolations in this case.

Proteomics network results
In interpolating the proteomics network data, we again obtained negative adjacency
matrix entries (around 5% of the total entries). The Al geodesics produced far fewer such
entries than the LE geodesics (by an order of magnitude), and the Al entries were usu-
ally smaller. Of the negative entries, the largest was -0.16, but less than 1% of the negative
entries had magnitudes greater than 0.01. As with the synthetic graphs, we simply set
these negative entries to 0 when using the Louvain method.

Figure 8 shows how the number of graph communities varied over time and how
different thresholding levels affected those results. With no thresholding, we found that

Bakker et al. Applied Network Science (2018) 3:3 Page 16 of 30

84 ® data points
—— linear
—e— Al geodesic
7 -

—— LE geodesic

Number of Communities
w

3 .
2 -
0 1 2 3 4 5 6
time
4.00 A - ® data points
—— linear
3.75 1 —e— Al geodesic
—e— LE geodesic
w 3.50 1
2
S 3.25 1
£
g
O 3.00 1
S
1
L 2.751
£
2
2.50 1
2.25 1
2.004 @ o @ > e ®
0 1 2 3 4 5 6
time

Fig. 6 Communities in interpolated synthetic graphs. When no threshold is applied (top), the Louvain
method produces varying numbers of communities during the merger of the two original communities, and
even the data snapshot of the merged communities shows not one but four communities; we also see some
differences between the two geodesic interpolations. With a threshold (bottom), though, the piece-wise
constant nature of the interpolation shows forth

Fig. 7 Synthetic graph average spectral plots. The spectral plots for the Al geodesic (eft), LE geodesic
(center), and linear (right) means are all very similar: the geodesic interpolations produce indistinguishable
means, and the linear interpolation’s mean is only slightly different from the geodesics’

Bakker et al. Applied Network Science (2018) 3:3

Table 1 Mean graph characteristics, synthetic graphs

Mean graph Modularity Connectivity
Linear 0.299 633.5
Linear (thresholded) 0.300 631.8
Al geodesic 0.335 6313
Al geodesic (thresholded) 0.305 630.5
LE geodesic 0.336 631.3
LE geodesic (thresholded) 0.304 630.7

the results were too connected (i.e., not enough communities) for all three interpolation
methods: after leaving a supplied data point, the number of interpolated communities
would immediately drop, remain relatively constant, and shoot up upon reaching the next
data point. Thresholding produced better results. Generally speaking, the AI geodesic
produced too many communities while the linear interpolation produced too few, and
neither produced a steady deformation from one data point to the next. The LE geodesic
showed an intermediate behaviour in this regard, and a threshold of 0.02 produced best
performance. The number of communities produced by the interpolation did not vary
smoothly, but there was a general progression from data point to data point. Changing
the threshold value had a small effect on the AI geodesic, but it did nothing to improve
the linear interpolation, and using a threshold value of 0.5 actually produced an odd
spike in the number of communities halfway between data points. We will return to this
phenomenon later.

In looking at Fig. 8, though, we see that there are many communities relative to the
size of the graph — most of these are communities of one or two nodes that are not con-
nected to the rest of the graph. If we only consider communities of a certain size, we can

@ data points @ data points
\ —— linear

@
]
S

—— linear

—— Al geodesic | —— Al geodesic
—— LE geodesic 500 —— LE geodesic

@
3
S

N
&
o

2
S
S

w
&
S

350

Number of Communities
Number of Communities

w
=3
S
w
=3
S

Leossssssssssssscsd 250 [| | \ Lecsssssssescet

~
]
S

t @ data points 550 @ data points
| —— linear —=— linear

—e— Al geodesic —e— Al geodesic
—— LE geodesic 500 —— LE geodesic

550

500
450
450
400

400
350

Number of Communities
Number of Communities

350 300

300 250

30 40 50 60 70 30 40 50 60 70
time time

Fig. 8 Number of communities in interpolated proteomics network. The number of communities in the
interpolations using thresholds of 0.02 (top left), 0.1 (top right), and 0.5 (bottom left) show significant
differences between the three interpolations, while using no threshold (bottom right) produces similar
behaviour for all three

Page 17 of 30

Bakker et al. Applied Network Science (2018) 3:3

get a more accurate picture of the true community dynamics. In Fig. 9, we look only at
communities that contain at least five nodes and consider how the results are affected by
different threshold values. When using a threshold value, the results are somewhat sim-
ilar to those in Fig. 8. In Fig. 8, there were too few communities because the graph was
more connected, and we observe the effects of that increased connectivity here, too: there
are fewer communities overall, but the communities that are present tend to be larger,
and there are more large communities. The geodesic interpolations, on the other hand,
were less connected. Therefore, they had had many small communities and relatively few
larger ones; the best results came from the LE geodesic with a small threshold.

The case without thresholds was more interesting. There, the linear interpolation still
often produced too many communities, but the geodesic results did not uniformly pro-
duce too few communities. The LE geodesic may have been slightly better than the Al
geodesic, but they were both still producing results that looked much more reasonable
than they had when we plotted the total number of communities. In fact, those results
look even more regular and smooth than the thresholded results.

With some analysis, we can see why using a threshold value of 0.5 produced odd spikes
in the number of communities for the linear interpolation. Let us assume that we are
interpolating from adjacency matrix A¢ to adjacency matrix A;. Let us denote the edges
in A; that are not in Ap with the adjacency matrix A,;; and the edges in Ao that are not
in A; with the adjacency matrix Ay,;,. Our linear interpolation from Ag at £ = 0 to A; at
¢t = 1 would then be

A(t) = Ao+t (Agdd — Asup) (15)

® data points

® data points

16 { —— linear 16 { —— linear secorerocee
—— Al geodesic —— Al geodesic
14 —*— LEGeOdeSiC reververveververeps 14 { —— LE geodesic

Number of Communities
Number of Communities

30 40 50 60 70 30 40 50 60 70
time time
@ data points ™~ 175 @ data points
16 { —— linear | —— linear t N
—— Al geodesic —— Al geodesic

14 { —— LE geodesic 15.0 { —— LE geodesic

Number of Communities
Number of Communities

30 40 50 60 70 30 40 50 60 70
time time

Fig. 9 Number of communities with > 5 members in interpolated proteomics network. The changes in the
number of communities with at least five members were perhaps most regular when no threshold was
applied (bottom right). Applying thresholds of 0.02 (top left), 0.1 (top right), and 0.5 (bottom left) produced
greater differences between the linear and geodesic interpolations

Page 18 of 30

Bakker et al. Applied Network Science (2018) 3:3

If we use a threshold 7 such that matrix entries greater than t are sent to 1 and entries

less than or equal to T are sent to 0, we get two possible interpolation patterns, each with
three interpolated values. If T < 0.5, then

Ao 0<t<rt
At)=3Aog+Aut<t<l—1 (16)

A l—-7<t<l1
If t > 0.5, then
Ao 0<t<l-=t

Ag—Agp 1 —T<t<T1 (17)
Ay T<t<l1

A@t) =

A — Agyp will be less connected than either of the interpolation end points, and if r = 0.5,
then A(£) = Ag — Agyp only at ¢ = 0.5. That is why we see that spike in the number of
communities.

The community similarity results are shown in Fig. 10. With no thresholding, the linear
interpolation performs best. Both of the geodesics tend to become even less similar to the
previous snapshot than the snapshot they are progressing towards, resulting in a U-shape,
whereas the linear interpolation has a more consistent decrease. All three interpola-
tions, though, show a sharp decrease in similarity immediately after leaving a snapshot.
Surprisingly, the LE geodesic also produces more extreme results than the AI geodesic.
Thresholding produces the best result, and it does so with the LE geodesic and a thresh-
old of 0.1. The linear interpolation once again shows its piecewise constant behaviour, but

1.000

0.99 0995

0.990

0.985

Community Similarity
Community Similarity

0.980

® data points
—— linear

—— Al geodesic
—— LE geodesic

0.96 @ data points
—— linear
0.975 1 —— Al geodesic

—— LE geodesic

30 40 50 60 70 30

1.000 - "t Poet @eer @resseseny 1.000
| [‘ ~ 0.995
0.995

0.990

0.990 [‘

oses \ | \

® data points
0.980 1 —— linear ‘ \
—— Al geodesic

—— LE geodesic L»»»« L«

30 40 50 60 70 30 40 50
time

o
©
@
]

0.980

Community Similarity
Community Similarity

0.975
® data points
—— linear

—— Al geodesic
—— LE geodesic

0.970

60 70
time

Fig. 10 Community similarity in interpolated proteomics network. When no threshold is applied (bottom
right), the LE geodesic displays more extreme behaviour than the Al geodesic. A threshold of 0.1 (top right)
gives the best performance for the geodesics, a threshold of 0.02 (top left) produces excessive variation in the
LE geodesic, and a threshold of 0.5 (bottom left) produces almost piecewise constant behaviour in the
geodesics. The linear interpolation produces reasonable results when no threshold is applied

Page 19 of 30

Bakker et al. Applied Network Science (2018) 3:3

a threshold of 0.02 is no longer optimal for the LE geodesic, and the Al geodesic performs
reasonably well at that threshold value.

Plots of the energy of the interpolated graphs are shown in Fig. 11. When no threshold
is applied, the linear interpolation produces an almost linear progression, whereas both
geodesic methods go through significant minima between data points. The geodesics are
designed to interpolate Laplacian eigenvalue products linearly, whereas the linear inter-
polation produces a linear variation in the eigenvalue sum. Linearly changing the sum
produces a concave change in the determinant, as we saw in Fig. 5, and we can now see
that linearly changing the product produces a convex change in the sum. The interpola-
tions in question are being performed on the Laplacian, not the adjacency matrix, but we
can see a clear connection.

When we look at the thresholded results, we see that the linear interpolation consis-
tently produces graphs with high energy values, the Al geodesic produces graphs with low
energy values, and the LE geodesic is somewhere in the middle. For the LE geodesic, the
best threshold value is around 0.02, where the interpolation produces a relatively steady
change in graph energy from data point to data point (unlike the linear and AI geodesic
interpolations, which basically plateau between points). This is consistent with what we
saw in Fig. 8 and what we know about sparsity and the different interpolations.

Finally, we can look at the average graphs calculated using the three different methods.
Table 2 shows the number of communities for each of the averaged graphs, and Table 3
shows the number of communities with at least five nodes in those graphs. The aver-

age graph without thresholding showed a much higher level of connectivity than any of

e data points poesesee e data points pooeeey

—— linear peeeesserereesesany | —— linear peesseveraneeey

—— Al geodesic | posssssssssnssseney —— Al geodesic | | | | | | preeeeveeeeeny
400 1 —— LE geodesic 400 1 —— LE geodesic

w
3
S

w

3

S

N
=]
S

Energy of the Graph
N
3
g

Energy of the Graph

100 100

4001 @ data points I - 4001 @ data points

—e— linear = secesereireey | —— linear

350 { —— Al geodesic | |
—— LE geodesic

350 { —— Al geodesic
—— LE geodesic

......

Energy of the Graph
Energy of the Graph

30 40 50 60 70 30 40 50 60 70
time time

Fig. 11 Graph energy in interpolated proteomics network. Applying thresholds of 0.5 (bottom left), 0.1 (top
right), and 0.02 (top left) produced the same kind of trends in the interpolations’ graph energy as was the case
in considering the number of communities: low-energy (i.e., less connected) graphs with the Al geodesic,
high energy (i.e., more connected) graphs with the linear interpolation, and graphs of varying energy with
the LE geodesic. Interpolation without a threshold (bottom right) gave similar performance for the geodesics

Page 20 of 30

Bakker et al. Applied Network Science (2018) 3:3 Page 21 of 30

Table 2 Number of communities in average graph

Threshold
Interpolation type 0.02 0.1 0.5 None
Linear 77 77 439 78
Al geodesic 538 539 569 82
LE geodesic 495 530 565 75

the data snapshots, and this was the case for all of the averaging methods. This would
make sense if the community structure changed significantly from snapshot to snapshot.
Thresholding the average graph produced more reasonable results, though the Al average
was highly disconnected, and the linear average showed a very large change in behaviour
when the threshold dropped below 0.5.

Table 3 records results congruent with those in Table 2. With the linear mean graph, we
see more communities with at least five members than any of the individual graph snap-
shots have — again, the linear interpolation produces results with increased connectivity.
The Riemannian mean graphs without thresholds produce more reasonable numbers
of communities, but applying a threshold to the geodesic means severely reduces those
numbers. The most reasonable result with a threshold seems to be the LE mean with a
threshold of 0.02 or the linear mean with a threshold of 0.5.

Next, we can look at the average difference in community assignment between the
mean graphs and the data snapshots in Table 4. The linear mean performs better than the
others when no threshold is used, but with a threshold, the best results come from the
Riemannian means (which are almost identical). These values are quite high — both here
and in the interpolation results shown in Fig. 10 — and this is likely due to the large number
of unconnected nodes.

The basic trends in the numbers of communities are reflected in the graph energies
recorded in Table 5: the linear averages have very high energy and the geodesic averages
have very low energies, with the LE averages’ energies slightly higher than the AI aver-
ages. What is somewhat surprising, though, is the difference in graph energies between
the non-thresholded means — the numbers of communities in each are similar, but the
linear average has an energy roughly an order of magnitude higher than the Riemannian
averages. The energy of the linear mean without thresholding or with a threshold of 0.5
seem to be the most reasonable values.

In concluding our observations about these averages, we note that the weights on the
linear average graph will all have weights that are multiples of 1/7 (because there are seven
data points provided), and thus there will be no difference in results for any two thresholds
that lie between % and ”—J{l This explains why the results for threshold values of 0.02 and
0.1 are the same for the linear average, for example. The geodesic interpolations provide

Table 3 Number of communities with > 5 members in average graph

Threshold
Interpolation type 0.02 0.1 0.5 None
Linear 19 19 7 19
Al geodesic 3 3 0 16

LE geodesic 7 4 1 14

Bakker et al. Applied Network Science (2018) 3:3 Page 22 of 30

Table 4 Average similarity in community assignment

Threshold
Interpolation type 0.02 0.1 0.5 None
Linear 0.948 0.948 0.989 0.945
Al geodesic 0.990 0.990 0.990 0.932
LE geodesic 0.989 0.990 0.990 0.905

no such structure, and our results here would suggest that low thresholds are generally
required to get good results out of the geodesic interpolations.

Discussion and future work

Interpolation error

In the Appendix, we have provided error bounds for each geodesic interpolation in terms
of distance on their respective manifolds. The actual error incurred will depend on the
problem in question, though. That kind of error, or even entry-wise error, may not be the
most important kind of error to consider for our purposes here, however. Rather, we may
care most about the community structure.

Based on our community-related metrics (connectivity and similarity), the LE geodesic,
with a threshold for the proteomics data, performed the best. The Al geodesic was too
sparse and disconnected, while the linear interpolation was too connected (as expected).
The optimal choice of threshold value depended on the metric being considered: 0.1
was by far the best when considering community similarity, but 0.02 was better for the
other metrics under consideration. In general, the optimal threshold value will likely
depend on the problem in question and the quantities of interest, but we found that
the LE geodesic responded to changes in the threshold value more readily than the
Al geodesic did.

In this paper, we used the same bias value for all of the proteomics interpolations (10~°),
but as mentioned in the “Disconnected graphs” section, increasing the bias value caused
the geodesic interpolation to approach the linear one. Figure 12 shows an example of
this where increasing the bias term causes the LE geodesic to behave more and more like
the linear interpolation (compare with Fig. 11). Future work may involve experimenting
with different bias terms to find a happy medium between the linear and pure geodesic
interpolations.

One concern about the geodesic interpolations is the transient edges that they produce—
edges that do not exist in either end point but emerge and disappear during the inter-
polation process. The weights on these edges were small, but they could be positive or
negative, and they arose in both the synthetic and proteomics data, so they are not simply
an artefact of using the bias addition approach to deal with disconnected graphs. More-
over, using a low threshold means that some of these edges may not disappear when that

Table 5 Graph energy in average graph

Threshold
Interpolation type 0.02 0.1 0.5 None
Linear 647.2 647.2 194.2 2296
Al geodesic 559 49.1 1.5 19.2

LE geodesic 937 559 14.9 252

Bakker et al. Applied Network Science (2018) 3:3 Page 23 of 30

4001 @ data points
—— bias = 0.001
350 4 —— bias =1

—e— bias = 1000

300 A

250 1

200 A

Energy of the Graph

30 40 50 60 70
time
Fig. 12 Graph energy in interpolated proteomics network, LE geodesic with varying bias values. Using a bias
value of 1.0 essentially produces an average of the geodesic and linear interpolations; a bias value of 1000
produces results similar to the linear interpolation, and a bias value of 1073 produces results similar to those
obtained with a bias value of 107°

threshold is applied, and therefore they may affect the community structure of the graph.
Using a larger bias value to more closely approximate a linear interpolation may amelio-
rate the problem, but it would be valuable to look in more detail at why these transients
occur and how to interpret them from a graph theoretic perspective. For example, does it
make sense to say that the ‘shortest’ or ‘least energetic’ path from one graph snapshot to
another might involve some transient edges? From the perspective of the manifold geom-
etry, it clearly does, as the shortest path between two points is a geodesic, but it is not
clear if the same holds true purely from a network perspective.

In short, the geodesic interpolations are not perfect, and there are still unanswered
questions, but it is nonetheless clear that linear interpolation is not well suited to graph
interpolation if the ultimate goal is community detection. When using a threshold, linear
interpolation will always produce a piecewise constant result consisting of three phases.
Without thresholding, the linear interpolation inflates overall graph connectivity, and the
greater the difference between the two graphs, the greater the inflation. As an extreme
example, consider interpolating between a graph with adjacency matrix A to a graph with
adjacency matrix 1 — A. The result ‘halfway’ between them would be a fully connected
graph with edge weights of 0.5. These issues are particularly prominent when calculating
averages over multiple graphs.

Perhaps most saliently for our purposes here, the linear interpolation did not produce
steady changes in the community structure between data points — the proteomics data
showed that the linear interpolation almost always had markedly fewer communities than
the data points it connected. The Al geodesic produced transient edges that were smaller
in magnitude and fewer in number than the LE geodesic, but it was also more expensive
and produced graphs that were too sparse (e.g., too few communities); the LE geodesic
used a similar approach but produced better results when combined with a threshold.
Similar trends held true, generally speaking, for the mean graphs as well.

Computational cost and supporting methods
Currently, the computational cost of geodesic interpolation is high because it requires
calculating matrix functions like the exponential and logarithm. The LE geodesic is

Bakker et al. Applied Network Science (2018) 3:3 Page 24 of 30

noticeably faster than the AI geodesic in calculating interpolated points, though, due
to the fractional matrix powers used in the former but not the latter. Furthermore, the
average graph is significantly easier to calculate for the LE geodesic because it has a
closed-form expression, whereas the Al geodesic requires an iterated numerical solution.
These computational costs are not prohibitive for graphs with hundreds of nodes, but for
much larger graphs — say, on the order of 10° nodes — the computational cost could render
our methods infeasible. One possible approach would be to project the graph Laplacians
to a lower-dimensional space, perform the interpolation there, and then project back to
the original space with some kind of low-rank or sparsity criterion; Riemannian optimiza-
tion on matrix manifolds could be useful for determining an optimal low-rank projection
(Vandereycken 2013).

Another option would be to use graph spectral sparsification (Batson et al. 2013) to pro-
duce sparse graphs that approximate the spectrum of the original graph. We would then
perform the interpolation on those sparse graphs. Given the close relationship between
geodesics and spectral properties, this approach may be better-suited to the geodesic
interpolations than to the linear interpolation. Either way, it should be possible to come up
with an error bound, in terms of the distance between the approximate and true solutions,
that relates to the approximation used.

As an alternative to thresholding, it may also be possible to identify the Laplacians of
unweighted graphs that are ‘closest’ to the geodesic trajectory and use them to define
a kind of discrete trajectory of unweighted graphs that most closely approximates the
geodesic between two unweighted graphs. This could potentially be more accurate than
simply thresholding the adjacency matrix entries.

Additional interpolation and clustering methods

Our present interpolation methods match the supplied data points exactly, but the tran-
sitions from one interpolation to another are not smooth. It may be valuable to develop
more sophisticated interpolation methods that will enforce smoothness, such as polyno-
mial and spline interpolation, using the form of the geodesic interpolations. We may not
want to match the supplied graph snapshots exactly, though. Instead, we may need to
come up with an approximating curve for noisy data. It is possible to define a geodesic
that minimizes the sum of squared distances between it and a set of time-indexed data
(much like a linear least-squares regression). We could then solve for the regression coef-
ficients in a manner similar to the calculation of the geodesic mean. Both higher-order
interpolations and least-squares interpolations are possible for the Al and LE geodesics,
but they may be easier to derive and computationally cheaper for the LE versions than the
Al versions. Regardless of which is used, though, the geometries in which the interpola-
tions are embedded would ensure that the Laplacians remain positive-semidefinite and
thus representative of real graphs.

There is also the option of using other Laplacians (e.g., a normalized Laplacian). Some of
these Laplacians have spectral properties, such as bounded eigenvalues, that may induce
better interpolation behaviour. If these Laplacians also have non-constant nullspaces,
though, that would add complexity to the interpolation procedure. This would not be
a significant hurdle for piecewise geodesic interpolation, but it may be problematic for
graph averaging and some of the interpolation expansions described in the paragraph
above. We have not yet looked at this problem in detail, however.

Bakker et al. Applied Network Science (2018) 3:3

Finally, as mentioned previously, the Riemannian framework does not require any one
particular community detection method, though it may have some natural connections
to spectral clustering. Future work with the framework could include comparing different
static clustering methods (either analytically or computationally) to see if there are any
that would be particularly well- or ill-suited to this kind of interpolation and averaging.

Conclusions
We described and implemented Riemannian methods for interpolating between and
averaging dynamic graph snapshots. Following that, we demonstrated the use of these
methods on a synthetically generated dynamic graph and an experimentally produced
proteomics network and compared them with entry-wise linear interpolation. The linear
interpolation increased graph connectivity between interpolation points, and we showed
that when a threshold is used to produce unweighted graphs from the interpolation, the
entry-wise linear approach will always produce a three-phase piecewise constant result.

The geodesic interpolations created using the Riemannian methods produced graphs
with linearly varying connectivity when applied to connected graph snapshots and pro-
duced decreased connectivity between interpolation points when applied to disconnected
graph snapshots. We found that using a low threshold on the edge weights improved
our results on the disconnected graphs. However, these interpolations produced tran-
sient edges (with small positive and negative weights). One area of future work will be to
investigate why this behaviour occurs and interpret it in graph theoretic terms. Choosing
larger bias values when applying these methods to disconnected graphs may improve the
quality of the interpolation, from the perspective of graph connectivity, and it may also
reduce the presence of transient edges as well.

Other significant next steps for this work include developing techniques for applying
our work to significantly larger graphs and expanding upon our current interpola-
tion methods to produce the Riemannian analogues of polynomial interpolation, spline

interpolation, and least-squares regression.

Appendix

Error estimate calculations

For 1-D linear interpolation, there is a well-defined error bound for the interpolation: a
linear interpolation of f(x) from x¢ to x; has an error bound of

1
g (k- x0)* max |f”(&)| (18)

We can then consider the Euclidean distance between a trajectory x(¢) and its approxi-
mation y(¢), ¢ € [0, 1], from which we can calculate an error z(t):

z(t) = x(¢) —y(¢), z(0) =z(1) =0 (19)
2 1 d2 2
Iz]|* < g X s (I1z01%) (20)
d2
— (Ilz*) = 2% -z — 2§ - z + 2 ||z > (21)

dt?

1
Izl < max (25& Z— 2% z+2x— y||2)

IA

1 . . L2
7 max (|x-z| + iz + x|) (22)

Page 25 of 30

Bakker et al. Applied Network Science (2018) 3:3 Page 26 of 30

We cannot say that a linear interpolation will always have the smallest amount of error,
but a linear interpolation would have y = 0, so we would expect it to have a smaller
error bound than an arbitrary nonlinear interpolation (i.e., one not using higher-order

derivative information).

Al Geodesic

We end up with a similar result in considering the distance between a dynamic graph
trajectory X (£) through the positive-definite subspace of the Laplacian and an AI geodesic
interpolation Y'(¢) between X(0) = Rp and X(1) =

> (X,Y) = HlnX—%YX—% g (2?) (23)

Q=¥ & expQ=W=X2YX2 (4)

di (@ (X, Y)) = % (tr (@%)) = 2tr (Q2) (25)
a2 ,d .

- (@ X)) =2— (i (Q92)) (26)

© and ¥ commute with each other and with powers of each other (including negative
powers) because they have the same eigenvectors. Traces of matrix products are also con-
stant under cyclic permutations of those products. We will use these properties to derive
an expression for tr (2 Q) using this matrix commutivity and Greene’s results on traces of
matrix products (Greene 2014):

d _—
Q% (exp) exp (—Q2) = QYWY (27)
d 1k
tr (th (exp) exp (—Q)) =tr| Q Z i Z QrQQk-—r-1 exp (—)
k=0 r=0
1 2 .
- Z o Z tr (QQ’QQ"”’I exp (—Q))
_Z 'Ztr(QQQk Lexp (— Q)Q’)
—Zk'Ztr(Q QO 10" exp (— sz))
= Z .Ztr (QQQk 1exp(Q))

=tr (QQ <Z ;kgk*) exp (—Q))
k=1

. 1 _
=tr [Q% (k; Y !Qk 1) exp (—sz))

=tr (QQ exp 2 exp (—Q)) =tr (QQ) (28)

Bakker et al. Applied Network Science (2018) 3:3 Page 27 of 30

= tr (QQ) = tr (QUVw ™) (29)
Qiwl = (= XT3)YXT2 4 XTIYX T +X’%Y% (Xi))xiylxi
= % (%) X+ QX PVYTIX: £ QX2 Y% (X’%> w1 (30)
(QUw) = tr <th (x72) %0) + o (@x2 vy Ix3)
+tr (Qx—iyjt (X—%) xy—1> (31)

Since ! and commute,

tr (QX—%YZ (X—%) \11—1) —tr

Qx%% (X§)> (32)
Since X"2X"2 = X1,
T x N x x4 (1) = 4 (1) = —xtkxd (33)
(X)X Xt g (xh) = 2 () = -

() xb = —x~hxxh (34)

. d g/ _1\ 1 _le 1,1 1d /1
tr(QUUT) =tr [Q— (X72) X2) +tr (QXT2YY 'X2) 4+ tr QX2 — (X2
dt dt
—tr (Qx—i YY_1X7> —tr (QX—%XX—%)
(QX 2Yylxx—:)—tr (QX’%XX’%>
—tr (X’%QX zYY*lx)—tr (X’%QX’%X) (35)

For the Al geodesic interpolation (Pennec et al. 2006),

. 1 1
Y, (t) = R2C? exp(Ct)CIR? (36)
. 1 _1
Y, Y, ' =RjCR,* (37)
_1 _1
C=InR, >R R, > (38)

since C (and its powers) commute with exp(Ct). Therefore, Yng_l is constant in time.
For the entry-wise linear interpolation, however, there is no closed-form expression for
Y; or Yl_l; Y; is the positive-definite component of the interpolated Laplacian. In general,
though, YlYfl will not be constant in time. We can then consider the second derivative

of the original distance function:

Bakker et al. Applied Network Science (2018) 3:3 Page 28 of 30

|
T
)
L3
<
|
o
N
STV
—
™
[~
Q
™
D=
.
B
)
N——"
|

o
N
™

DI
Q
s
(eI
&
=~
=
B
<
N——

For the geodesic, % (Yg Yg_1> = 0, but this will not be the case for the entry-wise linear

interpolation. Also note the recurrent X ~2QX~7 term: X2QX? is the vector from X to
Y (Pennec et al. 2006), so X “IQX77 s essentially a measure of trajectory discrepancy
rescaled by X.

As with the vector trajectory previously, we cannot say that a given interpolation will
always the most accurate one. However, one of the error terms disappears for the Al
geodesic interpolation; all other things being equal, it is reasonable to expect that the
error on the geodesic interpolation will be, at the very least, less variable than the error
on the entry-wise linear interpolation. For extrapolation, the error estimate is no longer
relevant for the entry-wise linear method because such an extrapolation is not guaran-
teed to remain positive-semidefinite. However, the error on the Al geodesic extrapolation
is well-defined by the remainder formula in Taylor’s theorem. For example, extrapolating
past R; to t > 1 using an Al geodesic built by interpolating from Ry to R; would produce
the following error bound:

1 2
+5 (t —1)° max

t€[1,¢]

d
& X, Y(®) < (¢ — 1) ’dt (d* (X, 1)) o

d> (X, Y))‘ (40)
t=1

with the derivatives as previously calculated.

LE geodesic
For the LE geodesic,
d>(X,Y) = [InX —InY|? = tr (2?) (41)
Q=V-w (42)
V=InX (43)
W=InY (44)
d, , i
p” (d° (X, Y)) = 2tr (QQ) (45)

=tr (VV) —tr (WV) —tr (VW) + tr (WW) (46)

dt

Bakker et al. Applied Network Science (2018) 3:3

In general, all of these derivative terms will be non-zero. However, for the LE geodesic

interpolation
Y=exp(1—06InSy+¢£InSy) (48)
W=InY=(0-6InS,+¢tInS; (49)
W= % (InY)=1InS, —InS; (50)
W =0 (51)

Several of the terms in % (tr (QQ)) will therefore be zero for the LE geodesic. As such,
we would expect the error from the LE geodesic to be less than the error from the entry-
wise input interpolation for the same reasons that we would expect the Al geodesic error
to be smaller than the entry-wise linear interpolation. We can then plug these results into
Eq. 40 to get error bounds for the LE geodesic.

Additional files

Additional file 1: The synthetic data snapshot files begin with ‘comm-fixed’, and each snapshot file is suffixed with
its time index. The proteomics snapshot data files begin with “ppn-numeric” and they are also suffixed with their time
indices. The .edges files may be read with a text editor; we recommend TextPad. (ZIP 46 kb)

Additional file 2: The Python implementation of the methods described in the paper. (PY 24 kb)

Additional file 3: A video of the spectral plots created with the Al geodesic interpolation on the synthetic graph
data progressing through the data snapshots in order from the initial to the final frame. (MP4 1966 kb)

Acknowledgements
The authors would like to thank Jason McDermott for providing the proteomics data used in this study.

Funding
This work was funded by the Microbiomes in Transition (MinT) Initiative at the Pacific Northwest National Laboratory.

Availability of data and materials
The datasets supporting the conclusions of this article are included in the article’s additional files.

Authors’ contributions

(B proposed the Riemannian framework, performed the mathematical derivations, implemented the methods,
generated results, and wrote the main body of the paper. MH obtained the proteomics data, provided the community
similarity metric, co-wrote the literature review, offered comments and corrections on the manuscript, and suggested
reviewers. AS proposed the bias method, wrote code to assist in the community detection, co-wrote the literature
review, generated the synthetic data, offered comments and corrections on the manuscript, and suggested reviewers. All
authors have read and approved the manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 31 October 2017 Accepted: 26 February 2018
Published online: 29 March 2018

References

Absil PA, Mahony R, Sepulchre R (2007) Optimization Algorithms on Matrix Manifolds. Princeton University Press,
Princeton, New Jersey

Arsigny V, Fillard P, Pennec X, Ayache N (2007) Geometric means in a novel vector space structure on symmetric
positive-definite matrices. SIAM J Matrix Anal Appl 29(1):328-347

Batson J, Spielman DA, Srivastava N, Ten SH (2013) Spectral sparsification of graphs: Theory and algorithms. Commun
ACM 56:87-94

Blondel V, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech
Theory Exp. P10008. http://iopscience.iop.org/article/10.1088/1742-5468/2008/10/P10008/pdf

Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Compex networks, structure and dynamics. Phys Rep
424:175-308

Boguna M, Papadopoulos F, Krioukov D (2010) Sustaining the internet with hyperbolic mapping. Nat Commun 1:62

Page 29 of 30

https://doi.org/10.1007/s41109-018-0059-2
https://doi.org/10.1007/s41109-018-0059-2
https://doi.org/10.1007/s41109-018-0059-2
http://iopscience.iop.org/article/10.1088/1742-5468/2008/10/P10008/pdf

Bakker et al. Applied Network Science (2018) 3:3 Page 30 of 30

Bonnabel S, Sepulchre R (2009) Riemannian metric and geometric mean for positive semidefinite matrices of fixed rank.
SIAM J Matrix Anal Appl 31:1055-1070

Boothby WM (1986) An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, Orlando

Brualdi RA (2006) Energy of a graph. In: Notes to AIM Workshop on Spectra of Families of Matrices Described by Graphs,
Digraphs, and Sign Patterns

Cazabet R, Amblard F (2014) Dynamic Community Detection. In: Alhajj R, Rokne J (eds). Encyclopedia of Social Network
Analysis and Mining. Springer, New York. pp 404-414

Domokos G, Sipos AR, Szabd T (2012) The mechanics of rocking stones:equilibria of separated scales. Math Geosci
44:71-89

Fenn DJ, Porter MA, Mucha PJ, McDonald M, Williams S, Johnson NF, Jones NS (2012) Dynamical clustering of exchange
rates. Quant Finan 12(10):1493-1520

Fortunato S (2010) Community detection in graphs. Phys Rep 486(3-5):75-174

Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821-7826

Greene J (2014) Traces of matrix products. Electron J Matrix Algebra. 27:716-734

Harris JM, Hirst JL, Mossinghoff M (2008) Combinatorics and Graph Theory. Springer, New York

Keshava Prasad T, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B,
Venugopal A, et al. (2008) Human protein reference database—2009 update. Nucleic acids Res 37(suppl_1):767-772

Krioukov D, Papadopoulos F, Vahdat A, Boguia M (2009) Curvature and temperature of complex networks. Phys Rev E
80:035101

Krioukov D, Papadopoulos F, Kitsak M, Vahdat A, Boguiid M (2010) Hyperbolic geometry of complex networks. Phys Rev E
82:036106

Lambiotte R, Delvenne JC, Barahona M (2014) Random walks, markov processes and the multiscale modular organization
of complex networks. IEEE Trans Netw Sci Eng 1(2):76-90

Mitchell HD, Eisfeld AJ, Sims AC, McDermott JE, Matzke MM, Webb-Robertson BJM, Tilton SC, Tchitchek N, Josset L, Li C,
etal. (2013) A network integration approach to predict conserved regulators related to pathogenicity of influenza
and sars-cov respiratory viruses. PLoS ONE 8(7):69374

Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010) Community structure in time-dependent, multiscale, and
multiplex networks. Science 328(5980):876-878

Newman MEJ (2010) Networks: An Introduction. Oxford University Press, Oxford, United Kingdom

Nguyen NP, Dinh TN, Shen Y, Thai MT (2014) Dynamic social community detection and its applications. Plos ONE 9(4):1-18

Pennec X, Fillard P, Ayache N (2006) A riemannian framework for tensor computing. Int J Comput Vis 66:41-66

Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850

Tantipathananandh C, Berger-Wolf TY (2011) Finding communities in dynamic social networks. In: 2011 IEEE 11th
International Conference on Data Mining. IEEE, Vancouver. pp 12361241

Traag VA, Bruggeman J (2009) Community detection in networks with positive and negative links. Phys Rev E 80(3):036115

Vandereycken B (2013) Low-rank matrix completion by riemannian optimization. SIAM J Optim 23:1214-1236

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	Keywords

	Introduction
	Graphs and dynamic community detection
	Motivation for a Riemannian framework
	Contributions

	Riemannian geometry and dynamic graphs
	Riemannian geometry and matrix manifolds
	Graph Laplacians and Riemannian geometry

	A Riemannian framework for dynamic community detection
	Graph interpolation and averaging
	Alternative Riemannian geometries
	Disconnected graphs
	Dynamic spectral clustering

	Computational experiments
	Implementation and testing procedure
	Synthetic graph results
	Proteomics network results

	Discussion and future work
	Interpolation error
	Computational cost and supporting methods
	Additional interpolation and clustering methods

	Conclusions
	Appendix
	Error estimate calculations
	AI Geodesic
	LE geodesic

	Additional files
	Additional file 1
	Additional file 2
	Additional file 3

	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	References

