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Abstract

A stock market is considered as one of the highly complex systems, which consists of
many components whose prices move up and down without having a clear pattern.
The complex nature of a stock market challenges us on making a reliable prediction of
its future movements. In this paper, we aim at building a new method to forecast the
future movements of Standard & Poor’s 500 Index (S&P 500) by constructing
time-series complex networks of S&P 500 underlying companies by connecting them
with links whose weights are given by the mutual information of 60-min price

USA . . . . S
movements of the pairs of the companies with the consecutive 5340 min price records.

We showed that the changes in the strength distributions of the networks provide an
important information on the network’s future movements. We built several metrics
using the strength distributions and network measurements such as centrality, and we
combined the best two predictors by performing a linear combination. We found that
the combined predictor and the changes in S&P 500 show a quadratic relationship, and
it allows us to predict the amplitude of the one step future change in S&P 500. The
result showed significant fluctuations in S&P 500 Index when the combined predictor
was high. In terms of making the actual index predictions, we built ARIMA models with
and without inclusion of network measurements, and compared the predictive power
of them. We found that adding the network measurements into the ARIMA models
improves the model accuracy. These findings are useful for financial market policy
makers as an indicator based on which they can interfere with the markets before the
markets make a drastic change, and for quantitative investors to improve their
forecasting models.

Keywords: Networks science, Complex systems, Stock market networks, Mutual
information, Strength distribution, Information theory, Kullback-Leibler divergence,
Stock market prediction, Flash crash detection, ARIMA

Introduction

Stock market crashes are hard to prevent from happening due to the high complexity of
the market which made of a lot of components behaving interdependently. “The Crash of
2:45” happened in May 6th 2010, which made U.S. Stock markets value decrease by about
6 percent in less than 30 min, and the flash crash occurred in Singapore took away $6.9 bil-
lion from the Singapore Exchange are a few examples of flash crashes. Studies (Menkveld
and Yueshen 2016; U.S. Commodity Futures Trading Commision 2010; Kirilenko et al.
2017) including the CFTC (U.S. Commodity Futures Trading Commission) and SEC (U.S.
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Securities and Exchange Commission) report suggested that the main cause was said to
be the high-frequency algorithmic traders dumping high volumes of the financial instru-
ments to the market around the same time, and exacerbating the volatility during the
events. Those algorithms are developed using complex mathematical models based on
some theories from physics, statistics and other scientific fields with a sole purpose of pro-
ducing possible trading signals. When these algorithms are triggered to make trades, the
market surges or falls drastically because of the high volatility made by the algorithms in
the market (Kirilenko et al. 2017). Considering that the high-frequency trading accounts
for over 70 percent of dollar trading volumes in the U.S. financial market, and those flash
crashes happened over 18,500 times between 2006 and 2011 (Frank 2010; Neil et al. 2012),
forecasting the flash crash and being able to prevent any loss are strongly needed for the
unarmored ordinary individual investors’ safety, healthy market ecology, and the whole
economy.

There have been many studies and developments on predicting stock market move-
ments using many different approaches including deep learning algorithms with neural
networks. Having machines learn huge sets of data such as historical stock prices, trad-
ing volumes, accounting performances, fundamental features of the stocks, and even the
weather, and produce the future values of stocks or index is one big branch of stock
market forecasting methods. It utilizes many learning, regression, classification, neural
networks algorithms such as support vector machine, random forest, logistic regression,
naive Bayes, and reccurent neural networks, and tries to make accurate predictions by
adjusting itself according to the market changes (Guresen et al. 2011; Huang et al. 2004;
Atsalakis and Valavanis 2009; Kim and Han 2000). Another popular method is to use natu-
ral language processing techniques that let machines extract and understand information
written and spoken in human languages, and try to capture stock market sentiments for
making investment decisions based on the mood or the sentiments of the stock mar-
ket (Schumaker et al. 2012; Schumaker and Chen 2009). Traditional finance and modern
financial engineering also attempt to forecast the stock market using the fundamental and
technical analysis. While the fundamental analysis is interested in valuating the intrinsic
values of the stocks based on companies’ performances and the economic status, techni-
cal analysis focuses on the price and volume dynamics, and tries to capture the investing
timing by developing technical indicators (Wong et al. 2010).

Some studies adapted network science theories to study the stock market. Those stud-
ies are mainly focused on analyzing the stock market networks’ structural properties
to find out the major influencer, and to detect the communities of the stock markets
(Namaki et al. 2011; Tse et al. 2010; Huang et al. 2009). However, few research has been
conducted to forecast the future movements of the stock market using networks science.
One of the few studies built corporate news networks using top 50 European compa-
nies in STOXX 50 index as nodes, and the sum of the number of news items with the
common topic of each company pair as link weights. This study found out that the aver-
age eigenvector centrality of the news networks has an impact on return and volatility
of the STOXX 50 index (Creamer et al. 2013). Another study constructed a role-based
trading network for each company characterizing the daily trading relationship among its
investors with transaction data. Particularly, nodes are traders involved in the transactions
of a stock, and for each transaction between two traders, there is a link from the seller
to the buyer. By categorizing the nodes into three types (Hub, Periphery, and Connector)
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according to the node’s connectedness, this study created 9 different link types, and found
that the time-series of fraction of the link type P-H and C-H have a predictive power with
the maximum accuracy of 69.2% (Sun et al. 2014).

Network science has been used and developed for many different fields. However, a
few studies were conducted in terms of financial market time-series forecasting. Also,
the previous studies did not show that whether the network analysis helps improve the
performances of financial market time-series forecasting models. In this paper, we discuss
our network analysis that forecasts future amplitudes of the S&P 500 changes to the one
hour future and helps improve the performances of ARIMA models.

Method

This study aims at building a reliable stock market prediction model based on the stock
market networks analysis, and prove that the network measurements indeed improve the
ARIMA models. The study follows the following steps. First, we acquire the raw data set of
stock price records. Second, we pre-process the data set with an appropriate imputation
method to deal with missing data. Third, we compute the pairwise mutual information
of the stocks in S&P 500. Fourth, we construct networks using the mutual information
as link weights. Fifth, we compute the node strength distribution of each network. Sixth,
we build the several predictors using the strength distribution, network centrality and
modularity. Seventh, we build linearly combined predictors with the two best performing
metrics that maximizes the correlation between the metric and the changes in S&P 500.
Eighth, we built ARIMA models to predict the actual S&P 500 index. Lastly, we show
whether or not the network measurements help improve the ARIMA models Fig. 1. More

details are discussed in the following subsections.

Data gathering and preprocessing

Among the 504 companies in S&P 500 components at the time of the analysis, 475 com-
panies’ stock price records were used due to the data availability. Also, S&P 500 index
record was used as the dependent variable of our model. Each time-series record consists
of 5340 one-minute interval closed prices ranging from 9:30am in September 22nd 2016
to 4:00pm in October 11th 2016, which is for 89 consecutive trading hours. The stock
price records for 475 stocks and S&P 500 index records were acquired from the Google
Finance (https://www.google.com/finance) real-time price quotes. The data set contained
missing values due to the fact that some stocks were not traded at specific dates or times
where the stock exchanges halted or delayed the trades of the specific companies’ stocks
for news pending or significant imbalances in the pending buy and sell orders (Christie
et al. 2002). The data set was preprocessed to handle the missing data in hot deck impu-
tation method - “last observation carried forward” - particularly by replacing the missing
values with the nearest available data points in the same time-series specifically with the
very last closed price (DiCesare 2006).

Network construction

With the time-series data for each company in the S&P 500, we formed hourly networks
in order to inspect the hourly movements of S&P 500 and make a prediction to the one
step forward. In total, 89 hourly networks were constructed with 475 nodes representing
companies of S&P 500 and edges representing the pairwise mutual information of 60-min
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Fig. 1 Analysis Process a gather time-series stock price records of the S&P 500 underlying companies, and
split the records by one hour records, b calculate mutual information of the stock pairs, € construct networks
using the mutual information as link weights, d computing the strength distribution for each network, e
build metrics with the strength distribution data and other network measurements (average, median and
maximum values of eigenvector and betweenness centralities are used). The plotted centralities are
maximum values of centralities, f predict the amplitude of S&P 500 changes by forming a linear combination
of top performing metrics, and forecast actual S&P 500 index by building ARIMA models with network
measurements

RS, = AD,

price movements of the stocks. Previous studies used various dependency measures for
the link weights such as correlation and transfer entropy (conditional mutual informa-
tion) when constructing networks (Namaki et al. 2011; Huang et al. 2009; David et al.
2012; Junior et al. 2015; Levy-Carciente et al. 2015; Curme et al. 2015) to see how the
movements of a specific stock or index influence that of other indices or stocks and how
a specific state propagates through out the nodes in stock market networks. However,
in this study, considering that our goal is to predict the movements of the stock mar-
ket as a single index by investigating the collective dynamics of the nodes, we chose to
use the mutual information as our network link weights. The mutual information mea-
sures the amount of information of a variable given the information of another variable,
and is better at capturing the non-linear correlation of two variables than other depen-
dency measures (Li 1990). Particularly for our analysis, because we investigated one-hour
movement of the S&P 500 with one-minute interval data, we split the 5340-min long time-
series data into 60-min long non-overlapping windows for each stock. For each window,
we computed mutual information of every stock pair by the Eq. 1 with a binning operation
(bin size = 5) where X; and Y} are price records of a pair stocks of the specific window, and
p(x) is the probability of a random sample x occurring in X;, and p(y) is the probability of
arandom sample y occurring in Yj, and i = {s1, 82, -+ , 8475} and j = {s1,52, - - - , S475} rep-
resenting 475 companies, while p(x, y) is the joint probability. Finally, we created mutual
information matrix for all the stock pairs as shown below matrix (2).

px,y) )

PGP0 @)

XY= Y, p(x,y)log(

xeXiyeYjx#Ey
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As for the network links, we assigned a link weight with the corresponding mutual
information. This means that the networks are complete weighted graphs having links
between every node and every other node, and since the mutual information is symmet-
ric, the network is also undirected. Some previous studies formed the networks with a
threshold value on the link weights for a specific purpose of detecting the stock market
clusters to see whether the stocks in the same industries or sectors fall into the same com-
munity as of their market classifications (Namaki et al. 2011). However, in this particular
study, we took all the link weights under our consideration in order to study the dynam-
ics of the strength distributions of the networks for forecasting the future stock market
fluctuations.

Analysis

We formed several different metrics that will be used as our predictors to forecast the
amplitude of the future S&P 500 changes using the strength distributions and the net-
work measurements such as the network centrality and modularity. We first computed
the strength of each node for each network, and formed the strength distributions for all
the 89 networks. The strength distributions were normally on the node strength range of
0 ~ 300, but sometimes it went over 300 with different distribution shapes and more high
strength nodes. For example, the Fig. 2 shows unusual movements of the strength dis-
tributions shifting to the right and coming back to the normal range. These movements
are critical information for our study because they are followed by large changes in S&P
500 index. In order to investigate this founding thoroughly, we formed several metrics
using the strength distributions. First, we formed a metric by interpreting the distribution
shapes into numeric values using Kullback-Leibler divergence (KLD). Second, we formed
the relative strength (RS) metric using the actual node strength data. third, we formed a
couple of statistical metrics such as mean, variance, skewness and kurtosis of the strength
distributions. Lastly, we build multiple of ARIMA models with and without inclusion of
network measurements, and compare them to show that the inclusion of the network
measurements increases the model accuracy in terms of forecasting the future movement
of the stock market. More details are described in the following subsections. All statisti-
cal measures for the analyses in the “Results” section are computed using statistics tools
(networkX, scikit-learn and statmodels) in Python.

Metrics using strength distributions

The first metric was formed by using Kullback-Leibler divergence which is to compute
the relative entropy of each network against the average prior distribution (Q;), the prob-
ability distribution of the aggregated average strength of the prior networks calculated by
the Eq. (3) where s is the number of prior networks. Kullback-Leibler divergence, which
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Fig. 2 Unusual deviations in Strength distribution. The strength distribution(blue) drastically shifts to the
right(pink) having more high strength nodes, and comes back to the normal range(green). Because these
deviations are followed by large changes in S&P 500, they could be used as a representation of the dynamics

of S&P 500 index

is also called relative entropy, is a measure of the difference between two probability
distributions P and Q where P is the distribution of the observation that we want to see
how much it differs from the average prior distribution Q. For example, Q; for calculat-
ing KLD-s of the t th network is the average of the ¢-1 th, t-2 th, - - -, and ¢-s th networks’
strength distributions. Considering that the stock market runs 6.5 h daily, we computed
Kullback-Leibler divergence between each strength distribution and the average of 3 h
(0.5-trading day), 6 h (1-trading day), 9 h (1.5-trading day), 13 h (2-trading days) and
all period prior distributions namely KLD-3, KLD-6, KLD-9, KLD-13 and KLD-AIl. The

Kullback-Leibler divergence of P from Q was calculated by Eq. (4).

tt';tlfs b;
Qt - ) (3)
S
ds @

Dy (Pi|lQ)) = ) Pi(i) log o0’

The second metric was formed by using the actual node strength instead of using
probability distributions. We call this metric relative strength (RS) of the network. We
calculated the average strength (AD) of nodes of each network, and divided it by the aver-
age strength of prior networks as shown in the Eq. (5) where s is the number of prior

networks.

i=t—s

t—1
AD;
RS, = AD; /b. (5)
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Network centrality and modularity

Network centrality is often used in social network analysis for finding out the most influ-
ential or important nodes in networks by measuring their cohesiveness or involvements in
the networks. In the sense that our stock market networks contained more high strength
nodes when there were large changes in S&P 500 index, metrics using centrality of the
nodes could explain the movements of S&P 500 index. We computed eigenvector and
betweenness centralities of the nodes in our S&P 500 networks, and formed metrics using
their mean, median and maximum values. In the same sense, we also formed metrics
using network modularity. Modularity is a clustering measure that is to find the commu-
nity structure of a network. A high modularity means that there are more links within a
specific group in a network than when links are randomly distributed among groups in
the network.

For each metric we built, we tested their prediction performance against the actual
changes, squares of the changes and absolute values of the changes in S&P 500 index. The
second and third-order of polynomial regression and a simple linear regressions are used
for performing the fitting tests. Results are shown in the “Results” section.

Results

We tested 21 different metrics for forecasting the amplitudes of S&P 500 changes using
network measurements. First of all, in all cases, there was no strong linear relation-
ship between the metrics and the actual changes in S&P 500. This was because that,
in most cases, the metrics and S&P 500 changes had a quadratic relationship. This
was followed by the fact that the nodes were more strongly connected to each other
both when S&P 500 went up or down. This fact is shown with the higher correla-
tions in Act. S&P * and Abs. S&P ** cases (see Table 1). The correlation between the
metrics and S&P 500 changes were much stronger in the polynomial regressions with
actual ups and downs of the index, and linear regression with absolutes changes of the
index.

The KLD metrics were performing better than other metrics in most of the cases, hav-
ing the maximum r-squared of 0.6725 for Abs. S&P ** case with KLD 9. Figure 3 is a
graph of all the KLD metrics with actual and absolute values of S&P 500, showing that
the divergences were normally below 0.2 and there were some hikes from time to time.
A low KLD means the nodes strength of a network at a specific time were distributed
similar to the average prior distribution, and a hike means that the strength distribution
of the network drastically deviates from the average prior distribution, having more high
strength nodes. This reflects that when KLD hikes, the movements of the stocks in the
networks have more correlation in each other’s movements. As we can see in this graph
and the scatter plot (see Fig. 4) KLD has a clear positive correlation with absolute values
of S&P 500 changes, and shows a quadratic relationship having both negative and positive
relationships with the actual changes in S&P 500.

Similar to the Kullback-Leibler divergence, Relative Strength also showed a quadratic
relationship with actual S&P 500 changes and a clear linear relationship with absolute
values of the changes (see Figs. 5 and 6). Relative strength is normally in between 0.8 and
1.1 which indicates that the strength of the networks are usually similar to that of the
prior distributions. However, there were number of cases where the relative strength was
much higher or lower from time to time. The overall prediction performance was worse
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Table 1 Correlation coefficients between S&P 500 changes and the predictors with polynomial and
linear regressions

Correlation matrix Act. S&P * Act. S&P ** Sqrs. S&P ** Abs. S&P **
Strength distribution

KLD 3 0.5628 /0.6081 0.0895 0.6705 0.6454
KLD 6 0.5752 /0.5984 0.0837 0.6823 0.6360
KLD 9 0.5333/0.5334 0.0582 0.6498 0.6725
KLD 13 04794 /04886 0.0408 06182 0.6219
KLD All 0.5582/0.5635 0.1175 0.6521 0.6587
RS3 04185 /04455 00173 03811 0.6630
RS6 04326 /0.4845 0.0159 0.3838 0.6615
RS9 04196 /0.4855 0.0093 0.3750 0.6526
RS 13 04385 /04674 0.0024 04077 0.6685
RS All 04065/ 0.4447 0.0134 0.3649 0.6552
Mean 04189 /04583 0.0129 0.3640 0.6536
Variance 0.1487 /0.1641 0.0175 0.3548 0.6407
Skewness 0.5471/0.5610 0.0644 0.6265 0.5716
Kurtosis 0.5425/0.5581 0.0192 0.4047 0.6532

Eigenvector centrality

Mean 0.1526/0.1795 0.0099 0.2591 0.5351
Median 0.3168/0.3200 0.0110 0.2720 0.5509
Maximum 04272 /04494 0.0068 02175 04836

Betweenness centrality

Mean 0.0435/0.0482 0.0111 0.2797 0.5482
Median 0.0288/0.0289 0.0102 0.0089 0.0332
Maximum 0.0288/0.0288 0.0162 0.2445 0.4350

Network modularity
Modularity 0.2973/0.2982 0.0082 0.1503 0.3906

Note. Correlations are significant at the 0.05 level
Act.: Actual values of S&P 500 changes

Sars.: Squared values of S&P 500 changes

Abs.: Absolute values of S&P 500 changes
“Polynomial regression second-order/third-order
“Linear regression

than KLD’s, but for predicting the absolute values of the changes with linear regressions,
it performed as good as KLD.

Among the statistical measures using the strength distributions, the skewness was the
top performer in Act. S&P 500 * case (R-squared = 0.5471), and the kurtosis was the
top performer in Abs. S&P 500 ** case (R-squared = 0.6532). The mean and variance
performed much better in predicting the absolute changes in S&P 500 than predicting the
actual changes.

We tested average, median, and maximum values of eigenvector and betweeness cen-
tralities. They showed correlations with actual and absolute values of the S&P 500
changes. Especially, predicting the absolute values of the changes in S&P 500, it showed
R-squared of 0.5. This relationship was not strong, but still explained that dynamics of the
S&P 500 index can be explained by the structural property of the stock market networks -
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when the nodes in the networks were clustered, grouped or tied more strongly, there came
the large changes in S&P 500 index. Modularity, however, performed poorer than other
metrics having no clear relationships with the S&P 500 changes.

To make stronger predictors out of all the metrics, we constructed linear combinations.
We used two different ways for predicting the amplitude. First, we used a polynomial
regression on the actual values of the changes. Second, we used a linear regression on
the absolute values of the changes. We picked the top two performers for each method
to perform the linear combination. We picked KLD 6 and Skewness(S), and KLD 3 and
Skewness for the polynomial regression degree 2 and 3 for the first method, and picked
KLD 9 and RS 13 for the second method. Particularly, we formed three combined metrics
Cl = aKLD3 + (1 — a)S, C2 = aKLD6 + (1 — a)S, and C3 = aKLD9 + (1 — a)RS13.
We optimized the two constants to have a maximum correlation between the combined
metrics and the S&P 500 changes by performing the grid search method for finding out
the optimal value of a. We found that all of the three metrics have statistically signif-
icant correlations with the S&P 500 changes. Table 2 shows the correlations between
S&P 500 changes and the three predictors as well as the optimal value of the constant a.
C3 performed the best in predicting the amplitudes of the S&P 500 changes. It showed
R-squared of 0.7301 in the linear regression with the optimized constant a = 0.834. C2
and C1 in the polynomial regressions explained about 64% of the variance in the actual
values of S&P 500 changes. As seen in this result, we could predict the amplitude better
when working with the absolute values of S&P 500 changes with linear regression rather
than working with the actual values with polynomial regressions.

In order to investigate the prediction power of the network measurements on predict-
ing the actual S&P 500 index, we built several autoregressive integrated moving average
models (ARIMA). ARIMA is one of the popular time-series forecasting models in statis-
tics, and often used for financial market time-series forecasting. We first built an ARIMA
model which only took an endogenous variable, historical S&P 500 index that we used
earlier. We performed a grid search for optimizing the three ARIMA parameters (p, d,
q): p for the order of autoregressive model, d for the degree of differencing, and q for the
order of the moving average model. Out of all ARIMA models, we chose ARIMA(1,1,1)
for the further analysis because it yielded the lowest Akaike information criterion (AIC)
which is a measure of a statistical model considering the goodness of fit and simplicity
of the model. Figure 7a shows the actual and predicted values of S&P 500 index by the
ARIMA(1,1,1) model. The model looked pretty much like a 1-lag moving average of the
original series, and performed a mean squared error of 25.19. To see if the network mea-
surements are useful to be added in ARIMA models, we included each and every network
measurements into the ARIMA models as an exogenous variable. Table 3 shows the mean
squared error of the ARIMA models with and without network measurements. Based on
the results, ARIMA(1,1,0) with RS model lowered the MSE by 4.92 which was a significant

Table 2 Combined predictors vs. S&P 500 changes

Combinations Constant(a) Linear Polynomial (k=2) Polynomial (k=3)
KLD3 + Skewness 0.798 - - 0.6481

KLD6 + Skewness 0.767 - 0.6409

KLD9 + RS13 0.834 0.73012

Note. Correlations are significant at the 0.05 level
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Fig. 7 ARIMA models actual vs. predicted S&P 500 index. a ARIMA(1, 1, 1) looks like a 1-lag moving average of
the actual S&P 500 series. This model performed MSE of 25.19. b ARIMA(1, 1, 0) with RS model lowered the
gap between the actual and predicted series, and it performed MSE of 20.27 which was lower than ARIMA(1,
1, 1) model by 20%

improvement. ARIMA(1,1,0) with betweenness centrality also lowered the MSE. As we
can see from the Fig. 7b, the predictions from ARIMA(1,1,0) with RS got closer to the
actual values of S&P 500 index.

To sum up, some of the network measurements we built in this research have fore-
casting power on predicting the amplitudes of S&P 500 changes. KLD, RS and Skewness
of the strength distributions were the top performers with the significant correlations of

Table 3 Mean squared errors of ARIMA models

Models MSE? Models MSE?®
ARIMA(1,1,1) 25.19 ARIMA(1,1,0) + KLD 26.17
ARIMA(1,1,0) + RS 20.27 ARIMA(1,1,0) + Skewness 26.32
ARIMA(1,1,0) + Kurtosis 27.02 ARIMA(1,1,0) + Mean 257
ARIMA(1,1,0) + Variance 25.66 ARIMA(1,1,1) + Modularity 25.23
ARIMA(1,1,0) + Eigenvector cent 26.95 ARIMA(1,1,0) + Betweenness cent 244

Note. *Mean Squared Error
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over 0.64. Also, adding RS into the ARIMA model improved the model performance by
about 20%.

Discussions and conclusions

In this study, we demonstrated a new approach to forecast future S&P 500 changes using
networks science, and showed that the predictors we built were strongly correlated to
the amplitude of the S&P 500 changes. This result was because that we could be able to
capture the market dynamics by analyzing the S&P 500 networks. The networks showing
high connectedness among all the companies(nodes) means the stocks are more highly
correlated. Stocks are highly correlated when the stocks are bought or sold together. As
a whole market point of view, when most of the stocks are moving together, the index
is likely to move in the same direction as the majority of stocks is moving. Our ARIMA
models were improved by adding RS. The proposed method still needs to be tested and
validated through out-of-sample evaluation, which is beyond the scope of this paper and
is among our future research. The results might be used as a new indicator that might
advise financial policy makers in dealing with huge sudden market fluctuations that defi-
nitely bring the market serious problems. Also, the result can be used for the quantitative
investors to improve their existing ARIMA models. In this paper, we tested the use-
fulness of network measurements with ARIMA model only. However, in the future, we
will investigate whether the network measurements help improve other financial market
time-series forecasting models such as machine learning models.

In this study, we were able to get 475 companies’ stock price records out of 504 compa-
nies. It might be possible to improve the performance of the models if we have the price
records for all the companies. Another improvement can be achieved by using finer data
such as a half minute interval price records or even finer than a half minute. If we use
finer data sets, we might be able to improve the model for forecasting one hour future,
and also able to forecast nearer future such as 30-min future or 15-min future.
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