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Abstract
Using single-cell laser scanning photostimulation (LSPS) combined with broad-field
calcium imaging, we measured the functional connectivity of neuronal cultures before
and after the developmental appearance of network bursting. From these data,
network properties were determined for these relatively large neuronal networks.
Based on these properties, we found that although ‘small-world’ network behavior
existed throughout this time period, only average node degree and global efficiency
correlate with the development of network bursting while clustering and local
efficiency remained relatively constant.
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Introduction
Coherent, large-scale activity of neurons, known as neuronal oscillations, is an emergent
phenomenon found in many neural systems. In the intact brain, neuronal oscillations
have been linked to sleeping states, memory formation, perception, and motor control
(Buzsáki and Draguhn 2004; Fell and Axmacher 2011). Outside the brain, they have been
observed in both acute brain slices (Kubota et al. 2003) and neuronal cultures, where they
are more commonly known as network bursts (Segev et al. 2001; Wagenaar et al. 2006).
It has been suggested that, within all of these systems, neuronal oscillations play the
important role of facilitating long-distance communication between large populations of
neurons (Fries 2005).
A great challenge has been understanding what role the underlying network structure

plays in producing synchronization (Fuchs et al. 2009; Maheswaranathan et al. 2012).
Knowledge of connectivity has been difficult to obtain even for small neuronal cultures
consisting of ∼ 103 neurons and ∼ 105 connections. As a result, much effort has been
focused on the converse problem of deducing connectivity from analyses of network
activity (Jia et al. 2004; Tibau et al. 2013; Timme 2007; Savarraj and Chiu 2014).
In this article, we present direct measurements of functional connectivity using a

technique that performs laser scanning photostimulation (LSPS) of single neurons with
simultaneous calcium (Ca) imaging of a large cell-population. To our knowledge, such a
combination of methods has not been done before. This technique allows rapid functional
mapping of excitatory connections in neuronal networks consisting of 150-200 neurons
and 1500-2000 connections. Throughout a 12-day period, connectivity maps were made,
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from which network properties before and after the beginning of network bursting were
determined.

Apparatus andmaterials
Both LSPS (Katz and Dalva 1994; Sturm et al. 2014) and Ca imaging (Cossart et al. 2005;
Grienberger and Konnerth 2012) have been used successfully to respectively stimulate
and record activity from a large population of neurons. We combined these techniques by
modifying an existing microscope (Slicescope, Scientifica, UK). For the LSPS component
(see Fig. 1), a dichroic mirror was used to direct light from a 375-nm laser diode (IQ2A,
Power Technology, USA) towards a 4x microscope objective (0.1 NA), which focused
2-mW of light to a spot < 10 μm in diameter at the sample. The laser diode current
was gated to generate a 2-ms pulse of light for each photostimulation event. When a
light pulse illuminated a neuron, nearby caged glutamate was photolyzed within 0.2 μs
and caused the neuron to fire action potentials. Galvano-driven mirrors (not shown)
under computer control were utilized to rapidly steer the laser spot to any point within a
1350-μm×1350-μm field-of-view (FOV) containing hundreds of neurons.
For the Ca imaging component, a different dichroic mirror was placed above the first

and used to direct 494-nm light from a high-power light emitting diode (LED) (PE-100,
CoolLED, UK) through the same microscope objective. This light broadly illuminated
the entire FOV in order to excite Fluo-4 AM, a cell-permeant and calcium-sensitive dye.
Because intracellular free-calcium (Ca2+) increases whenever a neuron fires an action
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Fig. 1 a Schematic diagram of the apparatus. Field-of-view (FOV) b under Bright-field illumination and c of
corresponding calcium indicator (Fluo-4) fluorescence. Scale bars: 200 μm
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potential, large-scale activity of all neurons in the FOV can be recorded by detecting
changes in the 516-nm emission fluorescence using a fast and sensitive EM-CCD camera
(ImagEM, Hamamatsu, Japan).
Experiments were performed on primary cultures using rat cortical neurons dissociated

from embryonic day 17 (E17) Sprague-Dawley rats and plated onto 12-mm glass cover-
slips pretreated with poly-L-ornithine. The plating medium consisted of 80% Dulbecco’s
modified Eagle’s medium (DMEM) without glutamine, 10% Ham’s F12-nutrients, 10%
bovine calf serum (heat-inactivated and Fe-supplemented), 25mMHEPES stock, 24 U/ml
penicillin, and 24 μg/ml streptomycin. Cultures were seeded for one day at a density
of ∼ 225, 000 cells/ml. On day in vitro (DIV) 2, glial cell proliferation was inhibited with
150μMcytosine arabinoside and themediumwas switched to growthmedium consisting
of neurobasal medium, 20 mM B-27 supplement, 24 U/ml penicillin, and 24 μg/ml strep-
tomycin. The growth medium was refreshed three times a week by replacing half of the
volume. Final cell density was 300-400 cells/mm2, which contained both excitatory and
inhibitory neurons.
Prior to each experiment, a coverslip was incubated for 30 min in growth medium

containing 2 μM Fluo-4 AM (Thermo Fisher Scientific, USA), a cell-permeant calcium
indicator. The dye was transferred from stock solution by dissolving in equal volume
Pluronic F-127 (20% in DMSO). The coverslip was then placed in imaging medium
(pH 7.2) consisting of 5 mM KCl, 140 mM NaCl, 1 mM MgCl2, 1 mM CaCl2, 24 mM
D-glucose, and 10 mM HEPES; and incubated for another 30 min. Finally, caged gluta-
mate (MNI-glutamate, Tocris Bioscience, UK) was added to give a final concentration
of 200 μM. The 494-nm excitation light for Fluo-4 is sufficiently far away from 340-
nm peak absorption wavelength for MNI-glutamate, to allow it to operate without
interference. Indeed, auxiliary experiments verified that the presence of MNI-glutamate
had no observable effect on the level of spontaneous activity.
Initially, cultured neurons were plated without making any connections. After DIV

3-4, neurons begin to form synaptic connections and randomly fire action potentials. At
DIV 8-12, network bursting begins when about 20% of neurons fire together roughly every
2 min. As the network matured, both the intensity and frequency of bursting increased
such that, at DIV 20, nearly 80% of neurons were firing together every 30 s.

Mapping functional connectivity
A typical experiment began by recording spontaneous network activity for 10 min of
neurons near the center of the coverslip. Although spiking activity typically occurs in
short (∼ 10–50 ms) bursts of action potentials, the corresponding fractional changes
in dye fluorescence, or Ca responses (�F/F), are much longer (∼ 10 sec) (Cossart et al.
2005). Thus, images taken once per second at a 50-ms exposure time were sufficient to
capture all network bursting activity. A neuron was considered active if its fluorescence
changed by more than 1%. A network bursting event was defined to occur when ≥ 20%
of neurons in the final mapped network (to be determined later) were active within the
same 1-sec time frame. To characterize network bursting for each neuron, we defined
the bursting parameter, b, to be the fraction of time a neuron participated in a network
bursting event. This parameter was then averaged over all mapped neurons, 〈b〉, and
then over all networks for that day, 〈b〉avg and indicates the level of network bursting
activity as a function of network age. As is similarly reported in work by others (Tibau
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Fig. 2 Neuronal network bursting. Percentage of spontaneously active neurons in mapped neuronal
networks at a DIV 9 and b DIV 16. A neuron was considered active when it exhibited > 1% Ca responses
(�F/F). A network bursting event was defined to occur when ≥ 20% of mapped neurons were active within
the same 1-sec time frame. The bursting parameter, b, characterized the fraction of the time a neuron
participated in a network bursting event. c 〈b〉avg , which is the average of b over all mapped neurons and
over all networks for that day, shows network bursting as a function of network age

et al. 2013; Wagenaar et al. 2006), a clear transition to network bursting was observed at
DIV 13 [Fig. 2c].
Next, using the same camera frame-rate and exposure time, functional mapping began

by first stimulating a randomly chosen neuron near the center of the FOV and identifying
neurons that showed changes in fluorescence. Single-neuron photostimulation could be
achieved because the laser spot size (< 10μm)was comparable to the size of a neuron and
much less than the typical interneuronal spacing in these cultures. Typically, responding
neurons were∼ 100μm from the photostimulated neuron and, thus, well within the FOV
area. Because the Fluo-4 rise time (∼ 20 ms) is much less than the time between frames,
Ca responses from neurons that were directly connected to the photostimulated neuron,
i.e. first order neurons, began at the same imaging frame as the response from the pho-
tostimulated neuron [see Fig. 3]. While Ca responses from second order neurons could
be elicited by increasing the light power and/or pulse duration, these had onset times of
3–5 s after photostimulation and could easily be distinguished. The longer time delay is
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a b c

Fig. 3 Simultaneous laser scanning photostimulation (LSPS) and calcium (Ca) imaging. a Bright-field and
image showing positions of photostimulated neuron (circle) and responding neurons (triangle and square).
Scale bar: 50 μm. b Ca responses (fractional change in Fluo-4 fluorescence) 2 s after photostimulation. Scale
bar: 50 μm. c Ca responses of corresponding neurons as a function of time. Scale bars: 5% (vertical) and 5 s
(horizontal)
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Fig. 4 Connectivity maps. For the same two networks shown in Fig. 2, bright-field image of a small (DIV 9)
and b large (DIV 16) network bursting activity. Corresponding connectivity maps overlaid onto bright-field
images: c 195 nodes and 874 links; d 186 nodes and and 1567 links. Scale bars: 200 μm
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DIV 9 DIV 16

Fig. 5 Degree distributions of the same two networks shown in Fig. 4

presumably due to postsynaptic integration rather than synaptic delay time (typically 2–
5 ms). Based on these observations, first order neurons were chosen along two criteria: 1)
the Ca responses occurred on or after photostimulation and 2) had to be ≥ 50% of its
peak value 2 s after photostimulation.
Mapping proceeded by individually photostimulating these first order neurons, then

their neighbors, and so on. When the list of photostimulation targets was exhausted,
another neuron was randomly selected and the mapping process continued again.
Because Ca responses at this level of sensitivity correspond to supratheshold events
(i.e. action potentials), only excitatory connections were mapped. Custom-written soft-
ware (LabView, National Instruments, USA) allowed the mapping process to be almost
fully automated – user intervention was only required to approve responses that satis-
fied the criteria. Because Fluo-4 is toxic to cells after ∼ 4 h, the mapping process ended
after 2–3 h and the coverslip was discarded. Within this time, raw map data consisting of
∼ 200 neurons and ∼ 2000 connections were typically made. (In principle, the “approval”
process can be automated as well, and the number of cells that could be mapped will only
limited by the 20 s it takes to record a complete Ca response). In one day, 1–3 networks
of similar age, i.e. from same original batch, were usually mapped.
A number of exclusions were applied before obtaining the final map data. First, self-

links were removed because, although autapses may exist in a neuronal culture, their
associated Ca responses cannot be distinguished from themuch larger direct photostimu-
lation response. Moreover, self-links are usually not considered in most network analyses.
Second, although it rarely occurred, nodes that had neither incoming nor outgoing con-
nections were removed. Last, to consider only a completely mapped network, we removed
outgoing links to nodes that were not photostimulated due to time constraints. These
links represented about 10% of the total and had little effect on the overall network
density, which remained sparse at about 5% for all networks.
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DIV 9 DIV 16

Fig. 6 Bursting parameter vs. in-degree (out-degree) plotted for each neuron in the same two networks
shown in Fig. 4

Results
From this final map data, the adjacency matrix for an unweighted and directed network
was constructed and used to calculate network properties. For each neuron, we first
investigated the number of incoming connections, or in-degree (kin), and the number of
outgoing connections, or out-degree (kout). Figure 4 shows examples of two networks at
two different stages of network bursting activity (DIV 9 and DIV 16). In general, the cor-
responding degree distributions (Fig. 5) were single-peaked and did not display the power
law dependence of scale-free networks (Barabási 1999).
Correlation between degree and bursting activity was explored [Fig. 6]. Correlation

was only found for in-degree (Pearson’s correlation with r = 0.3 − 0.5). As may be
expected from simple models of neuronal integration, neurons with large kin tended to
burst more. However, the converse relationship was not true as there were many neu-
rons with large bursting parameters but small kin. This suggests that either they possess
relatively large input strengths or their intrinsic spontaneous activity was already well-
synchronized with network bursting. The average in-degree for each network was found
and then further averaged over all networks mapped on the same day to get 〈kin〉avg ,
which increased from initial values of 〈kin〉avg � 4 to a stable values of 〈kin〉avg � 10
after the onset of network bursting [Fig. 7a]. Using higher density cultures and differ-
ent methods, other investigations have reported values that are larger by a factor ∼ 5
(Soriano et al. 2008; Stetter et al. 2012).
We looked at clustering, which is the tendency for a network to form tightly con-

nected neighborhoods. The clustering coefficient Ci (as defined for a directed network
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Fig. 7 Network properties. a Average in-degree, b clustering, c global efficiency, and d local efficiency as a
function of neuronal age. Solid circles: averages of all networks mapped for given day with error bars
determined by the standard error of the mean (SEM). Open squares: averages computed from a randomized
network model having the same degree distribution as each mapped network

(Fagiolo 2007)) was calculated for each neuron. This parameter quantifies the like-
lihood that a node’s neighbors are themselves neighbors to each other. Values of
Ci were averaged over all neurons and networks for a given day and compared to
those calculated from a randomized network model that preserves degree distribution
(Rubinov and Sporns 2010). We found that while clustering was much larger with
〈C〉avg � 0.5 than in the random network model [Fig. 7b], it was relatively constant over
the entire period, and thus uncorrelated with network bursting.
We calculated global efficiency, which measures how well information propagates over

the network (Latora and Marchiori 2001) and is given by

EG = 1
N(N − 1)

∑

i�=j

1
dij

(1)

whereN is the number of nodes and dij is the shortest path (number of links) between any
two nodes i and j in a directed network. Thus, the closer two nodes are to each other, the
higher the global efficiency, while disconnected nodes make no contribution. Figure 7c
shows the average global efficiency for each day rapidly increasing from an initial value
of � 0.13 to a steady value of � 0.29 within four days (DIV 7-10) before the onset of net-
work bursting. By contrast, global efficiency of the random network model stays relatively
high throughout.
The ‘small-world’ behavior of these networks was also assessed. To do this, we

considered the local efficiency EL of a node, which is defined similarly to Eq.1 but only
applied to the node’s neighbors instead of the entire network (Latora andMarchiori 2001).
It is related to the clustering coefficient and measures how well communication is relayed
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by the node’s neighbors if the node is removed. Using a modified algorithm found in the
Brain Connectivity Toolbox (Rubinov and Sporns 2010), we found the local efficiency
by averaging over all nodes and then networks for each day. The initial value was large
〈EL〉avg � 0.63 and increased by roughly 20% over time [Fig. 7d]. As discussed in (Latora
and Marchiori 2003), these networks exhibited ‘small-world’ network behavior because
both EG and EL remained relatively large throughout the entire time period. As expected,
the random network model did not show this behavior as its local efficiency remained
relatively low.

Discussion
We have described here a technique that allows single-cell photostimulation while simul-
taneously recording spiking activity of a relatively large population of neurons. To
our knowledge, such a combination of methods has not been reported elsewhere. We
used this technique to directly measure the functional connectivity of cultured neurons
before and after the appearance of network bursting. Connectivity maps, each consisting
of ∼ 200 neurons and ∼ 2000 connections, were made over a 12-day time period. Net-
work properties determined from these data show that average node degree and global
efficiency correlate with network bursting, while preserving ‘small-world’ behavior, and
suggest that network structure may indeed play a role in initiating and synchronizing this
type of neuronal oscillation exhibited by cultured neurons.
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