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Abstract

Knowledge is created and transmitted through generations, and innovation is often
seen as a process generated from collective intelligence. There is rising interest in
studying how innovation emerges from the blending of accumulated knowledge, and
from which path an innovation mostly inherits. A citation network can be seen as a
perfect example of one generative process leading to innovation. However, the impact
and influence of scientific publication are always difficult to capture and measure. We
offer a new take on investigating how the knowledge circulates and is transmitted,
inspired by the notion of “stream of knowledge”. We propose to look at this question
under the lens of flows in directed acyclic graphs (DAGs). In this framework inspired by
the work of Strahler, we can also account for other well known measures of influence
such as the h-index. We propose then to analyze flows of influence in a citation
networks as an ascending flow. From this point on, we can take a finer look at the
diffusion of knowledge through the lens of a multiplex network. In this network, each
citation of a specific work constitutes one layer of interaction. Within our framework,
we design three measures of multiplex flows in DAGs, namely the aggregated, sum
and selective flow, to better understand how citations are influenced. We conduct our
experiments with the arXiv HEP-Th dataset, and find insights through the visualization
of these multiplex networks.

Keywords: Citation network, Directed acyclic graph (DAG), Multiplex network, Metrics,
Large network, Flow of knowledge

Introduction
From the ancient times, knowledge has passed from individuals to others, each step
leading to more discoveries and innovations. In modern times, the industrializa-
tion of research renders crucial to track this production of knowledge (Gibbons and
Johnston 1974; Van Raan 2004). Indeed, it is important for the newly produced innova-
tion to state on which ground it stands, enabling peers to judge the quality of the proposed
innovation. An innovationmust cite its influential sources to give credit to the work it was
inspired from and to state its differences with the competing methods. This is one prin-
ciple at the heart of the peer reviewing system enabling and validating the publication of
new knowledge.
This process of citing sources is very important, because it makes explicit the transmis-

sion of knowledge from prior works to an innovation (Bornmann andDaniel 2008)—with
the assumption that each new scientific publication is a container of innovation. Thank-
fully, this production of scientific knowledge can be easily captured in a citation graph.
In this graph, nodes are publications citing other publications. This citation relationship
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is oriented and corresponds to a borrowing or derivation of knowledge. We suspect that
the impact of a publication can be captured in this graph. The production of knowledge
would then be represented as a growing process in a dynamic network.
Key for countries and organizations in modern science, the study of the production of

knowledge is currently investigated from partial indicators that establish rankings and
compare scientists. This gave rise to the development of many measures deriving from
sociometrics (Waltman 2016) including age, field, and other cues. Three popular indica-
tors are often used: the number of citations, the h-index (Hirsch 2005) — which originally
measures both the productivity and the quality of an author —, and the impact factor
(Reuters 2012) — which is a time-related average number of citations of a collection.
These indicators are used for the evaluation of scientists, however they can be sub-
ject to controversy (Pendlebury 2009) and are designed to reflect only the productivity
of a scientist rather than measuring the overall production of knowledge. One reason
explaining these indicators’ popularity is their simplicity in terms of computation, as
opposed to previous network analysis that was seen as too complex to deploy. However,
progress in modern graph databases has grown, easing the analysis of dynamic networks
(Cattuto et al. 2013).
Inspired by the seminal work from Strahler (1957) and from Hirsh (2005), we propose

to bring a fresh look at the production of knowledge based on the analysis of flows in
Directed Acyclic Graphs (DAGs). This view is not limited to the production of indica-
tors but allows a more in-depth analysis of the process and diffusion of knowledge. The
traditional indicators are very effective and it is important that our framework allows to
establish them, while being easily extended. In addition, this DAG framework allows us
to take a new perspective on citation relationships and introduces a multiplex network
(Kivelä et al. 2014) model that emphasizes on co-citations (as opposed to the regular
monoplex citation network).
In this work, we extend our proposition to join the different views on knowl-

edge production in a recursive framework (Renoust et al. 2017) (which is covered in
“Ascending flow in citation networks” section) to the analysis of multiplex citation
networks and contribute with a new formalism, measures and experiments.
After discussing the literature in “Related works” section, the first part of

this manuscript discusses the monoplex view of flows in citation networks
(“Ascending flow in citation networks” section). In “Preliminaries” section, we introduce
the Strahler numbers and the h-index in a generalized flow framework, and how those
two notions belong to one greater notion of flow. We introduce our ascending flow in
“Ascending flow in citation networks” section—modeled on the notion of flow of knowl-
edge. We then discuss the parameters of this ascending flow and put it in relation with
classical measures, while proposing a dynamic algorithm that allows for quick update.
Finally, in “Experimental results” section we run experiments on a publicly available
dataset, the arXiv HEP-Th (Gehrke et al. 2003). We then extend our ascending flow to the
multiplex networks context from “The citation network as a multiplex network” section,
which fits in our generalized flow framework. After defining our multiplex network in
“Preliminaries” section, we propose three multiplex flow measures in “Multiplex exten-
sions of the ascending flow” section, namely the aggregated, sum, and selective flows, with
implementation in “Dynamic implementation” section. We present how we can visual-
ize our networks in “Influence of layers in the multiplex citation network” section then
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repeat our experiments in “Experimental results” section on the same dataset and addi-
tionally lead in-depth examinations of publications before concluding in “Discussion and
conclusion” section.

Related works
Monoplex approaches

The study of the production and transmission of knowledge has attracted quite a few
scholars in the domains of social and economical science (Gibbons et al. 1994), with for
example a focus on the population at the origin of production (Wuchty et al. 2007), and
on transmission to business (Ernst and Kim 2002). These studies come a posteriori when
observing controlled domains, with well known sociometric indicators. We are instead
interested in the modeling of the production and diffusion of knowledge.
Many interesting attempts for modeling the production and diffusion of knowledge are

actually focused on the producers of knowledge themselves, such as in multi-agent simu-
lation (Cowan and Jonard 2001; Cointet and Roth 2007). In these models, the agents are
interacting to produce knowledge, and the properties of the resulting interaction network
of agents are the focus of analysis. The agents can then be tuned to produce different
resulting networks, simulating real world policies (Mueller et al. 2015). The topology of
the networks of people producing knowledge is often the main focus in related complex
network research (Cowan R and Jonard 2004), with the goal to maximize diffusion in
such networks (Alkemade and Castaldi 2005). In contrast, our focus is on the information
produced itself and how it relates to previous works.
A good model for this is the citation graph. It mostly applies to academic research, but

has found its way in complex network research. Numerous works actually focus on com-
munities (Chen and Redner 2010), and on the characterization of the dynamics of the
citation graphs (Gehrke et al. 2003). The closest to the spirit of our research would be the
work by Hummon and Dereian (1989) who studied the main paths in the citation network
in order to extract backbones and areas of interest. The question of the efficient imple-
mentation of these cues has been the focus of a previous contribution (Batagelj 2003).
An extension of Hummon and Dereian’s original work has actually been applied to the
study of the development of the h-index (Liu and Lu 2012). These methods are focused
on the path produced by citations and use them as a base for bibliometrics, but without
capturing the global flow of information. We propose in contrast a natural interpreta-
tion of flows in DAGs that can easily capture the same measures used for main path
analysis.
Before introducing flows in DAGs, we need to mention one of the most cited work in

scientometrics which is the Hirsch index (Hirsch 2005), globally known as the h-index. It
originally applies to the authors and is designed to measures both the quantity and the
quality of the authors’ production. Its definition is that an author with an h-index of h has
published h articles which have been cited each at least h times. The version for publica-
tions is defined formally in “Preliminaries” section. It was rapidly followed by numerous
variants and extensions (Waltman 2016). The most famous is possibly the g-index
(Egghe 2006) that is the largest number such that the g articles with the most citations
receive at least a total of g2, averaging the importance of each article. Hirsh (2010) also
proposes a more restrictive version called h̄-index, normalized to domain or age. Other
variants are designed with application-specific goals (Bucur et al. 2015). All-in-all, h-index
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based measures are measures to analyze the productivity of researchers, but do not allow
for the in-depth analysis of production, in opposition to main path analysis approaches.
Our work roots its contribution in the analysis of flows in DAGs. Traditional max-flow

approaches are quite far from what we define here, because nodes are always sources of
information and edges have infinite capacities — we may be closer to multicommodity
flows (Assad 1978). Instead, we mostly take our inspiration from a different notion of
flows, in river streams, as defined by Strahler (1957). Limited to binary trees, this notion
has seen a few extensions (Auber 2002; Delest et al. 2006; Herman et al. 1999) with appli-
cations to graph visualization. These versions use flows to highlight and extract most
relevant paths in DAGs and trees, then relatively place elements one to another. We will
use this approach and adapt it to the production of knowledge.

Multiplex approaches

We later introduce the multiplex formulation of the citation network, which is a network
made of multiple overlapping networks (each of which corresponds to a layer) connect-
ing the same set of nodes (Berlingerio et al. 2013). Multiplex networks have been used
to model citation networks mainly for clustering purpose (Boden et al. 2012; Dong et al.
2012; Renoust et al. 2014; Speidel et al. 2015). Boden et al. (2012) model the multiplex
network from the keyword-publication associations in order to create clusters of publi-
cations of similar topic. Dong et al. (2012) share the same goal but mixes different layers
from research domains, or different similarity links across the papers (diverse textual sim-
ilarities, author similarity, and citations). Renoust et al. (2014) use an approach closer
to Boden’s, with the different goal to find cohesive groups of co-authors in an author-
publication network. Analysis of multiplex DAGs has also recently been proposed by
Speidel et al. (2015) using the same arXiv HEP-Th dataset that we use, with the difference
that layers are defined by year of publication. Beyond community detection, Pujari and
Kanawati (2015) investigated the multiplex citation networks to predict the creation of
link between authors: from the citation network they infer a multiplex network of authors
and predict links, based on community structure. Our context differs in many ways from
those works. The object we are studying, although from the same data, is very different.
We keep the citation network as a support for modeling multiplex relationships, with the
basic assumption of having a DAG structure. The network we construct presents a very
large number of layers (one per co-citation) which is often an issue in the methods pre-
sented above. Our goals also differ, we are looking to find paths and remarkable nodes to
evaluate the notion of publication impact.
The notion of flow has also been investigated in multiplex networks. Estrada

et al. (2014) propose to study the dynamics of information in social networks through
the communicability as a measure of flow to study the connectivity of layers. Although
the goals and the object we study are quite different, this approach share commonalities
with our sum and selective flows. Solé et al. (2015) proposes to study centrality and com-
munity structure from the point of view of information transfer within social networks
while modeling the flow as a dynamically node-produced unit. Close to Solé et al.’s spirit,
(De Domenico et al. 2015) have studied modular flows for random walkers within mul-
tiplex social networks derived from citations networks to identify communities of highly
interacting researchers. Such approaches do not apply to our case: citations are only pro-
duced once and we do not study the dynamics between authors. Flows in their work are
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modeled to find centralities from random walks (which by definition can not be applied
to DAG) with the goal to study community structures among authors.
Some digressing but interesting works focused on the study of time-related dynamics of

flows and diffusion in multiplex networks are worth mentioning. Boccaletti et al. (2014)
have produced a seminal work on the structural analysis of multiplex networks, however
flows and diffusion are only approached from the dynamics side (close to the spirit of
Gomez et al. (2013)). Pósfai et al. (2016) use maximum flows to study the controllability
of 2-layer multiplex networks. Very recently Yu et al. (2017) proposed an analysis of the
diffusion dynamics of binary states (such as the Prisoner’s Dilemma) in a multiplex social
networks, investigating how different community layers influence this diffusion.

Ascending flow in citation networks
We now introduce the notion of flow in a citation network inspired by the work of
Strahler. We propose the ascending flow, parameterization, and experiments in the arXiv
HEP-Th dataset.

Preliminaries

We consider in our setting a citation graph G = (V ,E) where V is a set of nodes —
publications — and E a set of directed links, hereafter arcs, between nodes of V. An arc
a(p, q) ∈ E represents a citation of publication q by publication p. We consider the graph
as being directed acyclic (or DAG). Although real-world data may introduce a few cycles
(arXiv edits leading to mutual citations), this is a marginal case that we will discard in our
study.
In this setting, an author, journal, book, or proceedings can be modeled as collections

of publications. Hence, by observing the collective impact of the collection we can char-
acterize the influence of this set of publications. In other words, in our citation graph
formalism — although we will not study them — collections are only sink nodes that can
be sourced from the publications themselves. In this work, our measures of the impact of
individual publications can be trivially reported to authors and collections.

Definition 1 For a publication p, its in-neighborhood N−(p) is the set of all the pub-
lications referring to p. The size of N−(p) is simply its in-degree d−(p). The corollary
implies that N+(p), the out-neighboorhood of p, corresponds to all publications to which
p is referring to (with a size d+(p), its out-degree).

Strahler numbers measure the size of river streams depending on their flow of
parent streams. If we recall the definition of Strahler’s numbers (Strahler 1957),
in binary trees, it starts by assigning 1 to all leaf nodes, then iterates on parent
nodes. If a parent node has at least two children with number i, then the node
is assigned i + 1, otherwise i. This number corresponds to the number of reg-
isters necessary to compute binary operations (Flajolet et al. 1979). The Extended
Strahler (Auber 2002) does it for general trees (counting the register numbers of n-ary
operations).
The h-index is defined as the maximum n such as n papers are cited n times. From

this definition, the h-index applies in general trees of depth 3 and can actually be seen as
a modified version of the Extended Strahler numbers. In this modification, a root node
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(e.g. an author) does not increase value from his maximum valuated nodes, but instead
gets weighted by the maximum Extended Strahler number of his direct descendants (i.e.
the publications).
Strahler numbers have been designed to define the size of river streams based on a

hierarchy of dependent streams. Transmission of knowledge is very similar in that sense
with publications being tributary to prior works they inherit from, and becoming in turn
sources for later works — the h-index then captures the latter quantity. However, we want
a finer measure which could capture the impact of a publication across all citations it has
generated.
We defined above our citations graphs to be DAGs, and fortunately, Strahler num-

bers have also been extended to DAGs (Herman et al. 1999; Delest et al. 2006). Herman
et al. (1999) proposes a generic framework to compute the importance K of nodes in
DAGs — including Strahler numbers — such as:

K(p) =
{

λ, ifN−(p) = ∅
F

(
K(a1), . . . ,K(ad−(p))

)
, otherwise,

(1)

where λ designates a constant for terminal cases (leafs, often λ = 1), ai ∈
N−(p) represents the ancestors of node p, and F is an application depending on
the values K(a1), . . . ,K(ad−(p)). To simplify the notations, we denote F(N−(p)) =
F(K(a1), . . . ,K(ad−(p))).
This framework is nothing but a generic recursive framework, however it allows us

to redefine other measures through it. In this context, counting the number of citations
would only require to modify the application F(N−(p)), such as F(N−(p)) = |N−(p)| =
d−(p). Similarly, the Strahler number of a node p is then defined as:

F(N−(p)) =

⎧⎪⎨
⎪⎩
1, if d−(p) = 0

max
q∈N−(p)

(K(q)) +
{
d−(p) − 1 if all values K(q) are equal
d−(p) − 2 otherwise

(2)

The application for the h-index then becomes:

F(N−(p)) =
⎧⎨
⎩
0, if d−(p) = 0
max

X⊂N−(p)
min
q∈X (d−(q), |X|) (3)

Strahler numbers, number of citations, and h-index impose a discrete limit in depth
which is conceptually an issue — there is no reason not to look for all the extended conse-
quences of a publication. Instead, Herman et al. (1999) propose in their framework a Flow
metric for DAGs to emphasize the distribution of information to their successor such as:

F(N+(p)) =
⎧⎨
⎩
1, if d+(p) = 0∑
i

K(si)
d+(si) otherwise,

(4)

where si ∈ N+(p) represent the successor of p (instead of the ancestor ai). Note that this
defines a descending flow measure, which captures how much information all nodes in
the network receive.
Before we provide our own measure of flow, two natural definitions help defining our

framework and its integration with existing metrics.

Definition 2 (Related) Two articles p and q are said to be related if and only if there
exist a path from p to q or from q to p. They are k-related if they are related and if the
shortest path between them is at most of length k.
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Definition 3 (k-diffuse)Ameasure of a node p is k-diffuse when it limits its computation
to a subgraph composed of the k-related nodes of p.

Our base measures, the h-index and the number of citations, are then respectively 2-
and 1-diffuse by definition.
We provide now a base measure called ascending flow and discuss its complexity. We

then extend it to several variants, such as one that is restricted in depth, hence a better fit
to dynamic computation.

Ascending flow in citation networks

We can now model the stream of knowledge as a flow in our citation network. Indeed,
each node — being a publication — produces some information and this production of
information gives credit to their ancestors (in history, or successors in the DAG) as they
refer to them. This translates into the framework as:

F(N+(p)) =
∑
i

K(si)
d+(si)

+ λp (5)

where λp represent the information created by the publication p — in practice we set
λp = 1. Hence, the more a publication is influential the more credit it will propagate to its
ancestors. In contrast to the previous Flow metric, our ascending flow is not only applied
to the reversed DAG, but is also equivalent to the sum of the flows computed for each
sub-DAG induced by each node.
The ascending flow, formalized above, can be implemented as Algorithm 1. It is impor-

tant to note that each arc is visited only once and that the total number of visits of all
nodes is also equal to the number of arcs. The time complexity of our algorithm is then
�(m) where m is the number of arcs. This key property is inherent to the DAG nature
of our citation network. Another straightforward property of DAGs is that m � n(n−1)

2
where n is the number of nodes. However, even a linear time complexity is often too costly
for large dynamic networks.

Depth restriction and dynamic graph

As discussed above, one issue of computing the ascending flow of a node p from our def-
inition is that it needs the computation of all its predecessors own influence. Such a con-
straint is expansive in the context of a dynamic network, for instance citation networks —
in the case of citation network, publication are usually added, not removed. To adapt our
previous algorithm, we first need to introduce an update function starting from a single
leaf (a new publication). We consider the network initializes as in Algorithm 1 but for the
flow value on the nodes — that is kept between the updates. We then propagate upwards
the flow value in all the subgraphs defined by the ancestors of this publication (Fig. 1).
Recall the diffuse property in Definition 3, the ascending flow appears ∞-diffuse. In

the real-world, we can consider that a publication that came a few generations after an
original will relatively diverge from the original one, and would marginally contribute to
the influence of the previous publication. The k-diffusion property can then take two
forms: either we choose a generational limit k that cuts the added influence of nodes
generated after k generations, or we can set an evanescence coefficient that progressively
attenuates the contribution of a publication over its ancestors. In the case of a dynamic
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Algorithm 1: Ascending flow
input : A citation network with nodes (articles) and arcs (citations)

An empty dequeue Q (FIFO)
A function λinit over the nodes

output: The ascending flow on each node (article) and each arc (citation)

1 Initialize each article p with a flow value λp = λinit(p)(= 1by default)
2 Color each arc in white
3 Add all leaves in Q
4 while Q is not empty do
5 p ← pop_first(Q)

6 for each q son of p do
7 Color each (p, q) in blue
8 λq ← λq + λp/d+(p)
9 if all incoming arcs of q are blue then

10 Q ← push_last(q)
11 end
12 end
13 end

citation network, a k-diffuse measure is very quick to compute when k is a small constant
as displayed in Fig. 2.
This depth parameter additionally allows us to reconnect with known measures. The

h-index is 2-diffuse and it would not make sense to extend its definition. In turn, the
number of citations — which is also the in-degree (d−(p)) — is 1−diffuse and can be

Fig. 1 Ascending flow algorithm: step by step
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Fig. 2 Speed comparisons of our algorithm in case of k-diffuse limitations

easily translated in a k-diffuse measure, the k-degree, which would be the number of
publications created until generation k. Then, an ∞-degree would be the number of all
publications seeded by p even indirectly.

Experimental results

We now apply our framework on a real-world setting. We used an available citation graph
from 2003 KDD Cup: arXiv HEP-Th1 (Gehrke et al. 2003). It consists in an archive of
27,770 publications with 352,807 (internal) citations from the well-known arXiv website
of pre-prints in the domain of high energy physics theory, archived between January 1992
to April 2003.
The resulting graph (Fig. 3) is not acyclic due to the nature of publications in arXiv —

some publications have been updated with cross-references to others. We can however
consider this graph as pseudo-acyclic because the number and size of the cycles are lim-
ited (a few cycles of size 2 and 1 cycle of size 3). In our setting we simply remove those
edges to keep the properties of a DAG. A resulting excerpt of the graph is shown in Fig. 4.

Correlations betweenmeasures on the whole archive

As we have defined the generalized version of the number of citations in our framework
and the h-index, we can compare these measures together using the Pearson (ρ) and
Spearman (rs) correlation coefficients. We hold the following assumption: if the ascend-
ing flow can reconnect at least partially to the notion of degree and h-index, we can then
validate the relevance of our framework. Results of the analysis are presented in Table 1
and Fig. 5.
First, when comparing the h-index, the number of citations, and the total number of

publications produced by a work, we can notice a clear difference on our four basic met-
rics — i.e. the number of citations (=1-degree), the number of publications generated
(= ∞-degree), the h-index and the ascending flow. We additionally varied the depth of
degree and flow in {1, 2, 5, 10, 20,∞}. A second observation is that the limitation in depth
of ourmeasure is consistent with what we observe when limiting the depth of the k-degree
(the most correlated i-flow for a j-degree is when i = j), and the higher k for the k degree,
the more it diverges from the k-flow.
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Fig. 3 The arXiv HEP-Th (high energy physics theory) citation network. Its main connected component with
27770 nodes (articles) and 352807 arcs (citations)

Our main observation, is, by value, the h-index is most correlated to the 2-degree. This
makes complete sense, since the h-index is also limited in depth at 2 for which it con-
siders a subset of publications. In contrast, when it comes to rankings, the h-index is
most correlated to the 1-degree which is equivalent to the number of citations. Inter-
estingly, our ascending flow also shares most correlation with the 2-degree as well and
ranks with the 1-degree. This interesting effect may also be observed in Fig. 4 show-
ing that most publications bringing influence to the source publication has done it
already in depth two. The link between the h-index and the degree is further observable
in Fig. 5.
In terms of computation, from k = 2, the ranks obtained by the k-flow are rs = 0.99

similar of those of the regular flow so when a gain of computation is needed, one can use
k-diffuse version of the algorithm (Fig. 2).

Searching for a needle in the haystack

We observed all publications with h-index = 6 (1054 publications in the dataset). With
this sample of fixed h-index nodes, the ascending flow does not correlate well with other
classical measures: ρ = 0.136 with the 2-degree which was the most correlated value
over the network with the ascending flow and the h-index, ρ = 0.096 with the number of
citations, ρ = 0.228 with the total descending nodes (∞-degree).
However, if we plot the distribution of the flow coefficient (Fig. 6) we can notice one

outlier node that cannot be noticed in any other distribution: this node happens to be the
oldest publication (ID92010192) among all publications with h-index=6. We also tested
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Fig. 4 An example of the ascending flow metric in an excerpt of 22 nodes (60 edges) of our dataset, rooted
by a publication by Lorenzo Cornalba. The size of nodes corresponds to their ascending flow in this
subgraph. The color of nodes and edges (from blue to red) is actually their ascending flow in the real global
dataset — we can see that Hong Liu’s publication has probably been a seed for more knowledge than of its
ancestor Lorenzo Cornalba

if the node was an outlier in all other measures, including date and DAG depth (which
could be the longest if the node has deep descending nodes), but the work is not an outlier
in any of those measures.
If we look in details at why this node received so much flow, we can “follow down” the

path of maximum flow passed by its citing publications: we recursively take the edge that
shares the maximum value until there is no other citing node. The path is only 22 edges
long and the influence received by the nodes constantly increases up to 7 nodes before
decreasing (Table 2 presents the statistics of the 8 first nodes of the path). Two articles in
this path are the #2 and #3 most cited works in the whole archive!

Comparisons of “similar” publications

Now we can compare publications of a same h-index and published around the same date
which have very different flow measures. We took two publications with very different
ascending flows: the first one shows a flow at 11.23 (Fig. 7a, left), while the second one dis-
plays a flowmeasure at 425.44 (Fig. 7a, right). Their in-degree does not vary that much (21
vs. 16 for the most influential), however the 2-degree makes the difference (151, vs. 707).
That means in average, the publications citing the most influential work produce more
than four times more citations in turn— average h-index is 3.2 vs. 10.6. Note also that our
measure takes into account how the information is spread out, that can be captured by
the total number of citations (i.e. arcs) going out from all nodes citing a publication (and
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Fig. 5 Comparative distribution of ranks and values among: • h-index (a, b, c), • ascending flow (a, d, f),
•∞-degree – i.e. number total of generated publications (b, d, e), • and 1-degree – i.e. number of citations
of a publications (c, e, f). The plots illustrate the difference between what those statistics are measuring

this same publication). In the first case, we have 390 citation arcs, while we have 171 arcs
in the second case.
We repeated the same experiment with two varying 2-flow measures (h-index=6 and

similar date of publication): the first one is 2.25 with 10 citations (Fig. 7b, left), and the
second one is 21.59 with 20 citation (Fig. 7b, right). The average h-index is actually higher
in the least influential publication (3.45) than in the most influential publication (1.80).
However, the most influential has seeded 102 publications (2-degree) for 107 arcs out,
when the first one has seeded 68 publications (2-degree) for 182 arcs. The flow measures
then capture muchmore details of the graph produced by citations than the h-index does.

The citation network as amultiplex network
The ascending flow is based on the notion that knowledge diffuses equally among cita-
tions, with the implication that two works inspired by a third work borrow equally from it,
and that one work citing two other works also borrows equally from each of them. How-
ever, there should be a notion of proximity betweenworks that would translate how a work
borrows from other works it is citing. Without parsing the whole text of a publication,
there is no trivial and unbiased way to evaluate this notion of influence.
We have introduced in the previous section that each publication shows a different

structure in the subgraph induced by its direct citing articles. We can consider all edges
in this subgraph as one layer of interaction in the subgraph. Indeed, all edges in a direct
citation subgraph share the common aspect that all nodes they connect directly cite the
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Fig. 6 Comparative distributions of the ascending flow against: a 1-degree (i.e. number of citations
b ∞-degree (i.e. number total of generated publications), c date of publication, and d in blue the outlier
detected by the ascending flow

top-level node. If we consider our whole citation network as a unified collection of such
subgraphs, we can consider that many layers of interactions induced by different pub-
lications overlap over the edges. Such a pattern can be captured through a multiplex
formulation of our network (Kivelä et al. 2014). A multiplex network G can connect the
same two nodes p, q over arcs a(p, q, l) in multiple layers l (see Fig. 12, left).
We present the citation network as a new application case for multiplex network analy-

sis. It allows us to formulate a notion of multiplex flows that may be closer to the spirit of
the flow of knowledge we want to capture. In addition, it also enables us to ask new types
of questions in terms of relative influence of other work within a citation network, as we
will illustrate in the following sections.
After introducing the definition of our multiplex network (“Preliminaries” section),

we extend our ascending flow framework with three new multiplex versions: the aggre-
gated flow, the sum flow, and the selective flow in “Multiplex extensions of the ascending
flow” section, and implementation in “Dynamic implementation” section. We also study
the edge entanglement (“Influence of layers in the multiplex citation network” section) in
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Table 2 The chain of max flow citations from ID9201019: The Coupling of Yang-Mills to Extended
Objects

Articles (index by date) Flow #citations h-index

9201019: The Coupling of Yang-Mills to Extended Objects 425.446 16 6

9208055: Putting String/Fivebrane Duality to the Test 363.071 32 18

9304154: Duality Symmetric Actions 57.5917 229 44

9402032: Dyon - Monopole Bound States 84.5253 240 54

9408074: A Strong Coupling Test of S-Duality 32.3318 290 54

9510135: Bound States Of Strings And p-Branes 31.2979 775 88

9802109: Gauge Theory Correlators fromNon-Critical String Theory 23.9841 1641 81

9802150: Anti De Sitter Space And Holography 14.0768, 1775 82

9803001:Macroscopic strings as heavy quarks: Large-N gauge theory 11.5337 .239 41

order to investigate influential works found from our experimental results in “Experimen-
tal results” section.

Preliminaries

If we recall our original definition of the citation network (“Preliminaries” section), we
consider a citation graph G = (V ,E) in which a node p ∈ V represents a publication, and
arcs (p, q) ∈ E when an article p cites an article q, that is considered a DAG. Each node p
then bears a subgraph induced by all its citing articles.
Figure 8 illustrates the concept introduced below.

Definition 4 A citation subgraph Gp = (Vp,Ep) is induced by a node p such that Vp =
p ∪ N−(p) ⊂ V, and Ep ⊂ E is such that, ∀(q, r) ∈ V 2

p , ∃a(q, r) ∈ E.

Let consider, for each publication p, its induced citation subgraph Gp = (Vp,Ep) of
G, the multiplex citation network G results in combining all individual subgraphs Gp
together.

Definition 5 Amultiplex network G = (V , E ,L) connects nodes (p, q) on different layers
l such that arcs a(p, q, l) ∈ ⋃

l∈L El . A multiplex citation network G = (V , E ,L) is defined
such that G = ⋃p∈V

p Gp, hence E = ⋃p∈V
p Ep and L = V.

Note that an arc a(p, q, l) exists if and only if both p and q cite l or if l = q. As a
consequence, the multiplex network once “flattened”3, has the exact same topology as the
original citation network. The difference lies in the multiple edges.

Definition 6 A multiplex connection α(p, q) between nodes p and q is defined such that
α(p, q) = ⋃l∈Lp

l a(p, q, l), s.a. ∃a(p, q) ∈ E .

By extension of Definition 4, Gp = (Vp, Ep,Lp) designates the multiplex subgraph
induced by a node p and its citing articles N−(p). Note that this definition does not
restrict layers to those corresponding to nodes of Vp, since we are interested in observing
co-citations.

Definition 7 A citation multiplex subgraph Gp = (Vp, Ep,Lp) is induced by a node p
with Ep ⊂ E and Lp ⊂ L such that, ∀l ∈ L ∀(q, r) ∈ V 2

p , ∃a(q, r, l) ∈ E .
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Fig. 7 Comparison of direct citations of four publications with h-index=6. The top node is one original
publication, and all other nodes its citing nodes. a Comparison of the general ascending flows with two
extreme values: left ID9204026 (flow=425.4), right ID9201019 (flow=11.2). b Comparison of 2−flows with two
extreme values: left ID9201079 (2−flow=2.3), right ID9201058 (2−flow=21.6). Relative node size (between
couples of pictures) corresponds to h-index values for each node. Node color, from blue to red, corresponds
to, a ascending flow, b 2-flow

The co-citation relationship can also be characterized in the multiplex network.
From the definition of our multiplex network, we can consider a node p to belong
to different layers L(p), corresponding to the articles they cite, in addition to their
own.
If we look at two articles such that p cites q, their multiplex connection α(p, q) corre-

sponds to all the citations they have in common, hence the union of all arcs from p to q
existing in all subgraphs Gl, l ∈ L(p, q) ⊂ V : this corresponds to the co-citations of p and
q in addition to q itself.
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Fig. 8 Illustration of the citation network from Fig. 1 transformed to a multiplex network, each citation
creates its own layer of interaction

Definition 8 The set of layers L(p, q) connecting two nodes p, q is defined by L(p, q) =
{N+(p) ∩ N−(q), q}. By extension, we define L(p) = {⋃q∈N−(p) L(p, q), p}.

Note that the number of layers of a multiplex connection |L(p, q)| (respectively, the
number of layers to which a publication belongs to |L(p)|) corresponds to themultiplexity
of a connection (respectively, to the multiplexity of a node) (Podolny and Baron (1997)),
i.e. the number of different layers connecting the pair of nodes α(p, q) (respectively
connecting all pairs of node α(p, q),∀q ∈ V ).
In our multiplex citation network, the notion of neighborhood remains the same as in

the monoplex case (Definition 1). However we can refer to a different notion of multiplex
degrees δ+(p) and δ−(p) that takes into account the number of arcs connecting a node to
its neighborhood.

Definition 9 Denote the multiplex out-degree δ+(p) (respectively the multiplex in-
degree δ−(p)) a node p in the multiplex network G. δ+(p) = |a(p, q, l)|,∀q ∈ V , ∀l ∈
L, s.a. ∃a(p, q, l) ∈ E (respectively δ−(p) = |a(q, p, l)|).

The degrees d+(p) and d−(p) still refer to the degree in the monoplex network G, i.e.
the size of the neighborhood (Definition 1). We then introduce the degrees d+

l (p) and
d−
l (p) corresponding to the degree in the subgraph Gl, i.e. the number of arc adjacent to

p on the layer l.

Definition 10 Denote the layer out-degree δ+
l (p) (respectively the layer in-degree δ−

l (p))
a node p in the subgraph Gl . δ+

l (p) = |a(p, q, l)|,∀q ∈ V , s.a. ∃a(p, q, l) ∈ E (respectively
δ−
l (p) = |a(q, p, l)|).

We will now turn to our advantage the fact that the definition of the multiplex sub-
graph induced by one publication p, as in Definition 7, implies that edges bear all
the co-cited papers not restricted to the articles citing p. This allows the inspection
of the subgraph directly without having to consider the whole graph, and the design
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of measures that can reduce the influence of an article in favor to other co-cited
works.

Multiplex extensions of the ascending flow

Since the multiplex formulation of flows in citation networks offers a wide range of
possibilities for new measures of influence, we present three measures of flows: two
straight-forward extensions of the ascending flow to the multiplex case, and one more
elaborated.

Aggregated flow

This is a direct straight-forward extension of the ascending flow (“Ascending flow in cita-
tion networks” section). We keep the exact same definition but this time applied in a
context with multiple edges.

F(N−(p)) =
∑

q∈N−(p)

K(kq)
δ+(kq)

+ λp (6)

Driving this definition is a notion of proximity of sources between two publications: the
more they share citations, the closer they can be considered, hence the citing publication
is more influenced by the work it is citing. The cited publication will then receive a larger
share of the flow gathered by the citing work in comparison to other works marginally
cited. One advantage of this view is that, in a developing branch of knowledge, the most
recent works sharing many citations with a publication will receive more flow — with the
consequence of survey works dispatching more flow to recent works rather than funda-
mental works. Similar to “Ascending flow in citation networks” section we set λp = 1 the
unit of contribution of one work.
Algorithm 2 shows the algorithm of the aggregated flow is exactly the same as the

ascending flow, with the exception of an additional loop among layers (Algorithm 2 line 6).
This loop correspond to the fact of going through all the layers of a multiple link between
two citations. Computation is illustrated in Fig. 9. As discussed in “Ascending flow in cita-
tion networks” section, the complexity of Algorithm 2 is �(m) where m is the number
of citations. Since the input is a multiplex network, in the worst case the number of links
in the networks is equal to the number of nodes (layers) times the number of citations.
Thus, the time-complexity of Algorithm 2 is �(mn).

Sum flow

This second extension of the ascending flow to a multiplex network consists in combining
multiplemonoplex versions of the ascending flow. Indeed, as we explain in “Preliminaries”
section, for each publication p, we have an induced subgraph Gp, for which we can
compute an ascending flow. With this measure, influential nodes (such as surveys) send
individually to each sources only the flow they directly received through their layer. It
would correct the disadvantage of the aggregated flow by introducing some level of fair-
ness. Its drawback is that such survey works will receive a boosted flow measure since
they have greater chances to belong to many different layers.
Recall the definition of the ascending flow, adapted to a subgraph Gl:

FGl (N−(p)) =
∑

q∈N−(p)

KGl (kq)
d+
Gl

(kq)
+ λ(p,l) (7)
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Fig. 9 Aggregated flow in a multiplex network, step by step

The sum flow will simply sum ascending flows over all subgraphs composed of one
layer, determined for a node p by:

FG(p) =
∑

l∈L(p)
FGl (N−(p))

λ(p,l) = λp
|L(p)|

(8)

If we set the parameter λ(p,l) = 1, the contribution of one publication to the whole
system will be exactly its number of citations, and a publication that cites lots of work
will produce a lot of flow. In order to maintain constant the unit of contribution of a
publication of a work, we set λp = 1 hence

∑l∈L(p)
l

1
|L(p)| = 1 such that a publication

brings exactly 1 unit of contribution to the system.
Algorithm 3 shows the algorithm of the sum flow is not a straightforward extension of

the the ascending flow, as is Algorithm 2. The sum flow first constructs the citation sub-
graph for each layer, and compute the ascending flow on those layers afterwards to finally
add them. Computation is illustrated in Fig. 10. As discussed in “Ascending flow in cita-
tion networks” section, the complexity of the Algorithm 1 is�(m)wherem is the number
of citations. As Algorithm 3 is iterated once per layer, thus per node, the complexity of
our sum flow is O(nm). In practice, we can expect the size of the subgraphs to be much
less thanm.
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Algorithm 2: Aggregated flow (multiplex)
input : A citation network with nodes (articles) and arcs (citations)

An empty dequeue Q (FIFO)
A function αinit over the nodes

output: The ascending flow on each node (article) and each arc (citation)

1 Initialize each article p with a flow value λp = λinit(p)(= 1by default)
2 Color each arc in white
3 Add all leaves in Q
4 while Q is not empty do
5 p ← pop_first(Q)

6 for each q son of p do
7 for each layer l ∈ Lp do
8 Color a(p, q, l) in blue
9 λq ← λq + λp/δ+(p)

10 end
11 if all incoming arcs of q are blue then
12 Q ← push_last(q)
13 end
14 end
15 end

Selective flow

This last extension attempts to correct both drawbacks of the previously defined flows.
It is more restrictive and hybrids both of previous measures: one publication still brings
one unit of contribution to the system. Not only flow circulates solely through one layer
of interaction, but also the share generated by a layer will be transmitted along this layer.
Similarly to the ascending flow, we suppose that the flow first equally shares from one

publication to all citations concerned. Then, within a pair of nodes, we suppose that all
citations are equivalent.

Algorithm 3: Sum flow (multiplex)
input : A citation network with nodes (articles) and arcs (citations)
output: The sum flow on each node (article) and each arc (citation)

1 Initialize each article p with a flow value λp = 0
2 for each article p do
3 Construct the citation subgraph Gp
4 F ← ascending-flow(Gp) with ∀q ∈ Vp, λinit(q) = 1

d+(q)+1
5 for each article q ∈ Vp do
6 λq ← λq + F(q)
7 end
8 end
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Fig. 10 Illustration of the sum flow: we individually initialize weights to each node, depending on the
number of layers each belongs to (including its own). We then compute the ascending flow for each layer
(including individual), and sum the obtained weights

FGl (N−(p)) = λ(p,l) +
∑

q∈N−(p)

KGl (kq)
d+
Gl

(kq)

FG(p) =
∑

l∈L(p)
FGl (N−(p))

α(p,l) =
∑

j∈N+(p)

λp
d+(p) × |L(p, j)|

(9)

Similarly to the sum flow, we set the unit of contribution of one publication to λp = 1,
such that

∑
l∈L(p)

∑
o∈N+(p)

λp
d−(p)×|L(p,o)| = 1.

The less a cited work shares co-citation, the more it will be rewarded in flow. Contrarily
to the aggregated flow, this is designed to increase the flow transmitted from works that
brings originality from extra fields.
Principles are illustrated in Fig. 11 and the static algorithm is decribed in Algorithm 4.

The algorithm behaves as a mix of the two previous multiplex flows in Algorithms 2
and 3. First, the selective flow will construct the different subgraphs of the origi-
nal citation network (as in Algorithm 3). Then it will compute a kind of ascending
flow on the whole multiplex graph (as in Algorithm 2). As such the complexity is
also O(mn).
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Algorithm 4: Selective flow (multiplex)
input : A citation network with nodes (articles) and arcs (citations)

An empty dequeue Q (FIFO)
output: The selective flow on each node (article) and each arc (citation)

1 Initialize each article p with the color white and the value λp = 1
2 Color all leaves in red and push them into Q
3 while Q is not empty do
4 q ← pop_first(Q)

5 for each r son of q do
6 if r is white then
7 Construct Gr and initialize all λ(a(q, r, l)) to 0
8 push_last(Q, r)
9 Color r in red

10 end
11 end
12 for each layer l ∈ Lq do
13 Initialize λl,q = 0
14 for each parent p of q do
15 λl,q ← λl,q + λ(a(p, q, l))
16 end
17 for each son r of q do
18 λ(a(p, q, l)) ← 1

d+(q)×(1+|L(q,r)|) + λl,q
d+
l (q)

19 end
20 λq ← λq + λl,q

21 end
22 end

Dynamic implementation

Although we presented static algorithms for computing our measure, actual dynamic
implementation is much simpler. Similarly to the ascending flow, we consider the
construction of our citation graph node by node in order to compute our measures. This
means that we only need to compute a series of weights, and propagate them up when
updating.
In the case of the ascending flow, we need to propagate in the whole hierarchy each

time we add a node. For this reason, we proposed the k-diffuse property to ease the com-
putation. The idea is exactly the same with the new measures, although additional details
must be taken into account. Since we are using multiplex networks, two implementations
are possible: either we take into account each edge colored by its layer individually, or we
assign a set of colors (corresponding to layers) to each node and edge.
The aggregated flow propagates exactly the same way as the ascending flow, with the

exception of the weighing scheme: there are just a little bit more edges to take into
account. The newly added node p will propagate to q a weight wagg(p, q) = λp

|L(p,q)| and
same for q that will propagate with λq = wagg(p, q).
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Fig. 11 The selective flow, step by step. Notice that the weight a node received on one layer is only
transmitted this layer only. Only a node’s initial unit is proportionally transmitted to all other layers

For the sum flow, we first assign different weights for each color. The propagation then
occurs similarly to the ascending flow. However, we need to compute an ascending prop-
agation per each layer this newly added node belongs to (1 per citation). The newly added
node pwill propagate to q for each co-citation l ∈ L(p, q) a weightwsum(p, q, l) = λp

1+δ+(q) ,
then q will propagate individually on each layer l, following the strategy of the ascending
flow with λq,l = wsum(p, q, l).
Finally, the selective flow is similar to the sum flow with a different weighting scheme.

The newly added node p will propagate to q for each co-citation l ∈ L(p, q) a weight
assigned per each edge wsel(p, q, l) = λp

d+(q)×|L(p,q)| , then q will propagate individually on
each layer l, following the strategy of the ascending flow with λq,l = wsel(p, q, l).
Although we do not propose a study of parameterization — with timely comparisons —

here, all flow measures can be constrained similarly to the ascending flow, i.e. we can
apply evanescence or k-diffusion to speed up implementation time.

Influence of layers in the multiplex citation network

The multiplex definition of our citation network allows us many interesting studies, one
of each is the analysis of edge entanglement (Renoust et al. 2014). Edge entanglement
measures the overlapping of edges in a multiplex network. The entanglement index grows
as multiple layers overlap together over multiple edges (similarly to hubs and authorities,
but for layers).
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One very interesting aspect of this approach is that it computes a second net-
work, the network of overlapping layers (hereafter referred as the “layer network”, see
Fig. 12, right), for which the entanglement measures may be computed. The visualiza-
tion of this multiplex network gives interesting insights on how the layers are behaving
together in the multiplex network. We use a publicly released online visualization tool4

(Detangler (Renoust et al. 2015)). It offers interaction in the multiplex network allow-
ing to identify groups of particular nodes and their associated layers — as well as the
other way around, particular groups of layers with their associated nodes (Renoust
et al. 2015). Detangler also offers to study many other aspects of the multiplex net-
work by changing metrics, taking weights into account, and measuring global cohesion
of groups of publications (Renoust et al. 2014). For the sake of simplicity, we will only
look at the exploration of the layers in association with citing articles as it already
brings insights.
This is particularly useful to investigate a multiplex subgraph Gp induced by a

publication p. For example, the topology of the layer network can indicate sub-
groups of citations that tend to be co-cited together. With interaction, we can as well
identify a subgroup of publications that tend to co-cite the same subgroup of cita-
tions. Since Gp is by definition induced by p, we also expect the publication p to
be the most overlapping publication. However, the co-citing relationships including
many additional layers, we can identify other fundamental works that are co-cited in
the network.

Experimental results

We follow up on our experiment in “Experimental results” section, and computed values
of all new multiplex flows on the arXiv HEP-Th dataset.

Correlations betweenmeasures on the whole archive

We compare the Pearson ρ and Spearman rs correlation coefficients of these measures, as
well with our original ascending flow. Results of the analysis are presented in Table 3 and
Fig. 13. The first thing we can notice is that the multiplexity is not correlated to any other
measure. By construction of our network, the multiplexity would be highly correlated

Fig. 12 Frommultiplex citation network (left) to layer network (right). Note that we added a layer X in orange
to illustrate that external citations can be included in the co-citation relationship. In the layer network, the
layer a plays obviously the most central role as it is interacting with all other layers. Note that the layer
network is undirected since the relationship becomes co-occurrence
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Fig. 13 Comparative distribution of ranks and values among: • ascending flow (a, b, c), • aggregated flow
(a, d, e), • sum flow (b, d, f), • and selective flow (c, e, f). The plots illustrate the difference between what
those statistics are measuring

with the out-degree of a publication (the number of articles cited), since a publication
cannot connect through more layers than it is citing. However it has no clear link with its
in-degree (its own number of citations).
The second remark is that the original ascending flow and the aggregated flow are very

correlated (ρ=0.912). This is of course expected since the definition of the aggregated
flow directly extends the ascending flow. Both are actually equivalent when a publication
shares exactly the same number of co-citations with all its citing articles. A look at Fig. 13
(a) shows that many cases differ in practice.
Similarly, we can explain the correlation between the selective and sum flows (ρ =

0.946), the selective flow inheriting from the sum flow. What came as a surprise is that
both measures actually highly correlate with the number of citations (ρ > 0.95 in both
cases). However, our correlation coefficients are not robust (Devlin et al. 1975) and the
heavy tailed distribution of our measures render their interpretation difficult (Devlin et
al. 1975) (plots in Fig. 13 show that most of the 29+K values are usually tight in a dense
group around low values). Nevertheless, if we look at correlations within the subset of
h-index=6 publications, the values are widely spread (see Fig. 14a).

Searching formultiple needles in the haystack

To illustrate the difference between the multiplex flows, we can explore a subset of
publications with a fixed number of citations (arbitrarily set to 10, corresponding to



Renoust et al. Applied Network Science  (2017) 2:23 Page 27 of 34

Fig. 14 Comparison of sum and selective flows among a all publication with h-index=6 b all publication
with #citations = 10. Circled in blue are the publications with the maximum aggregated, selective and sum
flows of the subset, corresponding to the graphs shown in figure

591 publications). We can observe in the distributions (Fig. 14b) between our sum and
selective flows and the h-index that values widely vary.
To continue our investigation, we can take a look at all publications in this subset having

h-index=6. The positions of the nodes with maximum flows show very different cases
(identified from the blue circles in Fig. 14b). We put the three works for illustration in
Fig. 15 with their information in Table 4.

Exploration of individual induced subgraphs

We have identified three interesting publications, and can now investigate their induced
subgraphs. We will pay a special attention to how other publications are cited in their
subgraphs. The idea is to find whether there are other very influent works that inspired
this subset of publications or not. We will also check if we can find sub-communities of
co-citations. Layers (hence cited articles) that have a relatively high entanglement index
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Fig. 15 The induced subgraphs of the top publication identified by each of the three multiplex flows, in the
subset (#citations=10, h-index=6). The size of nodes correspond to their number of citations, the size of
edges correspond to their number of co-citations. The color of nodes and edges correspond to the flow
measures transiting through each node/edge (a: aggregated, b: sum, c: selective), minimum is blue,
maximum is red. In the case of the sum and selective flow, we can notice clear differences between node size
and color mapping emphasizing the differences between the flow measures and the #citations

may either form subgroups of layers or be some influent work. Entanglement indices
are computed normalized over the whole multiplex network. Relatively high entangle-
ment indices are groups of connected layers (in the layer-interaction network) that display
higher values than their surrounding.
In the following networks (Figs. 16, 17 and 18), we will present on the left the publi-

cation network of citing articles and on the right the layer network of cited articles. The
publication networks are laid out with Sugiyama et al.’s algorithm for DAGs (Sugiyama
et al. 1981), and the layer network with a force layout (since the relationship is co-
occurrence). The size of the publication nodes corresponds to the metric that identified
the publication, and the size of the layer nodes corresponds to their entanglement index.
If we look at the subgraph identified by the aggregated flow (ID9503097), we can clearly

see two communities of cited articles in the layer network (Fig. 16, right) corresponding to
the two separated branches of citing articles (Fig. 16, left). One community of layer nodes
is also almost separated in two. One subgroup of layer nodes correspond to a smaller
group of three publications, two citing another third. A small investigation on this group
of publications actually shows that they all have one author in common (M. Gasperini),
and that a fair amount of the corresponding subgroup of cited articles have been also
published by this author: this may be a case of excessive self-citations.
Now we can look at the subgraph identified by the sum flow (ID9303050). The topol-

ogy of the layer network suggests two intertwined communities. A fair amount of external
nodes shows relatively high entanglement index. They are cited by almost all the other

Table 4 Information of the most relevant publication and their main influence as discovered with
the different multiplex flows among the (#citations=10, h-index=6) publication subset

Top node Most flow received from

Aggregated Flow ID9503097: Inflation With Variable
Omega

ID9802030:Open Inflation Without
False Vacua

Sum Flow ID9303050: Conformal Turbulance
with Boundary

ID9307091: Solutions of Conformal
Turbulence on a Half Plane

Selective Flow ID9503097: Infrared regularization of
non-Abelian gauge theories

ID:0728589On the renormalizabil-
ity and unitarity of the Curci-Ferrari
model
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Fig. 16 Detangler (Renoust et al. 2015) view of the subgraph induced by ID9503097 (aggregated flow). On the
left the citation network (size is the aggregated flow), on the right the layer network (size is the entanglement
index). Nodes are labeled with their authors’ name. We can notice that the layer network splits into two parts,
the rightmost part forming another subnetwork. A subgroup of nodes consistently shows one same author.
Selection from highlights the citing article. Two articles citing a third one: all include the the same author

nodes (from selection of those nodes). From the publication network, three other publica-
tions show relatively high value of sum flow. A little inspection shows us that those three
are from the same authors (M. Rahimitabar and S. Rouhani). From selection, we can see
they co-cite mainly four publications (bigger highlighted nodes on the right in Fig. 17),
but this time among these there is only one self-citation!
Finally, we can investigate the subgraph identified by the selective flow. The layer net-

work shows a very different topology: it is almost one big connected clique. All the major
layer nodes correspond to citing publications nodes. Additional layer nodes almost always
connect only one pair of publications each. Manual inspection does not show dominant

Fig. 17 Detangler (Renoust et al. 2015) view of the subgraph induced by ID9303050 (sum flow). On the left
the citation network (size is the sum flow), on the right the layer network (size is the entanglement index).
Nodes are labeled with their authors’ name. The topology of the layer network suggests two intertwined
communities (top and bottom). In the citation network (left) we select the three citing articles authored by the
same group (with high sum flow). The corresponding co-cited articles (shown on the right) display four main
cited articles (and two marginal ones). Only one of the main is a self-citation— and one marginal as well
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Fig. 18 Detangler (Renoust et al. 2015) view of the subgraph induced by ID9509084 (selective flow). On the
left the citation network (size is the selective flow), on the right the layer network (size is the entanglement
index). Nodes are labeled with article titles. One citing article displays a very high selective flow, however the
original publication (on top) bears a much lower value. We select both to highlight their co-citations and only
the original publication pops out: the influence of this work must come from many other publications

authors or much self citation in this group, it is actually very well balanced. One citing
publication node pops out as it displays a very high flow value. We could suspect that this
node is the reason this subgraph was detected in the first place. However, we know from
Fig. 18 that most of the top node’s flow does not come from this citing article. Indeed, if
we select this node and its citing node, only the citing node’s layer is displayed: the top
publication will only receive from this node the share of citation that corresponds to its
layer. The citing article must have received influence from many other works.
We inspected the network, and it appears overall flawless: no major work is often co-

cited with the top publication; no other citing article brings an imbalanced larger share of
flow to the publication; no dominant authors and no excessive self-citation.

Discussion and conclusion
On the notion of flow in citation networks

We have shown that the production and diffusion of knowledge can be modeled in a
recursive framework that studies flows in DAGs, with a natural interpretation of the
notion stream of knowledge. The framework allows for other knownmetrics to be embed-
ded, and for efficient computation on large dynamic graphs. By comparing the ascendant
flow with the h-index we clearly see some level of correlation, in regards to the meaning-
fulness of the Pearson coefficient. Our measure’s interpretation is straightforward, and
this correlation goes in favor of the relevance of the h-index, and in some extent also to
the number of citations. But we do not fully correlate with the h-index, and many cases
that are oversimplified by the h-index can be more accurately described by the ascend-
ing flow. In addition, the flow can be used to find paths in the citation network, trying
to explain the sources of influence. One interesting extension of this study would be to
characterize if a node genuinely receives flow from being cited by a large crowd, or maybe
once it has spread across different (sub)domains of science, or from being cited by very
influent works.
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We found cases with large differences among ascending flow for publications with
the same h-index. The h-index gives a rough estimation of a publication’s production
of knowledge, but it does not take into account how each citation refers to the original
work. The ascending flow measure, even 2−diffuse, is reinforced by two factors. A first
one is something similar to a “community” effect in citations, i.e. when the citations pro-
duced also cite each other in relative proportion, in comparison to citations “outside” that
“community” of citations. For example, this happens when a paper has an influence in
developing a community of research: the larger the community, the greater the flow. The
second effect gets more relevant as the depth of diffusion is greater. It is somewhat close
to the hubs and authorities effect: the more citations a paper gets from influential papers
the more influential it will become.
The interpretation of flow we propose is much more flexible than the h-index, and can

fairly support a wide range of parameters to conduct further experiments (such as addi-
tional weights, edge filtering, depth of influence, etc.). More than a metric, when studying
the influence of a work (or a collection of works), we argue that the structure of the flow
of knowledge it produces, i.e. the DAG generated by a publication and its citations should
be taken into account.

On the multiplex interpretation of the citation network

We also proposed to extend this model to a multiplex view of the citation network
such as the edges bear the additional information of co-citations. The ascending flow
fits well in this new model, and we could define three original flows. Although those
interpretations of the flow are not independent of previous metrics, use cases show
that it brings finer details, all things being equal. One important direction of future
works would be a better study of the design space offered for other measures. We
have chosen three interpretations of multiplex flow for our application case, but we will
need to study their limits, dynamic/static implementation characteristics, and proper-
ties so we can better control and implement them. Implementation of the multiplex
measure is a naive extension of the monoplex version, but we surely have room for
optimization.
This multiplex view of the network would support many extensions to better fit the

idea of knowledge diffusion, and from publication analysis, we could find the number of
references to each citation within an article and use it to weight our individual interaction.
Text analysis is also another direction that could bring topical proximity to even better
refine the networks (as well demonstrated by Dong et al. (2012)).
Interacting with the publication subgraphs on Detangler brought really interesting

insights from the content of an article’s co-citation network. This could be a helpful tool
to suggest important new readings when evaluating a publication from a specific domain,
or even to unearth very influential works on a specific venue. The questions we asked
ourselves on self-citations discovered through interaction also opened us to new possibil-
ities: we could use individual authors as a way to define a layer of interactions (such as in
the work Boden et al. (2012)), and consider in the same time a co-cited author network
(somewhat close to the spirit of one of Detangler’s use-case (Renoust et al. 2015)), form-
ing a multiple-multiplex network. Our introduction of the multiplex DAG also invites us
to study with them all known multiplex measure and extend other DAG measures to the
multiplex case.
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Conclusion

We have introduced the notion of flow in citation networks, proposed a measure the
ascending flow, discussed its implementation and experimented with it in the arXiv
HEP-Th dataset. This notion of flow allowed us to propose the new approach of the
citation network as a multiplex DAG for which we offered three measures — the aggre-
gated, sum and selective flows — with implementation and experiments on the same
dataset. We also leveraged visualization to explore our results and discovered interesting
insights.
Although our study does not hold for an evaluation for which a comparison with many

other metrics and regression will be necessary, we still have set and validated the basis
of our framework. Not being high-energy theoretical physicists ourselves, it remains
somewhat difficult to directly interpret the results, nonetheless exploration of our results
showed interesting insights.
It will be important in the future to carefully curate controlled datasets for which we can

expect results and apply former validation. As such, it would be interesting to examine
the insights we could extract from a citation network inherited from all publications of
a conference venue; to explore neighborhoods of important works such as surveys; to
suggest new relevant works from a set of publications; or to analyze the genesis of two
merging domains.
We wish to extend our study to other databases, such as DBLP or web of science,

and bring the analysis to the authors themselves — although ambiguity in author names
is quite challenging. It will be interesting to observe the influence of Nobel prizes for
example, find their most influent work and their own influence.
Finally, this framework is not limited to citation networks, but can apply to many other

type of transferred information: among our future works is the application to the analysis
of news documents. Indeed, DAGs also apply to the study of closely related documents —
even if there is no citation relationship, the time dependency between closely related doc-
uments can maintain the DAG assumption. It could be an interesting way to find the
sources of information, and characterize the impact of news events.

Endnotes
1Available at: http://snap.stanford.edu/data/cit-HepTh.html.
2The Coupling of Yang-Mills to Extended Objects (Dixon et al. 1992), by Dixon, Duff

and Sezgin published on arXiv in 1992. And it has well deserved another citation!
3 By “flattening”, we mean the process of projecting the multiplex network such that

one edge only is shared between two nodes in order to obtain a monoplex version of the
multiplex network.

4 https://github.com/renoust/Detangler/tree/demo.
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