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Abstract

In this study, we propose a novel approach to analyze a dynamic correlation network
of highly volatile financial asset returns by using a network clustering algorithm to
deal with high dimensionality issues. We analyze the dynamic correlation network of
selected Japanese stock returns as an empirical study of the correlation dynamics at
the market level by applying the proposed method. Two types of network clustering
algorithms are employed for the dimensionality reduction. Firstly, several stock groups
instead of the existing business sector classification are generated by the hierarchical
recursive network clustering of filtered stock returns in order to overcome the high
dimensionality problem due to the large number of stocks. The stock returns are then
filtered in advance to control for volatility fluctuations that can distort the correlation
between stocks. Thus, the correlation network of individual stock returns is transformed
into a correlation network of group-based portfolio returns. Secondly, the reduced
size of the correlation network is extended to a dynamic one by using a model-based
correlation estimation method. A time series of adjacency matrices is created on a
daily basis as a dynamic correlation network from the estimation results. Then, the
correlation network is summarized into only three representative correlation networks
by clustering along the time axis. Some intertemporal comparisons of the dynamic
correlation network are conducted by examining the differences between the three
sub-period networks. Our dynamic correlation network analysis framework is not
limited to stock returns, but can be applied to many other financial and non-financial
volatile time series data.

Keywords: Financial asset returns, Correlation network, Dynamic correlation, Network
clustering, Dimensionality reduction

Introduction
A large number of financial assets including stocks and foreign exchange rates are traded
in a financial market. The correlation of individual asset returns (price changes) is one of
the key issues to understand the financial market structure. A deeper understanding of
the market-wide correlation structure helps us improve financial portfolio management,
leading to efficient risk management for investors as well as the authorities responsible
for macro financial stability. There is a substantial body of work on correlation networks
that analyzed complicated interactions and market structure of financial asset. Mantegna
(1999) developed a correlation network of US stock returns by calculating the cross corre-
lation of returns to discover the hierarchical structure of the correlation network. Similar
network-based analyses have been conducted including Tumminello et al. (2010), which
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studied how to obtain hierarchical networks from a correlation matrix of financial asset
returns including stock prices; the correlation-based clustering procedure was imple-
mented to explore the hierarchical tree structure of the system. Chi K et al. (2010) also
studied a large correlation network that included all US stock returns to examine the
interdependence structure of returns. They identified a small number of stocks that has
very strong influence on returns of other stocks from their correlation network analy-
sis. Onnela et al. (2003) focused on the dynamics of market correlations. Their study
on a time-dependent correlation network of the US stock return data showed that the
topological structure of the network is robust with respect to time, while strong market
correlation is identified during crisis periods. Preis et al. (2012) also quantified state-
dependent correlations in stock markets to know if correlations are not constant but
instead vary in time. Their empirical study on major US stocks showed that a higher level
of average correlations were observed duringmarket stress periods. More recently, Kenett
et al. (2015) applied partial correlation analysis to stock prices by using dependency net-
work to uncover dependency and influence relationship between individual stocks. Their
empirical study based on stock prices revealed that one stock can be influenced by dif-
ferent sectors outside of its primary sector classification. They also found that developed
markets such as the US, UK, and Japan exhibit higher degree of market stability.
When analyzing the correlation structure at the market level, the number of financial

assets can become a serious technical constraint on any empirical analysis. If the num-
ber of individual asset is very large as in the case of stock market, the number of pairs
of assets may become too large to observe individual relationships between them. Such
dimensionality issue together with significantly volatile price movements of financial
asset returns should be appropriately controlled when conducting correlation network
analysis of financial asset returns. Our previous research (Isogai 2014, 2016) has pro-
posed approaches to overcome such difficulties by applying network theory combined
with advanced econometric models. Such a network-based analysis framework is useful
to cope with the complex correlation structure between individual asset returns when the
interaction of highly volatile asset returns is appropriately considered in network building.
Specifically, Isogai (2014) proposed a novel approach to the clustering of a large correla-
tion network by using recursive hierarchical network division. This method is able to find
a grouping of highly correlated asset returns that depends only on the adjacency matrix
converted from the correlation matrix of filtered returns. Later work also extended the
correlation network analysis framework to a dynamic one, in which conditional correla-
tions are estimated to express a dynamically changing network of asset returns (see Isogai
(2016)). This method has proven to be useful, especially for the change point detection of
the correlation structure.
In this study, we combine the two aforementioned methods to provide summary infor-

mation on the possible dynamic changes in the correlation structure of a large number
of asset returns. Our proposal comprises two types of dimensionality reductions: the first
one provides summary information on the group structure of asset returns, while the sec-
ond provides summary information on the intertemporal differences in the correlation
structure. Such a twofold dimensionality reduction is useful for investors and regulatory
authorities to find out more about the dynamic changes of a large and complicated finan-
cial market. We then apply the proposed method to a large Japanese stock dataset as a
typical empirical case study of correlation network analysis.
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The remainder of this paper is organized as follows. “Correlation network of financial
asset returns” describes the filtering process used to control for the volatility fluctua-
tions of stock returns as well as the network clustering algorithm for filtered returns used
to build a reduced-size correlation network at the market level. “Dynamic changes in
correlation networks” describes the dynamic conditional correlation (DCC) model used
to estimate the time-dependent correlation matrices of stock returns; then, a dynamic
correlation network of stock returns is built according to the estimation results of the
DCC model. “Comparative analysis of the dynamic correlation network” describes the
dimensionality reduction of a time series of adjacency matrices by using low rank ten-
sor decomposition and a subspace clustering algorithm along the time axis. The dynamic
correlation network is categorized into three sub-period networks and a comparative
analysis is conducted. “Discussion and conclusion” discusses the further enhancement of
our methods and possible extension of our dynamic correlation network analysis to other
financial and non-financial time series data.

Correlation network of financial asset returns
A correlation network is a network whose adjacency matrix is built on the basis of pair-
wise correlations between variables. The interaction between individual stock returns can
be regarded as a correlation network whose adjacency matrix is constructed from the
correlation matrix of those returns. The nodes of the correlation network are stocks that
have edges weighted by the degree of the pairwise correlation of returns. Following the
literature, we focus on the contemporaneous co-movement of returns, since this plays a
key role in the risk–return relationship of an asset portfolio. The network is, therefore, an
undirected and weighted network.
This study aims to establish an efficient way in which to observe possible changes in a

large-scale correlation structure of financial asset returns. In financial markets, the corre-
lation between asset prices can change dynamically in response to the trading activities of
market participants. The correlation network therefore needs to be extended from a static
one to a dynamic one, in which the adjacency matrix changes dynamically depending on
time.
However, establishing such a method is beset by difficulties. The first and most

important point when building a correlation network is how to estimate the pairwise
correlations (edge weights) precisely. The correlation network is based on an observable
measure of correlations; many financial time series tend to exhibit volatile features that
make carrying out the statistical procedures used to estimate the correlations difficult.
If the estimated correlation is distorted, any analysis of the correlation network would
be misleading. We thus apply statistical filtering to the return data when calculating the
correlation of our returns.
The second problem is how to handle the high dimensionality of financial data. In this

study, we use data on Japanese stock returns listed on the Tokyo Stock Exchange (TSE).
More than 1,700 stocks are listed on the First Section of the TSE; the total number of all
listed stocks is more than 3,000 in Japan. The first dimensionality issue arising from the
number of assets is that it is hard to handle such a large correlation matrix.
Another dimensionality problem is related to the observation frequency of price data,

which determines the temporal resolution of dynamic change detection. More frequent
price data enable a more precise analysis of dynamic changes; however, this increases the
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dimensionality alongside the time axis. To deal with these two high dimensionality issues,
dimensionality reduction by clustering the correlation network in terms of size and time is
implemented, respectively. We begin by describing the filtering method used to calculate
the correlations of volatile financial asset returns in the following section.

Filtering volatile asset returns

Many financial asset returns have fat-tailed return distributions in that large-scale
volatility shocks are observed frequently as discussed in many previous research works
including Mandelbrot (1963) and Cont (2007). A market-wide shock such as a financial
crisis as well as smaller shocks that affect part of the market can distort the calculation
of asset returns from sample data, as discussed in Isogai (2014, 2016). Such synchronized
volatility shocks between multiple asset returns can cause an overestimation of the corre-
lation. It is therefore crucial to control for the volatility fluctuations of asset returns when
calculating the correlation matrix, which is converted into an adjacency matrix later.
Isogai (2014) filtered asset returns to remove volatility fluctuations, using an economet-

ric volatility model, namely the generalized autoregressive conditional heteroskedasticity
(GARCH) model proposed by Bollerslev (1986). Asset returns comprise two parts: the
conditional mean and shock as follows:

rt = μt + εt = μt + H1/2
t zt ,

E (zt) = 0, Var (zt) = IN
(1)

where rt is a vector of the asset returns, μt is a vector of the conditional means, εt is a
vector of the unpredictable residuals,Ht is anN ×N (N : the number of returns) symmet-
ric positive-definite matrix, which is a conditional variance–covariance matrix of rt , and
zt is a vector of the i.i.d. standardized residuals, the mean and variance of which are 0 and
IN (an identity matrix of order N), respectively.
More specifically, the mean part is modeled by using the autoregressive moving average

(ARMA) model independently as

μt = μ +
P∑

i=1
Airt−i +

Q∑

j=1
Bjεt−j (2)

where Ai and Bj are diagonal matrices. The volatility part is modeled as

ht = ω +
q∑

i=1
Siεt−i � εt−i +

p∑

j=1
T jht−j (3)

where � denotes the Hadamard operator (the entry-wise product), ht is the diagonalized
matrix of Ht , and both Si and T j are diagonal matrices. Volatility is modeled without
interaction between the assets to simplify the model.
What is important in (1) is that the volatility fluctuation can be separated from returns

rt as the elements of ht such as
(√

h11·t , . . . ,
√
hNN ·t

)
. Thus, we can safely estimate the

linear correlation of returns rt as correlation matrix R by calculating the sample pairwise
correlation of filtered residuals zt , since ht as well as μt have no effect on the Pearson
linear correlation coefficient of rt defined as ρri,rj =

Cov(ri,rj)√
Var(ri)·Var(rj)

. Note that we use a
static correlation matrix that is assumed to be constant during the observation period at
this stage.
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When fitting the model to our dataset, we assume that the distribution of individual
residual zi is a normal, Student t, or skew t distribution, allowing for some fat-tailedness
even after the volatility filtering. The model parameters are estimated as maximum like-
lihood estimators (MLEs) for each asset independently, since the model does not include
any interaction between the assets as shown in (2) and (3). This estimation process works
efficiently, especially with a large number of assets. We have now established a way in
which to overcome the distortion problem of the linear correlation caused by volatility
fluctuations when estimating the correlation of volatile asset returns. For more technical
details on the estimation procedures, see Isogai (2014).
Next, we build a static correlation network from the estimated correlation matrix R by

using a simple unsigned nondecreasing adjacency conversion formula with thresholding
based on R as follows:

Aii = 0, Aij(i�=j) =
{ ∣∣cor

(
xi, xj

)∣∣ if cor
(
xi, xj

)
> corthres(i,j)

0 if cor
(
xi, xj

)
� corthres(i,j)

(4)

where Aij is the (i, j)th entry of weighted adjacency matrix A; cor
(
xi, xj

)
is the (i, j)th

entry of correlation matrix R; and corthres(i,j) is the cutoff point of the edge weight. All the
diagonal elements of Aij are 0, since no self-edge is considered in the correlation network.
An undirected weighted network only with edges positively weighted is built by (4). The
cutoff point corthres(i,j) is set at the higher level of the two 20th percentiles of the empirical
edge weight distribution of stocks i and j. In other words, cor

(
xi, xj

)
is set at 0 when cor-

relation cor
(
xi, xj

)
is lower than the lower 20th percentile of cor (xi, ·) or that of cor (·, xj

)
.

The threshold level is sufficiently high to exclude correlation values that are not statisti-
cally meaningful from our dataset. It is confirmed that the clustering result has not been
much affected by thresholding at lower levels.

Dataset for the empirical analysis

As mentioned in “Introduction”, we focus on Japanese stock return data as an empirical
case study. The dataset used covers the stocks listed on the First Section of the TSE: 1,324
stocks in 33 business sectors. Note that stocks with low liquidity are excluded from the
dataset. The observation period runs from January 2008 toMay 2016 (2,058 trading days).
The study period includes major two financial crises: the Lehman collapse (2008) and the
Great East Japan Earthquake (2011). Stock returns are calculated by using daily closing
data as log returns.
We fit the GARCHmodel, expressed by (1), (2), and (3), to those individual stock return

data to calculate correlation matrix R from the filtered returns. Then, the static cor-
relation network of individual stock returns is created by the adjacency conversion, as
shown in (4).

Grouping by recursive network division

The network built in the last section is too large to carry out correlation analysis; more
than 1,300 nodes are densely connected with many other nodes. Hence, we need to con-
duct the first-round dimensionality reduction of the correlation network as mentioned
earlier. The whole stock market is regarded as a market portfolio in which every stock is
included. This portfolio can be separated into several sub-portfolios; then, the correlation
structure of the whole market is approximated by the correlations among sub-portfolios.
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What is important here is how to organize a grouping of stock returns. The most fre-
quently used approach for grouping stock returns is to adopt a predefined industrial
sector classification. The business industry classification is adopted in the TSE; however,
the sector classification is not necessarily consistent with the observed correlation struc-
ture of stock returns. Furthermore, such a sector classification tends to be significantly
unbalanced in size, as discussed by Isogai (2014).
To address these shortcomings, Isogai (2014) proposed a data-driven method for the

classification of stock returns based on a recursive network division algorithm. Under
this method, hierarchical sub-networks are created by dividing the correlation network
recursively. In particular, the network division method used in this study employs the
modularity maximization to generate the optimal classification of stock returns at every
stage of the recursive network division, as shown in Fig. 1. First, we apply a graph spec-
tral clustering algorithm with the modularity optimization to adjacency matrix A defined
in (5) of the whole correlation network of individual stock returns. The modularity Q,
proposed by Girvan and Newman (2002) and Newman (2006), of A is defined as

Q = 1
2W

n∑

i=1

n∑

j=1
Bijδ

(
Ci,Cj

)

wi =
n∑

j=1
wij, 2W =

n∑

i=1
wi,Bij =

(
Aij − wiwj

2W

) (5)

where wi,wj are the sum of the weights of stock i, j; δ( ) takes 1 if both stocks are in the
same class (Ci = Cj), otherwise 0; and Q takes the value between -1 and 1 with positive
values indicating the possible presence of some group structure. We employ the simplest

Fig. 1 Network clustering by recursive hierarchical network division. Note: The whole market includes all
1,324 stocks as a single group portfolio. The network is divided into several sub-networks (marked by circles)
so as to maximize the modularity of the network. The two major categories: Cyclical and Defensive groups
are created at the first division of the whole market. This modularity based network division is applied to the
sub-networks recursively until the final 14 groups (marked by squares) are created. Further details of the
recursive division algorithm is described in Isogai (2014)
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definition from among the many variants of modularity definitions. Once the first level of
the division is completed by the modularity optimization, the same algorithm is applied
to the generated groups of stock returns to make further divisions recursively. As for
the stopping rule of recursive division, standard deviations of edge weights in individ-
ual groups are monitored to determine the number of groups; the group division process
is controlled so as to avoid any significant heterogeneity in terms of group size that can
cause heavy concentration of stocks in specific groups. A more detailed explanation of
the recursive network division algorithm is described in Isogai (2014).
Finally, the hierarchical group structure is identified as having 14 unit groups (marked

as squares with labels P1, P2, . . . , and P14), as shown in Fig. 1. The circles in Fig. 1 indicate
the whole market and intermediate groups created in the layers in-between. Two major
categories, termed Cyclical and Defensive, are created at the first division of the entire
network. These two categories are used as the broadest categorization of the Japanese
stock market for the following comparative analysis. The groups labeled P1, P2, . . . , and
P14 are the unit group portfolios used to approximate the correlation structure of the
whole stock market. Each group includes stocks of different sizes, which are categorized
as either Cyclical or Defensive.
Table 1 shows more detailed summary information about the network clustering result.

The Cyclical and Defensive groups have a 55 and a 45 percent share of all stocks, respec-
tively. The Cyclical group has eight sub-groups labeled from P1 to P8, which are the
same as those shown in Fig. 1. The Defensive group has six sub-groups labeled from
P9 to P14. Three other features of those groups are listed there: the TOPIX (market

Table 1 Clustering result with group features

Beta

Group id Number
of stocks

(share, %) TOPIX Exchange rate Company size index Overseas sales ratio

Cyclical 728 (55.0) 1.01 1.08 62.9 50.3

P1 141 (10.6) 0.93 0.93 35.3 47.1

P2 181 (13.7) 0.87 0.92 35.4 36.6

P3 62 ( 4.7) 1.01 1.16 63.5 34.6

P4 132 (10.0) 0.90 0.95 43.0 42.9

P5 54 ( 4.1) 1.08 1.19 72.9 61.6

P6 62 ( 4.7) 1.12 1.15 81.3 66.5

P7 52 ( 3.9) 1.05 1.10 79.1 50.8

P8 44 ( 3.3) 1.11 1.21 92.6 61.9

Defensive 596 (45.0) 0.74 0.75 59.1 29.1

P9 164 (12.4) 0.90 0.99 64.6 38.5

P10 75 ( 5.7) 0.61 0.60 27.3 30.0

P11 92 ( 6.9) 0.70 0.72 40.8 27.1

P12 118 ( 8.9) 0.83 0.89 81.5 31.5

P13 62 ( 4.7) 0.73 0.71 75.6 25.5

P14 85 ( 6.4) 0.69 0.62 64.8 21.9

Note: Group ids from P1 to P14 are identified in Fig. 1. The major categories of Cyclical and Defensive groups are defined as the
result of the first binary division of the whole universe of stocks as described in Fig. 1. The data of the two major categories are
group mean values. Beta is calculated by a robust MM-estimator for individual stocks with one factor (TOPIX and US
dollar/Japanese yen exchange rate, respectively) linear model as the elasticity of stock price change to the factor change; then,
averaged as the group mean value. Company size index is the percentile value of empirical distribution of market capitalization of
individual stocks. Overseas sales ratio is simply averaged over stocks which have the data for each group
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capitalization-weighted stock price index) beta and exchange rate (Dollar/Yen) beta as
price responsiveness to these variables, company size index, and overseas sales ratio.
Despite their similar sizes and the magnitudes of the company size index, there are some
distinctive differences between the Cyclical and Defensive groups. The betas are clearly
higher in the Cyclical group than the Defensive group, while significant differences exist
within the groups of the two categories. The combination of higher betas with a higher
overseas sales ratio in the Cyclical group and lower betas with a lower overseas sales
ratio in the Defensive group seem to be convincing, since the Cyclical group is more
export-oriented, while the Defensive group is more dependent on domestic demand.
This information is helpful to understand the features of the groups created by network
clustering.
Table 2 shows the business sector breakdown of the individual groups. The sectors that

have the highest three shares are listed for each group. In the Cyclical group, Transporta-
tion equipment and Electric appliances, which are typical export-oriented sectors, are
included. In the Defensive group, Foods, Electric power and gas, and Services are typical
domestic demand-dependent sectors. The list of sectors shown there seems to be consis-
tent with the comparison of group features in Table 1. Some sectors including Services
appear in both the Cyclical and the Defensive categories. In the case of the Services sec-
tor, software and IT-related companies are included in Cyclical, while healthcare-related
companies are included in Defensive, for example. Such a division within a single sector
seems to be realistic, however. Indeed, a similar type of within-sector division is also partly
observed in the Cyclical and Defensive categories. Hence, we assume that our network
clustering created a reasonable set of sub-portfolios that reflect the business features of
stock groups in Japan. One caveat of the grouping of stocks is that it has not been clarified
why and how such groups are formed in the stock market. We need to examine a wider
range of data for further analysis in this regard, which is beyond the scope of this paper.
Next, the sub-portfolios based on the classification of those Cyclical and Defensive

groups are created and averaged price index returns are calculated for each group. More
specifically, the stock price of a sub-portfolio is first indexed as 100 at the beginning of
the observation period; then, the mean value of the sub-portfolio is calculated with an
equal weight placed on each stock. The portfolio return is defined as the log return of the
mean value of the portfolio as in the case of individual stock returns. The market port-
folio including more than 1,300 stocks is now summarized into only 14 sub-portfolios by
using the group definition provided by network clustering.
Figures 2 and 3 show the stock price indices of the Cyclical and Defensive group-based

sub-portfolios, respectively. Note that these price indices appear to follow roughly the
same trend in both figures. This is mainly because of the market-wide common price
co-movements in the stock market. There are, however, some clear differences observed
in local temporal changes in price indices between these groups, which suggest that
group-specific common factors drive such temporal divergences from the market-wide
movement. Figures 4 and 5 show the log returns calculated from the stock price indices
shown in Figs. 2 and 3, respectively. Significant volatility changes are detected in every
sub-portfolio as mentioned in “Filtering volatile asset returns”. These changes necessitate
using the filtering process by employing the GARCH model in advance of the estimation
of the return correlation. Further, there are two sharp volatility increases (price plunges)
in 2008 (the Lehman collapse) and in 2011 (the Great East Japan Earthquake). Those two
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Fig. 2 Stock price indices: Cyclical group sub-portfolios. Note: The sub-groups of P1, P2, . . . , and P8
correspond to the same group ids shown in Fig. 1. The stock price index of a sub-portfolio is first indexed as
100 at the beginning of the observation period (January 2008); then, the log returns of the mean value of the
portfolio is calculated. The price index figures of sub-groups appear to be similar to each other because of
the market-wide common price co-movements in the stock market. Some local temporal differences
between sub-groups still exist, reflecting local group-specific common factors

events caused financial market turbulence that affected the entire Japanese stock market.
However, we are interested in whether the market-wide correlation structure changed
during such crisis periods, which is difficult to detect by studying just a single correla-
tion network during the whole observation period. A more advanced method of dynamic
correlation network analysis is therefore required.
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Fig. 3 Stock price indices: Defensive group sub-portfolios. Note: The sub-groups of P9, P10, . . . , and P14
correspond to the same group ids shown in Fig. 1. The stock price index of a sub-portfolio is first indexed as
100 at the beginning of the observation period (January 2008); then, the log returns of the mean value of the
portfolio is calculated. The price index figures of sub-groups appear to be similar to each other because of
the market-wide common price co-movements in the stock market. Some local temporal differences
between sub-groups still exist, reflecting local group-specific common factors

Thus, the first dimensionality reduction in terms of the number of stocks is com-
pleted. Stocks connected with thicker edges (higher correlations) are grouped by network
clustering with the modularity optimization; then, the log returns of those group-based
sub-portfolios are calculated. Now, we can proceed onto the next stage. In this stage,
we extend the static correlation model to a dynamic one followed by the second-round
dimensionality reduction of the correlation structure between the group portfolios along
the time axis in order to carry out the intertemporal comparative analysis.

Dynamic changes in correlation networks
In the previous section, we assumed that there exists a static correlation network in which
the edges between nodes (stocks) do not change during the observation period. Such an
assumption is introduced partly because of technical reasons regarding the estimation of
the correlation matrix of stock returns. It is rather an empirical issue whether the cor-
relation structure is stable or dynamically changing over time. The linkages between the
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Fig. 4 Stock returns: Cyclical group sub-portfolios. Note: The stock return of a sub-portfolio is calculated as
the daily log return of the stock price index of the group-based sub-portfolio shown in Fig. 2

nodes may change because of changes in the correlation of stock returns, although it is
not technically easy to detect such dynamic changes from observed price data. Normally,
a sample pairwise correlation of returns is calculated based on the observed filtered or
unfiltered return data; therefore, only one sample correlation, the static one, is available
for one data period. However, it would be meaningful to know how the correlation net-
work changes over time from the viewpoint of investment decision making as well as
portfolio risk control if we could establish a method of estimating dynamic correlations.
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Fig. 5 Stock returns: Defensive group sub-portfolios. Note: The stock return of a sub-portfolio is calculated as
the daily log return of the stock price index of the group-based sub-portfolio shown in Fig. 3

In this context, Isogai (2016) proposed a novel approach to build a dynamic correlation
network of returns. We adopt a model-based correlation instead of using a filtered sample
correlation to calculate the correlations and adjacency matrices for network clustering.
This model-based correlation matrix can be estimated for each trading day during the
observation period and a dynamic correlation network built accordingly. A series of adja-
cency matrices are calculated by adjacency conversion from the estimated correlation
matrices. The dimensionality issue due to the large number of adjacency matrices needs
to be addressed to allow an intertemporal comparison of the network. We overcome this
issue by using the second-round dimensionality reduction of the adjacency matrices.

Model-based dynamic correlation

The most frequently used approach to measure the dynamic correlations of asset returns
is to calculate the correlations of returns over moving windows. A series of correlation
matrices can be built by using a rolling observation time window during the study period.
This method, however, has some drawbacks as discussed in Isogai (2016). Hence, a statis-
tical model-based correlation can be used to describe the dynamic correlation network.
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The DCC model originally proposed by Engle (2002) was developed in the context of
using multivariate volatility models in financial econometrics. The static unconditional
correlation matrix R of return rt is calculated as the correlation matrix of filtered return
zt defined in (1) when building the static correlation network. When applying the DCC
model, a time-dependent correlation matrix Rt of return rt is estimated instead of R.
This means that the correlation of returns can change dynamically during the observa-
tion period; therefore, dynamic changes in the structure of a correlation network are
represented by a dynamic conditional adjacency matrix At . There are multiple adjacency
matrices, as many as the number of trading days converted from a series of Rt during
the period.
The DCC model is described as an extension of the multivariate GARCH model

described by (1), (2), and (3). Specifically, an N × N positive-definite dynamic correla-
tion Rt is introduced to model the dependency structure of rt . The time dependency
of Rt is described by using a proxy variable Qt , which is introduced to ensure the
positive-definiteness of Rt as

Qt = Q̄ +
m∑

i=1
ai

(
zt−iz

′
t−i − Q̄

)
+

n∑

j=1
bj

(
Qt−i − Q̄

)
(6)

where ai and bj are non-negative scalars and Q̄t is the unconditional mean of Qt . The
DCC model with time lags in the conditional correlation is denoted as DCC (m, n). The
parameter ai shows the sensitivity ofQt to previous shocks, while the parameter bj repre-
sents the persistence of the correlation in previous periods. The correlation matrix Rt is
calculated by rescaling Qt as

Rt = diag
(
Qt

)− 1
2 Qtdiag

(
Qt

)− 1
2 (7)

ai ≥ 0, bj ≥ 0,
m∑

i=1
ai +

n∑

j=1
bj < 1. (8)

Formore details on the DCC–GARCHmodel, see Engle and Sheppard (2001) and Engle
(2002).

Model fitting and adjacency conversion

The parameters of the DCC model are estimated by using MLEs with the Japanese stock
return data. We employ a two-stage fitting of the DCC model: the first stage of the
GARCH model fitting followed by the second stage of the DCC parameter estimation.
The GARCH model is fitted to the sub-portfolio returns just as it is fitted to individual
stock returns in “Correlation network of financial asset returns”. Once the first stage of
the model estimation is completed, the filtered residuals zt of 14 sub-portfolios are cal-
culated by using the estimated parameters of the GARCHmodel. In the second stage, the
DCC model parameters used to calculate the dynamic correlation Rt of the sub-portfolio
returns are estimated.
When estimating the DCC parameters by using MLEs, the joint density function of rt

should be explicitly defined in advance. The distribution of zt is assumed to be one of the
normal, Student t, or skew t distributions again. The joint density function f (rt) is then
defined by using a copula density function that determines the dependency between the
sub-portfolio returns. The copula function plays a key role in addressing the dependency
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between the heterogeneous distributions of zt as mentioned above. In general, the joint
density function f (x) of a vector of variable X = (X1, . . . ,XN ) can be described using a
copula function as follows:

f (x1, . . . , xN ) = c (F1 (x1) , . . . , FN (xN ))

N∏

i=1
fi (xi) (9)

where fi(xi) is the marginal distribution of xi, c(·) is the density function of the copula,
and F(·) is the joint distribution function of X. We choose the Student t-copula that can
handle tail dependency, which takes two parameters: conditional correlation Rt and the
constant shape parameter. For technical details on the copula and Student t-copula, see
Sklar (1959) and Demarta and McNeil (2005). Thus, the joint density function of rt is
defined as a combination of the copula density and density of the i.i.d. residual zt :

f
(
rt|μt , ht , Rt , η

)

= cSt (u1·t , . . . , uN ·t|Rt , η)

N∏

i=1

1√
hi·t

fi·t (zi·t|θi)
(10)

where ui·t = Fi(ri·t|μi·t , hi·t , θi); θi is a parameter set including the ARMA–GARCH
parameters in (2) and (3) and the distributional parameters of zi; cSt (·) is the Student
t-copula density function; and η is the shape parameter of the Student t-copula. The
conditional correlation Rt is defined as one parameter of the copula function, the time-
dependent structure of which is described in (6) and (7) in the DCC model setting. The
estimate of Rt therefore collapses to the non-negative scalars (a, b) defined in (6).
We need to determine the distribution of zt as well as the DCC order (m, n): the

model selection is made by comparing the goodness-of-fit measure, namely the Akaike
information criterion (AIC), from the multiple combinations of the model settings. The
log-likelihood function LL (θ |rt) built by using (10) comprises two parts: the copula part
with the DCC parameters (a, b) and marginal distribution part fi·t (zi·t|θi). The two parts
of the log-likelihood function can be maximized independently: first, the individual dis-
tributional parameter set θi is estimated, followed by the DCC parameters (a, b). More
technical details about the model fitting procedures are described in Isogai (2016); Patton
(2006), and Joe (2005).
Table 3 shows the parameter estimation results for the selected DCCmodels. The DCC

order (m, n) is (1, 2); a1, the sensitivity of the correlation to previous shocks, takes a
small value. The larger value of b1 + b2 means that the dynamic correlation matrix Rt is
more dependent on its past values than previous shocks, since the parameter bj repre-
sents the degree of persistence of the correlation. The model parameter restriction shown
in (8) is confirmed to be satisfied. The shape parameter of the Student-t copula is not so
low, meaning that the degree of tail dependency seems to be limited after volatility filter-
ing. The other details of the estimation results including the ARMA–GARCH model of
individual returns are omitted because of space limitations.
The same DCC model is fitted to the individual stock returns in each sub-portfolio to

examine the extent to which the correlation of the individual stock returns are signif-
icantly different between sub-portfolios. Table 4 shows the DCC parameter estimation
results for all sub-portfolios. The DCC order (m, n) is (1, 2) for all sub-portfolios in Cycli-
cal, while it is (1, 2) or (1, 1) in Defensive. The combination of lower a1 and higher b1+b2
values appears to be common to every portfolio, while the relative share of the two types
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Table 3 DCC parameter estimation results

m, n a1 b1 b2 [b1+b2] η

Estimate 1, 2 0.0259 0.5549 0.3855 [0.9404] 13.0

(P-value) (0.0000) (0.0000) (0.0000) (0.0000)

Note: The DCC order (m, n) and parameters a1, b1, and b2 are defined in (6). η is the shape parameter of the Student t-copula in
(10). The R (http://cran.r-project.org/) package “rmgarch” Ghalanos (2014) is used for the parameter estimation

of parameters varies over the sub-portfolios. Again, the shape parameter of the Student-
t copula is higher in every sub-portfolio. This result means that the dynamic correlation
properties are similar, although small differences exist between the sub-portfolios. Fur-
ther, we can extend our dynamic correlation network analysis to those sub-portfolios
when required.
Next, we build a dynamic correlation network to study the possible topological changes

in the network. The DCC parameter estimates are all available; the dynamic correlation
matrix from the estimated correlation matrix Rt can be easily calculated from (6). Then,
the estimated model-based conditional correlation matrix Rt is converted into the con-
ditional adjacency matrix of the dynamic correlation network. Here, we use the same
unsigned nondecreasing adjacency conversion as the one in (4) used when building the
static correlation network for clustering stock returns in “Correlation network of finan-
cial asset returns”. The adjacency conversion is extended to a time-dependent conditional
one as follows:

Aii,t = 0, Aij(i�=j),t =
{ ∣∣cor

(
xi, xj

)
t
∣∣ if cor

(
xi, xj

)
t > corthres(i,j)t

0 if cor
(
xi, xj

)
t � corthres(i,j)t

(11)

where Aij,t is the (i, j)th entry of the conditional weighted adjacency matrix At and
cor

(
xi, xj

)
t is the (i, j)th entry of the dynamic correlation matrix Rt . The diagonal ele-

ment of Aij,t is 0. The threshold value corthres(i,j)t is determined in the same way as in
(4) at every point in time. Thus, the dynamic correlation network is created with the
adjacency matrices At available for each trading day. One technical issue is that thresh-

Table 4 DCC parameter estimation results by sub-portfolio

m, n a1 b1 b2 [b1+b2] η

Cyclical P1 1, 2 0.0080 0.5537 0.3523 [0.9060] 30.5

P2 1, 2 0.0074 0.5567 0.3792 [0.9358] 19.7

P3 1, 2 0.0093 0.3275 0.3897 [0.7172] 29.9

P4 1, 2 0.0079 0.5476 0.3219 [0.8695] 31.6

P5 1, 2 0.0064 0.5787 0.3240 [0.9027] 27.2

P6 1, 2 0.0086 0.5820 0.3219 [0.9038] 22.3

P7 1, 2 0.0079 0.5432 0.3713 [0.9145] 25.6

P8 1, 2 0.0069 0.5542 0.3925 [0.9467] 20.9

Defensive P9 1, 2 0.0078 0.4651 0.3815 [0.8467] 27.9

P10 1, 2 0.0103 0.2498 0.3980 [0.6478] 30.9

P11 1, 2 0.0070 0.4963 0.3890 [0.8853] 30.9

P12 1, 1 0.0048 0.9400 - [0.9400] 22.9

P13 1, 2 0.0094 0.2627 0.5084 [0.7711] 27.1

P14 1, 1 0.0042 0.8945 - [0.8945] 38.5

Note: The DCC order (m, n) and parameters a1, b1, and b2 are defined in (6). η is the shape parameter of the Student t-copula in
(10). The R (http://cran.r-project.org/) package “rmgarch” Ghalanos (2014) is used for the parameter estimation

http://cran.r-project.org/
http://cran.r-project.org/
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olding of the adjacency matrix entries can affect the result of our intertemporal analysis
described below. The thresholdingmethod is time-dependent; therefore, threshold values
of the same matrix entry can change dynamically. It may cause discontinuous changes,
especially when the threshold level is higher. These aspects of our dynamic thresholding
method makes it difficult to forecast its effect on intertemporal analysis. We confirmed
that analytical results are stable with thresholding in a few different settings; however, this
point is still an important caveat of this study.

Comparative analysis of the dynamic correlation network
In the previous section, a dynamic correlation network of stock returns was success-
fully built and conditional adjacency matrices At were identified for every trading day.
We discuss how to implement the second-round dimensionality reduction of At in this
section. The dynamic correlation network represents the time-varying pairwise corre-
lations between the index returns of 14 sub-portfolios. The nodes of the network are
those sub-portfolios generated by the network clustering of the overall static correla-
tion network that includes every stock as a node. The index return of each sub-portfolio
can be regarded as a factor that jointly determines the whole market movement. Hence,
the relationships (edges) between factors (nodes) describe the time-varying relationships
between individual stock returns that belong to different sub-portfolios in a reduced
dimension: from 1,324 stocks to 14 return indices. The dynamic correlation network car-
ries summary information of the correlation structure of stock returns in the form of
conditional adjacency matrix At .
In addition to the above-mentioned first-round dimensionality reduction of the num-

ber of nodes, we need to reduce the number of adjacency matrices, since it is difficult
to compare the adjacency matrices of 2,058 trading days directly. In this context, the
second-round dimensionality reduction is introduced by clustering the conditional adja-
cency matrices. Specifically, we use the subspace clustering of matrices by using the low
rank tensor approximation method. Once the adjacency matrices are sorted into a small
number of groups, we build reduced-size sub-period adjacency matrices to summarize
information on the inter-period changes of the dynamic network.

Clustering the dynamic adjacency matrices

When clustering adjacency matrices, the conversion of an adjacency matrix into a feature
vector needs to be implemented first to apply any clustering algorithm. Some approx-
imation of the original features is often adopted for data compression as well as noise
reduction. For this purpose, tensor decomposition is useful with the use of a clustering
algorithm such as k-means. A tensor is represented as a multidimensional array rela-
tive to a choice of the basis of the particular space on which it is defined (for details,
see Kroonenberg (2008)). Intuitively, a tensor is a higher-order generalization of vectors
and matrices. The conditional adjacency matrices can thus be regarded as a tensor of
order three; an adjacency matrix can be similarly regarded as an order two tensor. Prin-
cipal component analysis (PCA) is often combined with a clustering algorithm when
the target data are arranged in a vector form. Eigenvalue decomposition or singular
value decomposition (SVD) is then used to decompose a stacked data matrix into sev-
eral factors. The idea of such decomposition can be extended to tensor-based factor
decomposition.
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Suppose we have an order three tensor X that is equivalent to a time series of condi-
tional adjacency matrix At . In the tensor-based decomposition, the tensor is represented
as the product of some components in the same way as in PCA or SVD. Several tensor
decomposition methods have been proposed including canonical polyadic decomposi-
tion (CP) as described in Carroll and Chang (1970) and Bro (1997), Tucker decomposition
proposed by Tucker (1966), and higher-order SVD (HOSVD) by Lathauwer et al. (2000).
We use the Tucker decomposition method to group the adjacency matrices, which offers
a flexible choice of lower rank decomposition. For more detailed information about low
rank tensor approximation, see Kolda and Bader (2009) and Grasedyck et al. (2013).
In the Tucker decomposition, X ∈ Rn1×n2×n3 is decomposed into factor matrices with

orthogonal columns Uk ∈ Rnk×rk (k=1, 2, and 3) and core tensor G ∈ Rr1×r2×r3 as

X = G ×1 U1 ×2 U2 ×3 U3 (12)

where n1 and n2 correspond to the size of conditional adjacencymatrixAt ; n3 is the length
of observation period (the number of trading days); ×1, ×2, and ×3 are tensor products
in the corresponding mode; r1, r2, and r3 are lower ranks for the approximation in each
direction. In our dataset, n1(=n2) is 14; n3 is 2,058.
The rank order selection of (r1, r2, r3) is flexible in the Tucker decomposition. We set

r1 = r2 = 3 for the further dimension reduction of the conditional adjacency matrix,
while we set r3 = n3 = 2, 058 to preserve information about changes along the time axis
as much as possible for time series clustering. Thus, the time series of adjacency matrices
are decomposed into three orthogonal unit factors and one core tensor.
Next, we perform the subspace clustering of adjacency matrices, using the result of the

Tucker decomposition. We focus on the subspace spanned by U3, which is the orthogo-
nal basis for the time horizon, since we are mainly interested in the differences between
trading days. The projection of X onto the subspace is defined as

Y = G ×3 U3 (13)

Y is then transformed into a vector used as the feature vector for clustering by k-means.
As for the choice of k, we calculate the gap statistics (Tibshirani et al. 2001) for a different
number of clusters (k) to find the best value. The gap statistics analysis indicates that the
best k is around 4; however, we select k = 3 to simplify the intertemporal comparison.
The time series of conditional adjacency matrix At are categorized into three groups

in terms of trading date by k-means clustering with low rank tensor decomposition. The
clustering result means that the dynamically changing correlation network is classified
into three types. In other words, the whole observation period can be divided into three
sub-periods, in which the network has a different correlation structure. The time series of
the adjacency matrices are projected onto only the three representative adjacency matri-
ces in a way that minor differences between them are discarded to highlight the major
differences. The second-round dimensionality reduction is thus achieved, allowing us to
make an intertemporal comparison of the correlation structure.

Classification of dynamic correlation networks

Figure 6 shows the result of the sub-period classification with the largest and second
largest eigenvalues of the adjacency matrices. Every trading date from the beginning of



Isogai Applied Network Science  (2017) 2:8 Page 19 of 30

January 2008 to the end of May 2016 is labeled as one of T1, T2, and T3 and shaded in dif-
ferent colors at the bottom of Fig. 6. The three classes of sub-periods are clearly identified
as local blocks on the time axis. A change from one of the three sub-periods to another
can be regarded as a phase shift of the dynamic correlation network.
Intuitively, the largest eigenvalue of an adjacency matrix represents the strength of the

correlation in the network. Higher levels of the largest eigenvalues are observed during
the crisis periods including the Lehman collapse (2008) and the Great East Japan Earth-
quake (2011), which means a stronger linkage between nodes. The levels of the largest
eigenvalues seem to be somewhat related to the sub-period type.
Table 5 shows the relative changes to the largest eigenvalue, which is indexed at the

whole period=100. The mean values of the sub-periods show that T3 has a higher level of
the largest eigenvalue compared with T1 and T2. The maximum value during the whole
period exists in T3 as shown by the 100 value in the column Max, while the minimum
value exists in the column Min. The comparison of the largest eigenvalue confirms that
T3 is a stress period, while T1 and T2 are normal periods.
Figure 7 shows the sub-period breakdown of the trading dates during the observa-

tion period in terms of T1, T2, and T3. The share of each sub-period is greatly different
depending on the year. Looking at the share of T3, a larger share of T3 is observed in
2008, 2011, 2013, and 2014. Asmentioned earlier, large financial shocks happened in 2008
(the Lehman collapse) and 2011 (the Great East Japan Earthquake) when the sub-period
T3 has a higher share. A fundamental change in Japanese monetary policy (i.e., quantita-
tive monetary easing) happened in 2013 and 2104, which caused market-wide stock price
rallies at that time. T3 also has a higher level of shares in those periods. Those explicit
differences in terms of the trading date share of T3 also confirm that T3 seems to be a

Fig. 6 Sub-period classification result of the dynamic correlation network. Note: The largest and the second
largest eigenvalues of the adjacency matrix of the dynamic correlation network of sub-portfolio returns are
plotted at each trading day as the two solid lines on the top. The clustering result of the conditional adjacency
matrices during the whole observation period are shown as the shaded bar graph on the bottom. T1, T2, and
T3 represents the three sub-periods as the three division of the whole period as shown in Tables 5 and 6
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Table 5 Largest eigenvalue index by sub-period

Mean Max Min

Index (Index-100) Index (Index-100) Index (Index-100)

T1 98.56 (-1.44) 96.73 (-3.27) 101.16 (+1.16)

T2 98.83 (-1.17) 97.14 (-2.86) 100.00 (0.00)

T3 102.14 (+2.14) 100.00 (0.00) 104.18 (+4.18)

Whole period 100 100 100

[value] [8.90] [9.64] [8.19]

Note: Every trading date during the whole observation period (January 2008 - May 2016) was separated into three sub-periods,
namely T1, T2, and T3 by the subspace clustering of conditional adjacency matrices of the dynamic correlation network using
k-means algorithm. Mean, Max, and Min represent the mean, maximum, and minimum values of the largest eigenvalues of
adjacency matrices that are estimated on each trading date during the sub-period, respectively. The values are indexed at the
whole period=100

stressed sub-period when the linkages of the correlation network intensified, as suggested
by the analysis in Fig. 6 and Table 5. There are some differences between T1 and T2,
although both periods appear to be normal as mentioned earlier. Figure 7 shows that T1
has higher shares in 2009 and 2010, while T2 has higher shares in 2012, 2015, and the first
half of 2016. Those explicit differences in terms of the trading date share suggest that it is
meaningful to observe T1 and T2 separately.
Table 6 shows the topological features of the correlation network in the three sub-

periods. The selected three topological measures of conditional adjacency matrix At are
density (D), centralization (C), and heterogeneity (H). The three measures are defined as

D(At) =
∑

i
∑

j>i At,ij

n (n − 1) /2
≈ mean (kt)

n
, kt,i =

∑

j �=i
At,ij (14)

C(At) = n
n − 2

(
max (kt)
n − 1

− D(At)

)
≈ max (kt)

n
− D(At) (15)

H(At) =
√
var (kt)

mean (kt)
=

√√√√ n
∑

i k2t,i(∑
i kt,i

)2 − 1 (16)

Fig. 7 Sub-period breakdown of the dynamic correlation network. Note: The shaded areas of an individual
bar represent the shares of three sub-period categories, T1 , T2, and T3, in each year. The share is calculated as
the ratio of number of trading days of each category to the total trading days in the year
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Table 6 Topological features of the correlation network by sub-period

Density Centralization Heterogeneity

T1 0.625 0.149 0.273

T2 0.614 0.158 0.313

T3 0.638 0.147 0.304

Whole period 0.627 0.151 0.282

Index (Index-100) Index (Index-100) Index (Index-100)

T1 99.66 (-0.34) 99.09 (-0.91) 96.65 (-3.35)

T2 97.96 (-2.04) 104.76 (+4.76) 110.78 (+10.78)

T3 101.75 (+1.75) 97.47 ( -2.53) 107.52 ( +7.52)

Whole period 100 100 100

Note: T1, T2, and T3 represent the sub-periods identified by the subspace clustering of conditional adjacency matrices as shown
in Table 5. The relative indices of those three topological measures are indexed as 100 at the whole period levels, respectively

where n is the number of nodes; kt is a vector of the node degree (connectivity) defined as
the sum of the row or column of an adjacency matrix; andmax(·),mean(·), and var(·) are
the maximum, mean, and variance function, respectively. For more details on these topo-
logical measures, see Horvath (2011). Density D, defined as the mean of the off-diagonal
elements of At , measures the overall connection (correlation) among nodes: a density
close to 1 indicates that all nodes are strongly correlated with each other. Centralization
C is 1 when one node has fully connected edges with all other nodes that are not con-
nected with each other; 0 when each node has the same connectivity. Heterogeneity H,
defined as the coefficient of variation of the connectivity distribution, measures the vari-
ation in connectivity across nodes. These three topological measures are calculated for
conditional adjacent matrix At for every trading day during the observation period and
then summarized as mean values and indices in Table 6.
The comparison of the network topological measure indices between sub-periods in

Table 6 provides further information to understand the characteristics of the three sub-
periods. Stressed period T3 has a higher level of density and heterogeneity, but lower
centralization. As for the two normal periods, T1 and T2 have a different combination
of topological features. In T1, all three measures are at a lower level with no significant
change from the whole period average. T2 has a lower level of density, but higher cen-
tralization and heterogeneity than the average. However, it is difficult to know any more
from such a network topology comparison. T1 and T2 as well as those two and T3 have
different topological features with regard to the dynamic correlation network, reconfirm-
ing that the three-period classification is sufficiently meaningful for further comparative
analysis, although we need more data to delve into the detail.

Intertemporal changes of the correlation networks

The division into three sub-periods described in the last section enables us to reduce
the large dimension of conditional adjacency matrix At from 2,058 (trading days) to only
three. This dimensionality reduction simplifies the comparison of the dynamic correlation
network on the time axis, allowing us to summarize the differences between so many
networks in comparison with the three networks that represent the corresponding sub-
period. Specifically, the adjacency matrices for each sub-period are simply averaged for
each entry of the matrix to create an adjacency matrix that represents the corresponding
sub-period. Finally, the dynamic correlation structure of the entire Japanese stock market
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is summarized by using only the three 14-by-14 adjacency matrices. We can therefore
make pairwise comparisons of these three networks.
Figure 8 shows a graphical representation of the correlation network during the whole

period; the conditional adjacency matrices are averaged to create the corresponding adja-
cency matrix. The nodes indicate sub-portfolios as labeled from P1 to P14; a node in a
square means the Cyclical group portfolio, while a node in a circle means the Defensive
one. The width of the edge represents the edge weight of an adjacency matrix: a thicker
edge means a higher level of correlation between the two connected nodes. The net-
work is densely connected with thicker edges, which means that most factors of Japanese
stock returns are highly correlated. The connection is denser in the Cyclical group (square
nodes), while the connection appears to be less dense in the Defensive group (circle
nodes), especially at nodes P13 and P14. The main sector of the two nodes are Electric
power and gas, Pharmaceutical, and Foods for P13 compared with Retail trade, Services,
and Information and communication for P14. Similarly, we depict graphical representa-
tions for the correlation networks in the three sub-periods: T1 in Fig. 9, T2 in Fig. 10, and
T3 in Fig. 11. Although slight differences between the three networks exist, the graphi-
cal representations of the three sub-period networks appear to be largely the same as the
whole period network. In other words, the correlation network of Japanese stock returns
remains largely stable, whereas intertemporal changes in the correlation networkmay also
exist.

Fig. 8 Correlation network of sub-portfolios: whole period. Note: The network is created based on the
network adjacency matrix of the whole observation period. The square nodes (labeled as P1, P2, . . . , and P8)
represent Cyclical sub-portfolios; the circle nodes (labeled as P9, P10, . . . , and P14) represent Defensive
sub-portfolios. The edge between nodes represents the degree of correlation of log returns between the two
nodes. The edge width represents the weight of the corresponding entry of network adjacency matrix. The
bottom table shows the quantiles of edge weights distribution with corresponding edges
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Fig. 9 Correlation network of sub-portfolios: sub-period T1. Note: The network is created based on the
network adjacency matrix of the sub-period category T1. For further details, see the note of Fig. 8

Fig. 10 Correlation network of sub-portfolios: sub-period T2. Note: The network is created based on the
network adjacency matrix of the sub-period category T2. For further details, see the note of Fig. 8
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Fig. 11 Correlation network of sub-portfolios: sub-period T3. Note: The network is created based on the
network adjacency matrix of the sub-period category T3. For further details, see the note of Fig. 8

In order to detect intertemporal changes between the three sub-period networks,
another type of network is built based on the adjacencymatrix, which is defined as the dif-
ference between two adjacency matrices. We have three pairs of sub-periods: T1 and T2,
T2 and T3, and T3 and T1. Hence, three adjacency matrices are calculated for each pair
of sub-periods. Figures 12 and 13 depict the difference in sub-period networks between
T1 and T2 in the same graphical format as in Figs. 8, 9, 10 and 11. The difference between
the two is just the direction of the subtraction. Figure 12 shows the sub-period network
in which the adjacency matrix of T2 is subtracted from that of T1, denoted as T1–T2.
Only edges with a positive weight (correlation) are shown to highlight the increased
and decreased edges separately. The network of T1–T2 has thicker edges within Defen-
sive (circle) groups, which means that the correlation between Defensive sub-portfolios
increases when the correlation network moves from T2 to T1. Conversely, Fig. 13 shows
the sub-period network of T2–T1. Thicker edges appear between the Cyclical groups
(specifically, P1, P3, and P5) and Defensive groups (P9, P11, and P12). It means that the
correlation over the two major categories increases between those specific nodes when
the network moves from T1 to T2.
Figures 14 (T2–T3) and 15 (T3–T2) depict the difference in sub-period networks

between T2 and T3. In Fig. 14, thicker edges are observed between the Cyclical groups
(specifically, P1 followed by P3, P4, and P5) and Defensive groups (P9, P11, P12, and P14).
There are few significant increases observed among the Cyclical group nodes and Defen-
sive group nodes, respectively. In Fig. 15, the thickest edge is observed between P1 and
P14 over the two major categories. Some thicker edges are also observed between the
Cyclical groups (P6, P7, and P8) and Defensive groups (P9, P10, P11, and P12) as well as
within Defensive groups (P9–P14).
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Fig. 12 Changes in network between sub-periods: T1–T2. Note: The network shows the difference between
the sub-period T1 and T2. The edge weight (the edge width) is calculated by subtracting elements of the
adjacency matrix of T2 from those of T1 described as T1−T2. Only the edges that have positive weights (T1 >

T2) are shown. The bottom table shows the quantiles of edge weights distribution with corresponding edges

Fig. 13 Changes in network between sub-periods: T2–T1. Note: The network shows the difference between
the sub-period T2 and T1. The edge weight (the edge width) is calculated by subtracting elements of the
adjacency matrix of T1 from those of T2 described as T2−T1. Only the edges that have positive weights (T2 >

T1) are shown. The bottom table shows the quantiles of edge weights distribution with corresponding edges
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Fig. 14 Changes in network between sub-periods: T2–T3. Note: The network shows the difference between
the sub-period T2 and T3. The edge weight (the edge width) is calculated by subtracting elements of the
adjacency matrix of T3 from those of T2 described as T2−T3. Only the edges that have positive weights (T2 >

T3) are shown. The bottom table shows the quantiles of edge weights distribution with corresponding edges

Fig. 15 Changes in network between sub-periods: T3–T2. Note: The network shows the difference between
the sub-period T3 and T2. The edge weight (the edge width) is calculated by subtracting elements of the
adjacency matrix of T2 from those of T3 described as T3−T2. Only the edges that have positive weights (T3 >

T2) are shown. The bottom table shows the quantiles of edge weights distribution with corresponding edges
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Figures 16 (T3–T1) and 17 (T1–T3) depict the difference in sub-period networks
between T3 and T1. In Fig. 16, two thicker edges (P5–P12 and P1–P14) are clearly
observed between the Cyclical groups and Defensive groups. In Fig. 17, thicker edges are
observed only within the Defensive group nodes, where P13 is located at the center. No
significant increase is observed between the Cyclical group nodes and Defensive group
nodes as well as within the Cyclical group nodes.
The changes between T3 and T1 or T2 represents a transition from (to) a normal period

to (from) a stressed period. A higher level of correlation is observed during stressed peri-
ods as mentioned earlier. The changes shown by Figs. 14, 15, 16 and 17 indicate that
there are positive and negative contributions of pairwise correlations between individual
groups to the overall intensified correlation during a stressed period. It is also apparent
that the pattern of changes to (from) a stressed period is greatly different, reflecting the
significant difference of correlation structure between the two normal periods shown by
Figs. 12 and 13.
Thus, the correlation network of Japanese stock returns is summarized into a correla-

tion network of 14 sub-portfolio returns by using network clustering; then, the dynamic
changes in the network are also summarized into only three static networks to facilitate
an intertemporal comparison. Here, we summarize findings from comparative analy-
sis of the three sub-period correlation networks. The correlation network appears to
be largely stable over time, while an elevated level of overall correlation are observed
during stressed periods (T3) compared with normal periods (T1 and T2). The pair-
wise comparisons between three sub-periods correlation networks reveal that changes in

Fig. 16 Changes in network between sub-periods: T3–T1. Note: The network shows the difference between
the sub-period T3 and T1. The edge weight (the edge width) is calculated by subtracting elements of the
adjacency matrix of T1 from those of T3 described as T3−T1. Only the edges that have positive weights (T3 >

T1) are shown. The bottom table shows the quantiles of edge weights distribution with corresponding edges



Isogai Applied Network Science  (2017) 2:8 Page 28 of 30

Fig. 17 Changes in network between sub-periods: T1–T3. Note: The network shows the difference between
the sub-period T1 and T3. The edge weight (the edge width) is calculated by subtracting elements of the
adjacency matrix of T3 from those of T1 described as T1−T3. Only the edges that have positive weights (T1 >

T3) are shown. The bottom table shows the quantiles of edge weights distribution with corresponding edges

correlation are observed more clearly within the Defensive groups and between the Cycli-
cal and Defensive groups, whereas changes in correlation within the Cyclical groups are
rather limited. The result suggests that there is some fundamental difference in terms of
changing pattern of network structure between the two major categories.

Discussion and conclusion
The dynamically changing correlation network of individual financial returns has been
recognized an important topic. There are many research works studied in this regard;
however, many of them adopted static correlation measures calculated over a sample
period. Intertemporal analysis was often based on a time series of such static correlations
calculated by rolling sample periods, which may lead to a biased estimate of correlation as
discussed in Isogai (2016). The large number of financial assets causes another technical
difficulty when dealing with the correlation network, while the existing sector classifi-
cation is not reliable for grouping of stocks. Thus, an efficient and reliable method for
dimensionality reduction is required for an extended research of correlation network.
Dimensionality reduction of a time series of conditional correlation network was another
difficult issue for intertemporal comparative analysis. The proposed analytical framework
of dynamic correlation network with non-sector based grouping of stock returns can
handle these issues in a systematically organized way.
In this study, we proposed a new approach to enable an intertemporal analysis of a large-

scale correlation network of financial asset returns in a compact way by combining our
previous research works. The main contribution of this study is the provision of two types
of dimensionality reduction methods: (i) the reduction of a large correlation network into
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a smaller factor correlation network and (ii) the reduction of a time series of a correlation
network into a countable number of representative correlation networks. Such twofold
dimensionality reduction works well to extract important information from complicated
correlation networks.
The proposed method, however, is still at an early experimental stage and several issues

must be addressed to enhance its efficiency and stability. Firstly, our method heavily
depends on econometric time series models including GARCH and DCC models, which
are greatly complicated; many simplified assumptions have been introduced in model
building. We also need to select a model from many alternatives before undergoing the
time-consuming parameter estimation process. Specifically, the DCC model has many
technically difficult issues regarding the parameter estimation. As for network-building
process, our simple adjacency conversion formula can be improved to enhance the signal–
noise separation performance. In addition, many alternative options exist for the selection
of the clustering algorithm. Noteworthily, the empirical results of the dynamic correla-
tion network of Japanese stock returns depend on those simplified assumptions and these
results may be affected by changing any of the model assumptions. Secondly, the empiri-
cal results reveal the need for supplementary analysis to clarify what causes intertemporal
changes in the correlation network. The dynamic network analysis only provide an ini-
tial clue to identify when and how the network changes; we need more information to
enhance our understanding of the meaning of such changes.
With regard to the possible practical application of our proposed method, it can be eas-

ily applied to portfolio optimization and risk control in financial investment decisions. In
standard financial model settings, the static correlation of returns is normally assumed as
one of the key inputs. Even if it is difficult to change the modeling framework fundamen-
tally, our proposed method can thus provide important information about the dynamics
of the correlation structure, which contributes to having some appropriate adjustments
in the model application. For example, the degree of correlation between the Cyclical
and Defensive group portfolios can change significantly between sub-periods as men-
tioned in the previous section. Such information is greatly helpful for making decisions
on investment allocation as well as risk control since ordinary models do not consider
such facts.
Lastly, our method can be extended to cover other financial and non-financial time

series data with large-scale volatility fluctuations. Not only financial time series other
than stock prices tend to have significant volatility fluctuations; therefore, there is a higher
chance of applying our model. We may find a different dynamic correlation structure if
our method is applied to those time series. Our method is also applicable to non-financial
volatile time series, although the careful examination of such extended use of the method
is required in advance.
In future research, we will aim to apply our method to non-Japanese stock returns

to understand whether a similar result is obtained. The stock market is globally linked
closely; we are greatly interested in the dynamic correlation network analysis of stock
returns between multiple countries. Further, the dynamic correlation network analysis
between different classes of financial assets is another interesting topic for future analysis.
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