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Abstract

Inspecting financial markets from a complex network perspective means to extract
relationships and interdependencies from stock price time series. Correlation
networks have been shown to adequately capture such dependence structures
between financial assets. Moreover, researchers have observed modifications in the
correlation structure between stock prices in the face of a market turbulence. This
happens because financial markets experience sudden regime shifts near phase
transitions such as a financial crisis. These abrupt and irregular fluctuations from
one state to another lead to an increase of the correlation between the units of
the system, lowering the distances between the stocks in a correlation network.
The aim of this paper is to predict such abrupt changes by inferring the forthcoming
dynamic of stock prices through the prediction of future distances between them.
By introducing a tensor decomposition technique to empirically extract complex
relationships from prices’ time series and using them in a portfolio maximization
application, this work first illustrates that, near critical transitions, there exit spatial
signals such as an increasing spatial correlation. Secondly using this information in a
portfolio optimization context it shows the ability of the methodology in forecasting
future stock prices through these spatial signals. The results demonstrate that an
optimization approach aiming at minimizing the interconnectedness risk of a portfolio
by maximizing the signals produced by tensor decomposition induces investment
plans superior to simpler strategies. Trivially speaking portfolios made up of strongly
connected assets are more vulnerable to shock events than portfolios of low
interconnected assets since heavily connected assets, being close to a transition
point, carry a significant amount of interconnectedness risk, i.e. tail events propagate
more quickly to these assets.
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Introduction and literature review
The 2008 financial crisis has shown that financial markets can be considered as proto-

types of complex systems in which the simple, microscopic components consist of

highly interdependent stocks and the collective behavior is the complex, hard-to-

predict behavior of the market as a whole.

Inspecting financial markets from a complex network perspective indeed means to

extract relationships and interdependencies from stock price time series in order to

understand the factors causing failures in financial markets.
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The application of networks to financial markets was pioneered by Mantegna (1999)

who showed correlation networks can adequately capture the dependence structure of

financial assets. The work of Mantegna (1999) triggered numerous papers that studied

financial markets architectures by means of financial networks (Bonanno et al. (2000),

Vandewalle et al. (2001), Bonanno et al. (2003), Onnela et al. (2003b) and Tumminello

et al. (2010)).

Similar techniques were also applied to investigate the hierarchy structure of curren-

cies as in Mizuno et al. (2005) and Keskin et al. (2011), the behavior of global stock in-

dices as in Roy and Sarkar (2011) and Nobi et al. (2014) and the systemic risk arising

from the international banking flows (Spelta and Araújo 2012; Araújo and Spelta 2014;

Giudici and Spelta 2016).

Moreover researchers have observed modifications in the correlation structure be-

tween stock prices in the face of a market turbulence, such as an ongoing crisis. Onnela

et al. (2003a) and Onnela et al. (2003c) analyzing the behavior of correlation networks

surrounding the Black Monday (October 19 1987) stock market crash showed that dur-

ing this crisis the average distances in the correlation network decreased (i.e. increased

correlations), while the mean occupation layer shrank implying a more compact

network.

Nobi et al. (2014) pointed out that, for the volatile market phases of the 2000s/2010s,

from the perspective of correlation networks, major events get visible when the top-

ology of the respective networks drastically changes. In a nutshell, while during expan-

sion and normal periods financial markets tend toward randomness, in crisis phases

their structures are reinforced due to a generalized increase in the level of correlations

(Onnela et al. 2002; Araújo and Louçã 2007).

Economically, the topological modification of financial networks that occurs during

crisis episodes can be associated with the formation and collapse of speculative bubbles.

Those bubbles have been largely considered as the consequence of herding behaviors

emerging from to the broken balance between autonomous conducts and peer

influence (Preis et al. 2011). During crisis, the effect of exchanging influence with the

rest of the environment dominates, producing regime shifts that take place at critical

thresholds.

Financial markets indeed, being a paradigm of complex systems (Moon and Lu 2015;

Preis et al. 2011), experience sudden regime shifts at the so-called tipping points. Re-

gime shifts are associated with critical transitions between alternative states (Dakos

et al. 2008; 2010, Kéfi et al. 2014) where fluctuations are characterized by bumps that

create upward and downward trends. These abrupt and irregular fluctuations from one

state to another lead to an increase in the correlation between the units of the system,

lowering in this way the distances between stocks in a correlation network.

The aim of the paper is to predict such abrupt changes by inferring the forthcoming

dynamic of stock prices through the prediction of future distances between them

(Spelta 2016). In order to accomplish this purpose, first a minimal model of stocks’ be-

havior is introduced in order to illustrate how, near critical transitions, a phenomenon

called critical slowing down can, in theory, generate spatial signals such as an increas-

ing spatial correlation.

Secondly, the paper introduces a tensor decomposition technique to empirically ex-

tract complex relationships from prices’ time series and uses them in a portfolio
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maximization application. Information on future distances indeed uncovers the inter-

connectedness risk of assets and could be useful in the portfolio optimization context,

since it reveals an underlying mechanics of diversification.

Trivially speaking heavily connected assets, being close to a transition point, carry a

significant amount of interconnectedness risk, i.e. tail events propagate more quickly to

these assets. Assets exhibiting low connectivity on the other hand are less impacted by

tail events. Hence, these assets carry relatively less interconnectedness risk. Considering

the above argumentation, portfolios made up of strongly connected assets should be

more vulnerable to shock events than portfolios of low interconnected assets.

The proposal
A minimum model for stock prices dynamic

Large-scale phenomena that occur in financial markets can be associated, using com-

plex system theory, with regime shifts of the complex system underlying the dynamic

of the market. Those large-scale phenomena usually take place at critical thresholds -

the so-called tipping points - associated with critical transitions between alternative

states (Dakos et al. 2008; 2010, Kéfi et al. 2014).

Predicting such critical transitions and abrupt changes in complex systems is a diffi-

cult task but fortunately theoretical works (Scheffer et al. 2009; Dakos et al. 2012) sug-

gest the existence of a generic phenomenon, known in dynamical systems theory as

critical slowing down, helpful to indicate the proximity of a critical transition even

when the knowledge of the functioning of the systems is insufficient for building pre-

dictive models.

This phenomenon occurs in most bifurcation points when the dominant eigenvalue

characterizing the rates of change of the system around the equilibrium becomes zero

(Scheffer et al. 2009). At these points the system becomes increasingly slow in recovering

from small perturbations and the resulting time-series turn out to be highly auto-correlated.

Beside the growing auto-correlations of the state variables of the system, recent

works (Kéfi et al. 2014; Dakos et al. 2010) have suggested that the critical slowing down

phenomenon might, in theory, generate also spatial signals such as an increasing spatial

correlation near transitions. This is due to the fact that the entities composing the sys-

tem pass from isolated to coordinated behaviors, where a spontaneous order emerges

(Moon and Lu 2015; Preis et al. 2011; Dakos et al. 2010). When the intrinsic dynamics of

each entity is weakened, the state of a unit will be strongly dependent on that of its neigh-

bors. As a result, units will become more strongly correlated close to the transition.

Suppose for instance that the low of motion of two stocks (s1 and s2) is governed by

two components, the first (f ) represents economic fundamentals behind the stocks’ low

of motion, the second part (H ) on the other hand represents the influence between the

stocks due to herding behaviors:

ds1
dt

¼ f s1; p1; cð Þ þ H s2−s1ð Þ

ds2
dt

¼ f s2; p2; cð Þ þ H s1−s2ð Þ

pi is a parameter that defines the heterogeneity between the two stocks and c is the
control parameter that drives the system to the transition point.
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The Jacobian matrix of this system at the equilibrium s1�; s2�ð Þ is:

J ¼ f ′ s1�; p1; cð Þ−H H
H f ′ s2�; p2; cð Þ

� �
The eigenvalues can be found as:
λ1;2 ¼ f ′ s1�; p1; cð Þ þ f ′ s2�; p2; cð Þ
2

−H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ′ s1�; p1; cð Þ þ f ′ s2�; p2; cð Þ� �2 þ 2H2

q
If the system is far away from the transition, in a “business as usual configuration”,

the herding behavior is very low H≪f ′ si�; pi; cð Þ and the fundamentals will govern the

dynamic of the stocks. This renders the eigenvalues of the system equal to:

λ1 ¼ f ′ s1
�; p1; cð Þ

λ2 ¼ f ′ s2
�; p2; cð Þ

implying that the two stocks can be regarded as being disconnected, each stock is gov-

erned by its own dynamics. As a consequence, one would expect to find no correlation

between stock prices.

Prior to a financial crisis, when the system is close to the transition point, the dy-

namic of the fundamentals of each stock becomes smaller due to critical slowing down

f ′ si�; p2; c
�ð Þ→0. The dynamic of the herding behavior, on the other hand, is inde-

pendent of the proximity to the transition but depends only on the gradient be-

tween the two units thus the eigenvalues of the system approach:

λ1 ¼ 0

λ2 ¼ 2H

The dynamic of a stock will be strongly dependent on that of its neighbor. As a re-

sult, stocks will become more strongly correlated close to the transition.

Tensor decomposition and links forecast
Modeling stock price time series with the aim of forecasting their movements is not an

easy task because of the lack of knowledge about the drivers of stocks’ dynamic. On the

other hand, the previous model and the extensive literature about financial networks

has suggested that the relevance of correlation networks relies on the representation of

changes follow on the occurrence of stress events.

The rise of the spatial correlation is indeed an helpful indicator of the proximity of a

critical transitions such as a financial crisis, even when the knowledge of the function-

ing of the systems is insufficient for building predictive models.

The scope of this Section is to propose a tensor decomposition methodology

(Dunlavy et al. 2011; Gao et al. 2011) to empirically extract complex relationships

from prices’ time series and use them for inferring the forthcoming dynamic of

stock prices through the prediction of future distances between them (Spelta 2016).

This issue amounts to a link prediction problem (Lü and Zhou 2011). Given past dis-

tances between stocks, what will be their next period value? If predictions suggest a

contraction of the next period distances for instance, than, we could expect a decrease
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in prices because of a strengthening of correlations and a higher likelihood of a crisis

episode.

The mainstream classes of link prediction methods, are based on the so-called

similarity-based algorithms, which are further classified into three categories: local, glo-

bal and quasi-local depending on the information used (Lü and Zhou 2011). Usually all

these techniques (Lü and Zhou 2011) collapse the temporal data into a single matrix by

summing (with or without weights) the records corresponding to the each time period.

Then similarity-based measures like the Katz centrality (Katz 1953) or the singular

value decomposition (SVD) are applied to perform links prediction.

The approach presented in the paper, on the other hand, prevents the temporal ag-

gregation of the data, avoiding losses of crucial features of the system that can be ob-

served only by holding the original time-varying nature of the records.

Starting from N time series of stock prices, a rolling window of length n1 is applied

to compute the correlation Ck;l among each pair k; lð Þ of instruments. Given these

pair-wise correlations, at each time step, a distance matrix with elements:

dkl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1−Ck;l
� �q

ð1Þ

is created (Mantegna 1999). The financial network is represented by the set of N stocks

linked by edges that denote the pair-wise Euclidian distances between those objects. In

so doing each link codifies the similarity between the time series of the stocks incident

on that link (Javarone and Armano 2013).

Once the rolling window has produced Z distance matrices D∈RN�N , these matrices

are embedded into a 3D-tensor D∈RN�N�Z whose generic element δklz represents the

distance between stock k and stock l at time z.

The tensor D is thus approximated as the outer product of three vectors thought the

canonical decomposition (Carroll and Chang 1970), also known as parallel factorization

(Harshman 1970), the so-called CP decomposition. This technique can be regarded as

a generalization of SVD to tensors.

The decomposition aims at writing the D as the outer product of two identical vec-

tors v, that contain the total spatial dissimilarity between stocks and a vector u, con-

taining the temporal profile of the dissimilarities:

D≅βv∘v∘u ð2Þ

where the symbol “∘” denotes the outer-product, v∈RN ; u∈RZ and β ¼ ∥v∥∥v∥∥u∥.
For an interpretational viewpoint, while a stock with a high (low) total spatial dissimilar-

ity score has, on average, a different (similar) behavior compared with the one of the rest

of the market, a period in which a high (low) temporal profile score is registered will be a

period in which most of the financial instruments are highly dissimilar (similar).

The problem formulated in Equation (2) is equivalent to minimizing the Frobenius

norm of the difference between D and βv∘v∘ u. Solving this problem amounts at finding

the rank-1 tensors that best approximate D:

minv;v;u∥D−βv∘v∘u∥2
F ð3Þ

The 3-dimensional problem is divided into 3 sub-problems by unfolding the tensor D.
This means reordering the elements of a tensor into a matrix. The mode-3 unfolding
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of a tensor D is denoted by D qð Þ and arranges the mode-q fibers to be the columns of

the resulting matrix. Tensor elements k; l; zð Þ maps to matrix element iQ; j
� �

, where

iQ ¼ k; l; zf g and j ¼ 1þPz
r¼1;k≠q ir � 1ð ÞJ r with J r ¼

Qr�1
m¼1;m≠qIr .

The three resulting matrices have respectively a size of N � NZ, N � NZ and Z ×N2.

In this way problem (3) is equivalent to minimizing the difference between each of the

modes and its respective approximation in terms of factors.

Problem (3) is thus converted into three problems:

minv>0 ∥D 1ð Þ−βv u⊙vð ÞT∥2
F

minv>0 ∥D 2ð Þ−βv u⊙vð ÞT∥2
F

minu>0 ∥D 3ð Þ−βu v⊙vð ÞT∥2
F

ð4Þ

Where “⊙ ” denotes the Khatri-Rao product, namely the column-wise Kronecker

product. Since distances are always non negative, a non-negative tensor factorization

method is employed to solve (4) because it greatly simplifies the interpretation of the

resulting decomposition. The Block Coordinate Descent Method for Regularized Multi-

convex Optimization (Xu and Yin 2013) and the Matlab Tensor Toolbox (Bader and

Kolda 2012) are used to solve (4).

After having initialized v and u as vectors of ones, the v component is updated ac-

cording to the following rules. First compute (5), (6) and (7) as:

Bk−1
v ¼ u⊙v ð5Þ

Lk−1
v ¼ Bk−1

v

� �T
Bk−1
v

� �			 			 ð6Þ

wk−1
v ¼ min

tk−1−1
tk

; θ

ffiffiffiffiffiffiffiffiffi
Lk−1
v

Lk−2
v

s !
ð7Þ

where θ < 1 , t0 ¼ 1 , tk ¼ 1
2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t2k�1

q
 �.
with k being the updating step.

Secondly compute Eq. (8) as:

v̌ k�1 ¼ vk�1 þ wk�1
v vk�1 � vk�1
� � ð8Þ

And the gradient (9) is:

Gk�1
v ¼

 
v̌ k�1 Bk�1

v

� �T �D 2ð Þ

!
Bk�1
v ð9Þ

The updating rule for v is:
vk ¼ max

 
0; v̌ k�1 � Gk�1

v =Lk�1
v

!
ð10Þ

Similarly the u component is updated according to the following rules. First
compute:
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Bk−1
u ¼ v⊙v ð11Þ

Lk−1
u ¼ Bk−1

u

� �T
Bk−1
u

� �			 			 ð12Þ

wk−1
u ¼ min

tk−1−1
tk

; θ

ffiffiffiffiffiffiffiffiffi
Lk−1
u

Lk−2
u

s !
ð13Þ

Secondly let:

ǔ k�1 ¼ uk�1 þ wk�1
u uk�1 � uk�1
� � ð14Þ

The gradient is:
Gk�1
u ¼

 
ǔ k�1 Bk�1

u

� �T �D 3ð Þ

!
Bk�1
v ð15Þ

The updating rule for u is:
uk ¼ max

 
0; ǔ k�1 � Gk�1

u =Lk�1
u

!
ð16Þ

Similarly to the TOPHITS algorithm (Kolda and Bader 2006), the total spatial dis-

similarity score of a generic stock i is found as a function of the scores of the rest of

the financial instruments weighted by the product of the distances connecting them to

stock i , and of the temporal profile score of the period in which the distances are ob-

served. The temporal profile score attached to a period, on the other hand, is a

weighted sum of the distances recorded in that period. Where each distance is weighted

by the product of the spatial dissimilarity score of the stocks connected by such

distance.

In this way, the spatial dissimilarity vectors retain also elements representing the tem-

poral evolution of the distances and only the “next step” value of the temporal profile

vector has to be inferred from past data. This is a perspective not available when com-

puting link predictions using matrix-based approaches.

A temporal link prediction naturally follows from the decomposition and can be used

to infer future distances between stocks, and, on the basis of these forecasts, to predict

their future movements.

The next step consists in generating the matrix of the forecasted distances D. Instead of

predicting the N2 possible distances using N2 data points, with this method one has to

predict only the next value of the temporal profile u and use it, together with the two

fixed total spatial dissimilarity vectors v, to build the matrix of the forecasted distances.

An exponential smoothing, applied to the last n2 observations of the temporal profile vec-

tor u, extracts a scalar τ representing the presumed value of this vector in the next period:

τ ¼ α uz þ 1−αð Þuz−1 þ…þ 1−αð Þn2−1uz−n2−1
� �þ 1−αð Þn2uz−n2 ð17Þ
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Then the matrix containing the forecast of the distances between all instrument pairs

is obtained as a linear combination of the two spatial dissimilarity vectors v, the param-

eter β and of the forecast τ of the temporal profile vector as in Eq. (18):

D̂ ¼ βτvvT ð18Þ
^
Or, element-wise, dkl ¼ βτvkvl.

Given the forecasted distance matrix, the connection intensity to each asset with re-

spect to the other assets can be quantified via a centrality score by summing the dis-

tances that link each asset to the others:

cFk ¼ 1
N

X
lcdk;l ð19Þ

When the steps of the moving window exceed the parameter Z, the tensor is allowed
to move in time as new data become available. The temporal shift of the tensor permits

to compare the forecasts produced by two consecutive decompositions. The difference

between the values of the two predictions generates a signal whose sign indicates the

future direction of the stock prices. The signal for each stock is obtained as the difference

between the centrality values obtained in the two subsequent predictions:

Δk
tþ1 ¼ cFk

t
−cFk

t−1 ð20Þ

To investigate whether this method is able to correctly identify changes in stock
prices a back-test based on an hypothetical investment strategy is implemented in the

next Section. Figure 1 gives a graphical representation of the technique.

An investment strategy based on the forecasted distances
This Section aims at creating a dynamic investment strategy based on signal-optimized

portfolios. As discussed in the first Section, assets related to negative signals, being

close to a transition point, are the more strongly connected and therefore get more easily

infected by negative return shocks, leading to subpar risk-adjusted returns.

To avoid this occurrence I apply a portfolio management framework and a risk-based

methodology . The optimization approach aims at minimize the interconnectedness

risk of the portfolio maximizing the signals produced by the tensor decomposition.

The linear programming optimization is set up as follows:

ω ¼ argmaxω ωΔT
� � ð21Þ

s:t: 1Tω≤1 ð22Þ
0≤ωk≤a ð23Þ

The variable Δ is the N � 1 vector containing the signals, hence the optimization
(21) maximizes the weighted portfolio signals. The first constrain (22) implies no lever-

age, assuming the total wealth to be equal to one. It also indicates that it is not always

true that the whole wealth must be allocated in every period. Suppose for instance that

a systemic crisis will occur, this will lead all the signals to be negative, and the optimal

strategy in this case will be not to trade at all. The second constraint (23) means that

weights are subject to lower bound (zero in this case) and upper bound defined by the

parameter a.



Fig. 1 Graphical representation of the method. Starting from stock price time series (a), a rolling window is
applied to compute the correlation among each pair of stocks (b). At each time step a distance matrix is
created. Once the rolling window has produced Z distance matrices, those matrices are embedded into a
3D-tensor (c). When the steps of the moving window exceed Z, the tensor is allowed to move in time with
each new step, as new data are available (c - solid line vs. dashed line). This temporal shift of the tensor
permits to compare the forecasts produced by two consecutive decompositions and generates a signal
whose sign indicates the future direction of the stock prices. For graphical purposes, the decomposition of
two consecutive tensors and the resulting links prediction are drawn using solid and dashed lines. The two
consecutive tensors are approximated as the linear combination of three vectors (d) representing spatial (v)
and temporal (u) relationships between stocks; D≅βv∘v∘u. The exponential smoothing (d - green lines) applied
to u extracts a scalar τ representing the forecast of temporal profile for the next period (e - red squares). The
forecast of the future distance matrix is obtained as a linear combination of the two spatial dissimilarity vectors,
the parameter β and of the forecast τ of the temporal profile vector; D ¼ τβvvT (e and f - red squares). Finally,
the connection intensity of each asset is quantified via a centrality score by summing the distances that link
each asset to the others (g). The signal for each stock is obtained as the difference between the centrality
values obtained in two predictions (h)
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In order to demonstrate the superior performance of the maximized portfolio signals,

the investment strategy is compared against an equally weighted portfolio investment

methodology where the weights are equal to ωk ¼ 1
N . The returns at time t are com-

puted as in Eq. (24):

Rt ¼
XN

k¼1
ωk

Pktþ1−Pkt

Pkt

� 
� �
ð24Þ

Application
The method is applied to three datasets. The first contains 388 stocks belonging to the

S&P500 whose closure price changes during 3827 working days, from 1998-01-02 to

2013-08-09. The second dataset regards the closure price of 59 stocks traded over 715

working days, during the period 2014-05-23 to 2017-02-16 in the FTSE MIB while the

third sample represents the closure price of 156 stocks traded over the same period of

the second dataset but in the Euronext Paris stock exchange.

In order to give a rough overview of the markets dynamic during the time periods

under analysis, Fig. 2(a) shows the average price of the basket of stocks composing the

first database while Fig. 2(b) displays the average dynamic of the stocks employed in

the second dataset and Fig. 2(c) illustrates the average price dynamic for the third

database.

Besides the general increasing trend, Fig. 2(a) shows two broad recession periods, the

collapse of the dot-com bubble occurred in 2002–03, and the global financial recession



Fig. 2 Average price dynamic for the 388 stock belonging to the first database (S&P500) during the period
1998–2013 (a) together with the average value of the 59 stocks of the second database (FTSE MIB) during
the period 2014–2017 (b) and the average value of the 156 stocks of the third database (Euronext Paris)
during the same years 2014–2017 (c). Starting from the boom phase of the dot-com bubble in 2000, Fig. (a)
also shows the market decline of 2002 (near period 1000), the recovering period ended in 2007 with the
sub-prime mortgage crisis together with the global financial crisis of the 2008–09 (near period 2700). In
Fig. 2(b) the average price dynamic shows an abrupt increase in the first part of the sample, followed by a
sudden decreasing phase and a more stationary behavior after 2015 (period 200). Similarly the average price
dynamic of the third dataset in Fig. 2(c) shows a fall in 2015 (near period 120), at the time of parliamentary
elections in Greece and the stationary phase after that
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created by the bursting of the sub-prime mortgage bubble of 2008–09. Figure 2(b), in-

stead, reports the average behavior of the stocks belonging to the FTSE MIB. The aver-

age price peaks at the beginning of the sample and then decreases sharply. The average

price of the of 156 stocks composing the Euronext shows approximately the same fall

near period 100 (see Fig. 2(c)). This phase indeed represents the time of parliamentary

elections in Greece, a period that has negatively influenced almost all European stock

exchanges. After this turmoil, the average price of the stocks belonging to these

European stock exchanges reaches a stationary level.

Figure 3(a) shows the cumulative sum of returns for the basket of stocks belonging to

the S&P500 index obtained using the dynamic investment strategy based on signal-

optimized portfolios (solid blue line) together with the cumulative performance ob-

tained with an equally weighted portfolio (solid black line). The simulations are

performed using the following parameters: n1 ¼ 15, Z ¼ 25, n2 ¼ 7, the exponential

smoothing parameter is set to be equal to 0:2 and the upper bound for the weights in

the portfolio maximization problem constraint (23) equal to 0.1 meaning that the



Fig. 3 Cumulative sum of returns obtained with the signal-optimized portfolio strategies (blue lines) together
with the cumulative performance of the equal weight investment strategy (black lines). Figure 3 a shows the
performance of the investment strategy for the basket of stocks belonging to the S&P500. Panel b reports the
results for the basket of stocks belonging to the FTSE MIB and panel c presents the cumulative sum of returns
for the basket of stocks belonging to the Euronext Paris stock exchange
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quantity invested in a particular stock cannot exceed the 10% of the total wealth. From

Fig. 3(a) it is clear that the investment strategy based on signal-optimized portfolios

performs better than the equally weighted strategy with a cumulative return at the end

of the sample period of 296% against the 245%. This result is given by the fact that,

even if in periods of business expansion the two strategies perform equal (see periods

1000–2200 or 3000–3500), the signal-optimized investment plan less suffers the drastic

drop of stock prices during crisis phases. This behavior is evident near periods

2500–2800 that represent the 2007–08 financial crisis in which the equal weighted

strategy loses approximately the 40% while losses of the signal-optimized portfolio

are near the 18%.

Similarly Fig. 3(b) displays the cumulative sum of returns for the basket of stocks be-

longing to the FTSE MIB obtained using the signal-optimized portfolio strategy (solid

blue line) together with the cumulative performance obtained with an equally weighted

portfolio (solid black line). Also in this case the investment strategy based on signal-

optimized portfolios performs better than the equally weighted strategy with a cumula-

tive return at the end of the sample period of 41% against the 33%. The simulations are

obtained using the same parameter values of the previous case. Also for these simula-

tions it is clear that, even if in some periods of business expansion the equally weighted

portfolio strategy performs better (see periods 100–200), the signal-optimized invest-

ment plan less suffers from decreasing phases as around period 450. Moreover after

that period the cumulative returns obtained with this strategy are larger than the ones

obtained with an equal portfolio investment plan.
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Finally Fig. 3(c) presents the cumulative sum of returns for the basket of stocks be-

longing to the Euronext Paris stock exchange obtained with the signal-optimized port-

folio strategy (solid blue line) together with the cumulative performance obtained with

an equally weighted portfolio (solid black line). As previously illustrated, also in this

case the equally weighted strategy is outdated by the signal-optimized portfolio invest-

ment plan. The simulations are performed using the same parameter values of the pre-

vious cases except for n2 ¼ 9.

Since the parameter space is huge a sensitivity analysis is needed for investigating the

robustness of the method against the change in some parameter values. The sensitivity

is obtained keeping fix all the parameters except n1 and n2 that take different values

along the simulations. The aim is to investigate how the results change while parame-

ters vary and to study how these changes influence the final returns.

Figure 4 presents, in each subplot, the sensitivity of the methodology in param-

eter variations by indicating the cumulative returns obtained at the end of the time

sample. In particular, Fig. 4(a) regards the first database, Fig. 4(b) the second and

Fig. 4(c) the third.
Fig. 4 Cumulative returns obtained at the end of the time sample for different values of the parameters n1
and n2. Panel a represents the end-of-sample cumulative performance obtained in forecasting the dynamic
of the 388 stocks of the first dataset (S&P500) . Panel b shows the end-of-sample cumulative performance
obtained by the signal-optimized portfolio strategy in forecasting the dynamic of the 59 stocks of the second
dataset (FTSE MIB). Panel c encompasses the cumulative returns obtained by the signal-optimized portfolio
strategy in forecasting the dynamic of the 156 stocks of the third dataset (Euronext Paris stock exchange). The
cumulative returns are positive for all parameter configurations suggesting some robustness of the proposed
methodology against different setting of the parameters
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Results indicate that the cumulative returns are positive for all parameter configura-

tions, this fact reinforces the idea that the proposed methodology is able to correctly

predict most of the movements and that it is robust against different setting of the

parameters.

Moreover, for most of the parameter configurations the signal-optimized portfolio

strategy outperforms the equally weighted portfolio strategy. This is always true for

the second dataset that represents stocks traded in the FTSE MIB (see Fig. 4(b)),

while for some values of the parameters this is no longer true for the first and the

third dataset, those values are n1 ¼ 12 : 13 and n2 ¼ 9 for the stocks traded in the

S&P500 and n1 ¼ 13 and n2 ¼ 8 : 9 for the stocks traded in the Euronext Paris

stock exchange.
Discussion and concluding remarks
This work proposed a new dynamical approach to financial systems and stressed the

systemic importance of empirical signs that can be used to extend the knowledge of

financial markets and complex systems in general.

The results show that the complex approach to financial markets produces invest-

ment plans superior to simpler strategies. In this regard, I think that the superior per-

formance of the proposed approach rests on two entangled pillars. The first pillar is the

quantification of risk from an interconnectedness perspective that, per se, contains a

new value-adding information.

The second pillar derives from the tensor decomposition technique presented that

can effectively extract complex relationships from stock prices’ time series without ag-

gregating the data. This method avoids the losses of crucial information about the sys-

tem that can be observed only by holding the original time-varying nature of the

records. This approach indeed might reduce estimation error issues in the process of

portfolio formation, as one focuses on the evolution of the distances and not on its

average value.

Furthermore, the findings obtained by the application of this methodology might

have important consequences for the understanding of other financial systems like CDS

markets and other derivative markets. Indeed, as pointed out by the recent financial

crisis, financial systems are increasingly built on interdependencies and relationships

that are difficult to predict and control. This feature is calling for more researches and

applications of complex network techniques in economics.

Future research could investigate this conjecture by applying similar methodologies

to the banking system so to predict future events of crisis and the cause of the crisis by

investigating also the systemic importance of each financial institution within the

system.

Predicting abrupt market down-turns, as a matter of fact, can facilitate the drafting of

policies that can reduce the severity of financial crises, by decreasing the risk of global

collapses of financial services by making economic networks more robust.

Acknowledgements
I thank all the participants to the 5th International Workshop on Complex Networks and Their Applications.

Author’s contributions
Alessandro Spelta provided the codes, the computer simulations, the figures and wrote the paper.



Spelta Applied Network Science  (2017) 2:7 Page 14 of 15
Competing interests
The author declares that he/she has no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1University of Pavia, Pavia, Italy. 2Complexity Lab in Economics, Milan, Italy. 3Department of Economics and
Management, San Felice 5, 27100 Pavia, Italy.

Received: 3 January 2017 Accepted: 22 April 2017
References

Araújo T, Louçã F (2007) The geometry of crashes. A measure of the dynamics of stock market crises. Quant Finan 7:

63–74
Araújo T, Spelta A (2014) Structural changes in cross-border liabilities: a multidimensional approach. Physica A:

Statistical Mechanics and its Applications 394:277–287
Bader BW, Kolda TG (2012) Toolbox version 2.5., Available online at http://www.sandia.gov/~tgkolda/TensorToolbox/

index-2.6.html
Bonanno G, Lillo F, Mantegna R (2000) High-frequency cross-correlation in a set of stocks. Papers cond-mat/0009350, arXiv.org
Bonanno G, Caldarelli G, Lillo F, Mantegna R (2003) Topology of correlation- based minimal spanning trees in real and

model markets. Phys Rev E 68:046130
Carroll JD, Chang JJ (1970) Analysis of individual differences in multidimensional scaling via an N-way generalization of

“Eckart-Young” decomposition. Psychometrika 35:283–319
Dakos V, Scheffer M, van Nes EH, Brovkin V, Petoukhov V, Held H (2008) Slowing down as an early warning signal for

abrupt climate change. Proc Natl Acad Sci U S A 105(38):14,308–14, 312
Dakos V, van Nes EH, Donangelo R, Fort H, Scheffer M (2010) Spatial correlation as leading indicator of catastrophic

shifts. Theor Ecol 3(3):163–174
Dakos V, Carpenter SR, Brock WA, Ellison AM, Guttal V, Ives AR, Scheffer M (2012) Methods for detecting early warnings

of critical transitions in time series illustrated using simulated ecological data. PLoS One 7:e41010
Dunlavy DM, Kolda TG, Acar E (2011) Temporal link prediction using matrix and tensor factorizations. ACM Trans Knowl

Discov Data 5:10
Gao S, Denoyer L, Gallinari P (2011) Link pattern prediction with tensor decomposition in multi-relational networks. In:

Computational Intelligence and Data Mining (CIDM), 2011 IEEE Symposium on., pp 333–340, IEEE
Giudici P, Spelta A (2016) Graphical network models for international financial flows. J Bus Econ Stat 34(1):128–138
Harshman RA (1970) Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-modal

factor analysis
Javarone MA, Armano G (2013) Perception of similarity: a model for social network dynamics. J Phys A Math Theor

46(45):455102
Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18:39–43
Kéfi S, Guttal V, Brock WA, Carpenter SR, Ellison AM, Livina VN, Dakos V (2014) Early warning signals of ecological

transitions: methods for spatial patterns. PLoS One 9:e92097
Keskin M, Deviren B, Kocakaplan Y (2011) Topology of the correlation networks among major currencies using

hierarchical structure methods. Physica A: Statistical Mechanics and its Applications 390(4):719–730
Kolda T, Bader B (2006) The TOPHITS model for higher-order web link analysis. In: Workshop on link analysis,

counterterrorism and security, vol 7., pp 26–29
Lü L, Zhou T (2011) Link prediction in complex networks: A survey. Phys A 390:1150–1170
Mantegna R (1999) Hierarchical structure in financial markets. Eur Phys J B Condensed Matter and Complex Systems

11(1):193–197
Mizuno T, Takayasu H, Takayasu M (2005) Correlation networks among currencies. Papers, arXiv.org
Moon H, Lu TC (2015) Network Catastrophe: Self-Organized Patterns Reveal both the Instability and the Structure of

Complex Networks. Sci Rep 5:9450
Nobi A, Lee S, Kim DH, Lee JW (2014) Correlation and network topologies in global and local stock indices. Phys Lett A

378(34):2482–2489
Onnela JP, Chakraborti A, Kaski K, Kertiész J (2002) Dynamic asset trees and portfolio analysis. Eur Phys J B 30:

285–288
Onnela JP, Chakraborti A, Kaski K, Kertesz J (2003a) Dynamic asset trees and black monday. Physica A: Statistical

Mechanics and its Applications 324(1):247–252
Onnela JP, Chakraborti A, Kaski K, Kertesz J, Kanto A (2003b) Asset trees and asset graphs in financial markets. Phys Scr

T106:48–54
Onnela JP, Chakraborti A, Kaski K, Kertesz J, Kanto A (2003c) Dynamics of market correlations: taxonomy and portfolio

analysis. Phys Rev E 68(5):056110
Preis T, Schneider JJ, Stanley HE (2011) Switching processes in financial markets. Proc Natl Acad Sci U S A 108:7674–7678
Roy RB, Sarkar UK (2011) Identifying influential stock indices from global stock markets: a social network analysis

approach. Proc Comput Sci 5:442–449
Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Sugihara G (2009) Early-warning signals for critical

transitions. Nature 461:53–59

http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html
http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html


Spelta Applied Network Science  (2017) 2:7 Page 15 of 15
Spelta, Alessandro (2016) "Stock prices prediction via tensor decomposition and links forecast." In : Cherifi H, Gaito S,
Quattorciocchi W, Sala A(ed) International Workshop on Complex Networks and their Applications. Springer
International Publishing

Spelta A, Araújo T (2012) The topology of cross-border exposures: beyond the minimal spanning tree approach.
Physica A: Statistical Mechanics and its Applications 391(22):5572–5583

Tumminello M, Lillo F, Mantegna R (2010) Correlation, hierarchies, and networks in financial markets. J Econ Behav Organ
75(1):40–58

Vandewalle N, Brisbois F, Tordoir X (2001) Non-random topology of stock markets. Quant Finan 1(3):372–374
Xu Y, Yin W (2013) A block coordinate descent method for regularized multiconvex optimization with applications to

nonnegative tensor factorization and completion. SIAM 6:1758–1789
Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Introduction and literature review
	The proposal
	A minimum model for stock prices dynamic

	Tensor decomposition and links forecast
	An investment strategy based on the forecasted distances
	Application
	Discussion and concluding remarks
	Acknowledgements
	Author’s contributions
	Competing interests
	Publisher’s Note
	Author details
	References

