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Abstract

Interactomes such as Protein interaction networks have many undiscovered links
between entities. Experimental verification of every link in these networks is
prohibitively expensive, and therefore computational methods to direct the search for
possible links are of great value. The problem of finding undiscovered links in a network
is also referred to as the link prediction problem. A popular approach for link prediction
has been to formulate it as a binary classification problem in which class labels indicate
the existence or absence of a link (we refer to these as positive links or negative links
respectively) between a pair of nodes in the network. Researchers have successfully
applied such supervised classification techniques to determine the presence of links in
protein interaction networks. However, it is quite common for protein-protein
interaction (PPI) networks to have a large proportion of undiscovered links. Thus, a link
prediction approach could incorrectly treat undiscovered positive links as negative
links, thereby introducing a bias in the learning. In this paper, we propose to denoise
the class of negative links in the training data via a Gaussian process anomaly detector.
We show that this significantly reduces the noise due to mislabelled negative links and
improves the resulting link prediction accuracy. We evaluate the approach by
introducing synthetic noise into the PPl networks and measuring how accurately we
can reconstruct the original PPl networks using classifiers trained on both noisy and
denoised data. Experiments were performed with five different PPl network datasets
and the results indicate a significant reduction in bias due to label noise, and more
importantly, a significant improvement in the accuracy of detecting missing links via
classification.

Keywords: Link prediction, Anomaly detection, Protein protein interaction networks

Introduction

Graphical networks can depict many complex systems involving biological, social and
informational connections between entities. At the most abstract level, these networks
are modelled by graphs in which nodes represent individuals or agents and links denote
the interactions or relationships between nodes. Structural properties of biological net-
works are of great interest as they directly correlate with biological function (Qi and Ge
2006; Wuchty et al. 2003). Various attempts have been made to understand the topolog-
ical evolution of networks (Albert and Barabasi 2002; Dorogovtsev and Mendes 2002).
The evolution of networks involves two processes: i) the addition or deletion of nodes and
ii) The addition or deletion of edges (links) between nodes. The second process of topo-
logical evolution particularly when new connections are added to the existing network
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has not yet been concretely formalised and revolves around the link-prediction problem.
Many applications utilize link prediction to identify new links in large, sparse networks
armed only with knowledge of network topology. Therefore, improvements in link pre-
diction accuracy will be of great significance in both science and engineering applications.
Meanwhile, link-prediction also reflects the extent to which the evolution of a network
can be modelled by topological features intrinsic to the network itself.

The link prediction task can be stated as follows: given a network, or a graph, predict
what edges will form between nodes in the future. Alternatively, in domains where data
collection is costly and the resulting networks are noisy and incomplete, link prediction
can be used to identify unobserved edges. In such cases, the problem is also known as the
missing link problem.

The objective of this work is to better identify undiscovered (missing and suspicious)
links between pairs of nodes in a protein-protein interaction (PPI) network. Link pre-
diction uses the existing protein interaction topology to predict missing links. Discovery
of links in biological networks such as gene networks, protein-protein interaction net-
works, metabolic networks etc. are very costly and time-consuming if done via laboratory
experiments and hence the known connections within these networks remains largely
incomplete (Martinez et al. 1999; Sprinzak et al. 2003). Instead of identifying links
between all possible pairs of nodes, predictions that focus on already known interactions
and are accurate enough can sharply reduce the experimental costs. Discovering protein
protein interactions is a pivotal task for understanding the underlying biological pro-
cesses behind tasks such as protein function prediction, drug delivery control and disease
diagnosis.

Researchers have formulated link prediction as a binary classification problem, where
class labels indicate the presence or absence of a link (referred to as positive links or
negative links respectively) between pairs of nodes in the network. In this approch, fea-
tures based on network topology such as common neighbors, Jaccard coefficient, etc. of
the two nodes under consideration are fed to the classifier which predicts the presence
or absence of a link. This paper also formulates the link prediction problem as a binary
classification problem based on topological features, with a view to improve classifica-
tion performance. Recently it was found that local community-based features were most
effective for link prediction in biological networks both in monopartite (Cannistraci et al.
2013b) and bipartite networks (Daminelli et al. 2015). Therefore, we have included these
in our feature list for the PPI network datasets under consideration.

An unresolved issue with formulating the link prediction problem as a classification
problem is the label noise present in the training data. Typically, a set of positive and
negative links are randomly chosen from the existing graph and are used for training a
classifier, which is then used to predict links on the remaining network. However, the
absence of a link in the network does not necessarily mean it is a negative link; it may
be the case that the link exists but is undiscovered (as commonly occurs with PPI net-
works). Therefore, to include this pair of nodes in the training data as a negative link
may introduce label noise and bias the resulting classifier. In this paper, we claim that by
using anomaly detection on the negative links of the training data, and by subsequently
filtering out the detected anomalous negative links from training data, we can obtain bet-
ter classifiers that yield superior link prediction performance. The suggested approach is
evaluated on five different PPI networks, with four different classifiers. A comparison with
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classification with and without anomaly detection is provided and results demonstrate
that utilizing anomaly detection for filtering suspicious negative links yields superior
classifier performance on test data.

Related work

General purpose neighborhood based methods have been proposed for link prediction in
different kinds of networks: collaboration, social, citation, roadmaps, etc. (Liben Nowell
and Kleinberg 2007; Zhou et al. 2009). Various bio-inspired methods were created to
either assess reliability of interactions in PPI networks such as Interaction Generality
(IG1) (Saito et al. 2002), IG2 (Saito et al. 2003) and IRAP (Chen et al. 2005) or predict
protein function such as the Czekanowski-Dice Dissimilarity (CDD) (Brun et al. 2003)
and FSW (Chen et al. 2006). Later, these techniques were applied to protein interaction
prediction (Cannistraci et al. 2013b; Chua et al. 2006). Both approaches rely on the num-
ber of neighbors that two non-directly connected nodes have and assign a likelihood score
to this pair of nodes.

The simplest techniques are Jaccard’s coefficient (Jaccard 1912), Common Neighbors
and Preferential Attachment (Newman 2001). Jaccard’s coefficient assigns higher likeli-
hood scores to the node pairs for which the set of common interactors as a proportion of
all available neighbors is higher and Common Neighbors does the same for pairs of nodes
that simply share more interactors. Preferential Attachment, on the other hand, gives high
scores when both nodes have a large number of neighbors: if one of the nodes has a low
number of interactors, the score is reduced. In contrast, Adamic and Adar (2003) and
Resource Allocation (Ou et al. 2007) are two similar indices that give more importance
to Common Neighbors with low degree.

Various other methods have been proposed to assess the reliability of high-throughput
protein interaction data. In 2009, Kuchaiev et al. (2009) proposed a method for geometric
denoising of PPI networks. Cannistraci et al. in (2010) proposed topology-based link pre-
diction method using minimum curvilinear embedding. In 2013, Cannistraci et al. (2013a)
proposed a new valid variation of minimum curvilinear embedding, named non-centred
minimum curvilinear embedding. Alanis-Lobato et al. in (2013) utilized several measures
for the proximity of genes based on the common neighborhood structure of a GI net-
work. However these methods do not explicitly utilize a classification based approach to
the problem of identifying missing interactions.

Hasan et al. (2006) formulated the link prediction problem into binary classification
problem. The method extracted a set of topological features of the network as input for
supervised learning for link prediction. A binary classification approach integrated infor-
mation from multiple measures to get a better prediction. In 2011 Fire M et al. (2011)
utilized topological features for supervised learning, and ranked the importance of each
feature. They proposed a set of simple, computationally efficient topological features that
could be analyzed to identify missing links. In 2013 Cannistraci et al. (2013b) proposed
a new paradigm to support link formation called the Local Community Paradigm (LCP),
which emphasizes the role of the local network community structure in link formation.
They proposed local community-based Cannistraci features for link-prediction in PPI
networks. Yu et al. (2006) in 2006 predicted missing links in PPI networks by completing
defective cliques. Some methods have been reviewed in Lii and Zhou (2011) and some
have been successfully applied for link detection in PPI networks.
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Several anomaly detection techniques have been proposed for detecting outlier nodes,
edges or substructures in graph data. The techniques may broadly be classified as:
i) Feature-based approaches which utilize structural graph-centric features for outlier
detection in the constructed feature space. Essentially, these methods transform the
graph anomaly detection problem to the well-understood outlier detection problem
(Akoglu et al. 2010; Henderson et al. 2011). ii) Proximity-based approaches that exploit
the graph structure to measure closeness (or proximity) of objects in the graph. These
methods capture the simple autocorrelation between these objects, where similar objects
are likely to belong to the same class (Jeh and Widom 2002; Brin and Page 1998). iii)
Community-based approaches that utilize clustering methods for graph anomaly detec-
tion and rely on finding densely connected groups of 'close-by’ nodes in the graph to
discover anomalies that have connections across communities (Chakrabarti 2004; Sun
et al. 2005; Tong and Lin 2011). iv) Relational learning based approaches consist of
network-based collective classification algorithms, the main idea of which is to exploit the
relationships between the objects to assign them into classes, where the number of classes
is often two: anomalous and normal (Getoor et al. 2001; Jensen et al. 2004). Further details
on these approaches can be found in a thorough survey (Akoglu et al. 2015). In this paper
we use feature-based anomaly detection techniques to discover suspicious negative links,
thereby reducing the impact of label noise introduced by assigning undiscovered positive
links to the class of negative links in the training data.

Materials and methods

Network Datasets

We used four protein-protein interaction (PPI) network datasets: Caenorhabditis elegans,
Mus musculus, Arabidopsis thaliana and Rattus norvegicus. These are publicly avail-
able and were collected from the Protein Interaction Network Anaysis (PINA) platform.
The platform integrates data from six curated databases and builds a complete, non-
redundant dataset for the model organisms !. Since, only interactions reported across
multiple datasets were considered after careful curation, in this paper we assume that
the reported interactions are relatively noise free. A brief summarization of the nework

characteristics is provided in Table 1:

Methods

Our objective was to minimize the classification bias arising due to currently undiscov-
ered edges (positive links) being incorrectly labeled as negative links. To address this bias,
we use anomaly detection for removing suspicious negative links (which may be undis-
covered positive links) from the training set before classifier training. Finally, we train a
link classifier on the filtered dataset after removal of these detected suspicious negative
links. Since we focused on predicting links based only on network topology, we extracted

Table 1 Network datasets

Network Type No. of nodes No. of edges
Arabidopsis thaliana Undirected 7550 19962
Caenorhabditis elegans Undirected 5758 14829
Mus musculus Undirected 6236 13865

Rattus norvegicus Undirected 2448 3804
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a set of features for node-pairs (edges) from the corresponding PPI network with the goal
of developing a network topological feature-based classifier. We then performed super-
vised learning, using different machine learning classifiers. The network topology based
features utilized for classification are described here.

Topology-based Measures

We briefly describe the set of topology-based measures or features that were used during
our experiment. A graph theoretic approach is used to model the protein-protein inter-
action as a network. In this method, a PPI network is represented by an undirected graph
G = (V,E), with a set of nodes or vertices V and a set of links or edges E, where vertices
represent proteins and edges represent interactions between proteins respectively. In this
paper, G will always be an un-weighted, undirected graph. Graphs can be characterized
by many different topology-based measures, each one reflecting some particular traits of
the studied structure. The topology-based measures were chosen based on their success-
ful application in prior work on link prediction (Cannistraci et al. 2013b; Fire et al. 2011;
Zhou et al. 2009).

Node-based measures: Let N(v) denote a neighborhood (or open neighborhood) of a
node v in a graph G. N(v) is the set of all the nodes adjacent to v. The closed neighbor-
hood of a node v, denoted by N{[v] is simply the set {v} U N(v). The Formal definitions of
neighborhoods that were used in this study to extract topological measures are:

Nw) ={u| (u,v) € E or (v,u) € E}
N[v] = N@) U {v}

1)

Based on the above definition, neighborhood-subgraph of v which induced by the
neighborhoods of v are defined as:

nbhd — subgraph(v) = {(x,y) € E | x,y € N(v)}
nbhd — subgraphlv] = {(x,y) € E | x,y € N[v] }

()

Note that the Induced subgraph of the open and closed neighborhoods of a node are
very different with respect to their topological properties.
Following measures for a node are created using the above neighborhood definitions:

e Node degree : The degree of a node in a network is the number of links the node
has to other nodes. For an undirected network, degree of a node is defined as:
Letv e Vand

deg(v) = IN(v)| ®3)

e Node subgraphs: This measure denotes the number of links within the open and
closed nbhd-subgraphs for each node v, which is defined as:

subgraph — edge — no(v) = |\nbhd — subgraph(v)|

(4)
subgraph — edge — nolv] = |nbhd — subgraph[v] |
Density of subgraph is defined as:
, deg(v)
density — nbhd — subgraph(v) =
oHsty — subgraph(v) nbhd — subgraph(v)
(5)
deg(v)

density — nbhd — subgraph|v] =
ensity — n subgraph[v] nbhd — subgraph[v]
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Note that the formal density of a graph is defined differently, however, the aim of this

feature and all other features used in the paper is to be as straight forward and simple

as possible. Therefore, we used a somewhat different density that is more related to a

vertex v.

Edge-based measures: Letu,v € V where i, v ¢ E. Using the neighborhoods of # and v

we extract various measures. These measures help to determine the likelihood that a link

between u and v exists.

Common-Neighbors (CN): The common neighbors (CN) of u and v refers to the
number of common neighbors of # and v. Two vertices u and v are more likely to
connect if they have bigger number of common neighbors. It is defined as Newman
(2001):

CN(u,v) = IN(u) NN (V)| (6)

Total-Neighbors (TN): The total neighbors (TN) of # and v measure the number of
distinct neighbors of # and v. which refers to the total number of neighbors & and v
have together. The formal definition of TN is:

TN (u,v) = |[N(u) UN®©)| (7)

Jaccard’s Coefficient (JC): Jaccard’s coefficient (JC) normalizes the size of common
neighbors by total neighbors. This gives higher weight to those pairs of nodes which
share a higher proportion of common neighbors relative to the total number of
neighbors they have. The formal definition of JC is (Jaccard 1912):

_ N@ NN

~ IN) UN®)|

Adamic-Adar Coefficient (AA): This metric refines the simple counting of

JC(u,v) (8)

common neighbors by assigning higher likelihood scores to neighbors that are not
shared with many others. It is defined as (Adamic and Adar 2003):

1
AA(u,v) = —_— 9
() ZGN%;NM log(IN(2)]) ©
Resource allocation Coefficient (RA): The RA coefficient and AA coefficient have
very similar forms the only difference being that the RA coefficient punishes the high
degree common neighbors more heavily than the AA coefficient. It is defined as (Ou
et al. 2007):

1
RA(u,v) = (10)
o
Preferential Attachment (PA): This measure assigns higher likelihood scores to
those pairs of nodes for which one or both nodes have a high degree. The formal
definition of PA is (Newman 2001):

PA(u,v) = IN(w)].IN(v)| (11)

LCP-based measures and Cannistraci variants: The local community paradigm
suggests that two nodes are more likely to link together if their

common-first-neighbors are members of a strongly inner-linked cohort or

Page 6 of 20
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local-community. The Cannistraci (LCP-based) variants of classical neighborhood
methods (CN, PA, AA, RA, JC) are defined as (Cannistraci et al. 2013b):

CAR(u,v) = CN(u,v).LCL(,v) = CN(,v). 3 | 7@ (12)
2eNu)NN ()
CPA(u,v) = ey.e, + e,.CAR(u, v) + e,.CAR(u, v) + CAR(u, v)? (13)
ly (2)]
CAAwv) = Y — (14)
s e IN@D
ly (2)|
CRA(u,v) = 15
(u V) zeN(u%N(v) |N(Z)| ( )
CIC(,v) = — AR (16)
" INm) UN®)|

Where y (z) refers to the sub-set of nodes in the neighborhood of z that are also
common neighbors of of # and v, thus |y ()| is the local community degree of z; e,
refers to the external degree of u, and is computed considering the nodes in the
neighborhood of u that are not common neighbors of # and v.

e Friends Measure (FM): Friend Measure (FM) of # and v measures the total number
of links between the neighborhoods of # and v. Here we assume that two nodes have
higher chance to get connected if their neighborhoods have more links with each
other. The formal definition of FM is (Fire et al. 2011):

EM@uyv)y= Y > 8(x) (17)
xeN (u) yeN (v)
Where

lifx=yor(x,y) € Eor (y,x) € E

, (18)
0 otherwise

s(x,9) =

Edge Subgraph-based measures: The following subgraphs are defined by using the
neighborhoods definitions (Fire et al. 2011):
Letu,veV

nbhd — subgraph(u,v) = {(x,y) € E | (x,y € N(u) UN())}
nbhd — subgraphlu,v] = {(x,y) € E | (x,y € N[u] UN[v] )}

(19)

The above subgraph equations contain information about the number of links between
the neighborhood of u and v including the inner connections or links between each
node neighborhood. The following subgraph equation represents the inner-connection

subgraph:
inner — subgraph(u,v) = {(x,y) € E| (x € N(u) and y € N(v)) or
(y € N(u) and x € N(v))}

(20)

e Edge Subgraphs Edges Number: This measure counts the number of links in the
above subgraphs:

|nbhd — subgraph(u,v)|
|nbhd — subgraph(u,v] | (21)

linner — subgraph(u, v)|

Page 7 of 20
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In this study, we extracted a total of 25 features for each PPI network.

Anomaly detection

We attempt to apply multiple anomaly detection techniques such as Parzen Windows,
Principal Component Analysis (PCA), Nearest Neighbor (a distance-based method) and a
one-class Gaussian process for removing anomalous negative links from the training data.
The details of these methods can be found in (Clifton 2007; 2009; Pimentel et al. 2014).
We utilize the link prediction feature set for training the anomaly detector, described in
an earlier subsection. Note that all the methods presented below require only normal data
for training, however abnormal data is used for validating the models. In that sense the
methods below may be considered unsupervised. as these methods do not require anoma-
lous data for training. After experimentation, we found that the Gaussian Process based
anomaly detection gave the most reliable results. Hence, we chose the Gaussian Process
model as our anomaly detector for our classification experiments. Next, we present a brief
introduction to all of the methods considered.

Parzen window method: The Parzen window kernel density estimator method (Parzen
1962) is the model adopted here to estimate the probability density function (pdf), p(x),
for the training (normal) data. With this method (Bishop 2006), p(x) is estimated using
the following steps:

1. Locate a hyperspherical Gaussian window, or kernel, with width o , on each of the
D-dimensional feature vectors in the training dataset, x;, wherei=1,..., N.

2. Evaluate the sum of the Gaussian distributions using the squared Euclidean
distances between the test feature vector x and the training vectors x; , normalized
by a factor that ensures p(x) integrates to 1.

This gives the following formula for the estimate of p(x):

P = N D2y < &P 2.02

By placing a Gaussian kernel over each feature vector x; in our training dataset, we
construct a probability density estimate of p(x) that will have a higher value of p where
the concentration of training data is greatest. Points in the test set with values of p(x)

are classified as anomalies.

PCA method: PCA is an orthogonal transformation for transforming the raw data into
a space such that the new basis vectors (principal components) are linear combinations
of the original basis vectors, are linearly uncorrelated and correspond to the directions
of maximal variance of the data, where the first principal component is in the direction
of the highest variance, the second in the direction of the highest remaining variance
and so on. Anomaly detection is performed with PCA under the assumption that normal
data would be best explained by looking at the first few principal components whereas
abnormal data would be captured by the remaining principal components (Bishop 2006;
Chiang et al. 2001; Marsland 2003). Thus points in the data that have high coefficients for
the last few principal components would correspond to anomalous data.
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Nearest neighbor method: These approaches rely on the intuition that normal points
will have normal neighbours in their vicinity and abnormal points would conversely have
fewer normal points in their neighborhood (Hautamiki et al. 2004). Assuming that nor-
mal data is partitioned into clusters, the Novelty score z(x) of a data point x for some
cluster width oy k is given by:

1
z(%) = — %, pkll2 (23)
Ok

where,

1
ok = | Y — >
N 4
jek
and uy is the centre of cluster k, and oy is defined to be the standard deviation of intra-
cluster distances (Clifton 2009). Now, points with high Novelty scores for all clusters are
regarded as anomalous.

Gaussian process: Given a training set D = {(x;,y)}"; = (X,y) wherex; € X C R4
denotes feature vector and y denotes a scalar output or target. We are interested in
identifying the target y, for a new sample x,. The objective of regression is to find the
association between inputs x and target y. To identify the association between the input
and target, we modelled the mapping in terms of y = f(x) + €, where f is an unknown
function, and € denotes a noise term. To do this, one approach is to assume that f is a para-
metric function f(x; 0) where the parameters 6 are tuned based on the training data. But,
the major pitfall of this kind of approach is that, if in case, a wrong form of the function
is chosen, it can lead to poor predictions. Another approach, based on Gaussian process
takes care of this problem by assigning a priori probability to all possible functions, which
are more likely to be sampled. The process is based on the assumption that these func-
tions are drawn from a specified probability distribution. This method requires a training
set and may be considered supervised.

The core of GP regression lies in the selection of a prior probability distribution over
latent function which are sampled from a Gaussian process i.e., f ~ GP(m(x), k (x,%)).
Where m(x) and «(x,x") are mean and covariance function respectively. Without any
prior knowledge about the underlying data, the most common choice is to choose a GP
with mean zero. Gaussian Process can be described as a generalization of multivariate
Gaussian distribution, where the dimensions can extend to infinity. The latent function f
is said to follow a Gaussian process, if and only if every finite subset of function values is
multivariate Gaussian distributed. Therefore, the function values f obey the model below:

f1X ~NmX), kX, X)) (24)

Furthermore, we assume the noise € to be Gaussian distributed with mean zero and
standard deviation o, i.e., € ~ N0, o,%). As a result, now output value y, for test sample
%4 can be deduced in a Bayesian manner by marginalizing over latent function f. Given

training data D, the predictive distribution of y, is normally distributed i.e.,

Y | Doy ~ N (s 02) (25)
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Where moments s, and o2 can be given in closed form expressions. More details about
GP framework, can be found in (Williams and Rasmussen 2006).

In 2010, Kemmler et al. (2010) have shown how GP regression can be employed for
one-class classification problems. They proposed using both the predictive mean . (GP-
Mean) and negative variance —03 (GP-Var) as one-class scores applied to training data
with labels y = 1:

pe = kLK + 020711 (26)

—02 = —(kyw — kL (K 4+ 62.1) " 1hy 4 02) (27)

Where K = (X, X) denotes the kernel matrix of the training set, k, = k (X, x,) repre-
sents the vector of kernel values between training set and test input and ks = & (%4, %+)
is the kernel values of the test input. The correlation of function values using the sim-
ilarity of input samples are calculated by the radial basis function (rbf): x(x, &) =

= |2
exp\ — 702 .

Experimental setup

Since the number of known links are few, we oversample the positive links in the datasets
to generate sufficient positive links from each network when required. The set of nega-
tive links is much larger and it has been shown that the subset sampling method used
to generate the negative training links impacts the performance of the resulting classifier
(Yu et al. 2010). Two predominant sampling methods have been proposed for the nega-
tive set sampling in PPI networks, namely balanced random sampling and simple random
sampling. In simple random sampling care is taken to ensure the proteins in the positive
set must also appear in the negative set. In balanced random sampling the proteins must
occur with the same frequency in both sets. It has further been shown that protein pairs
with higher number of common neighbours are more likely to interact (Alanis-Lobato
2015), therefore by choosing non interacting pairs within 2 hops of each other we are in
effect constructing a negative set that is harder to classify. To ensure no bias is introduced
due to the sampling method we experimented with both balanced random and simple
random sampling for choosing our negative set.

Figure 1 shows the workflow of the proposed method. The methodology is configurable
into two phase. In the first phase, we construct a dataset to train the anomaly detector
to filter out the anomalous negative links from training data of each PPI network. In the
second phase, we construct another dataset (disjoint from the dataset in Phase-I) to train
a classifier to classify a pair of nodes as a positive link or a negative link for each PPI
network. To this end, we construct first and second phase as follows:

Phase-I: In this phase, First, we construct the dataset to train the anomaly detector.
Then, we train and evaluate performance of different anomaly detection methods on each
PPI network.

1. We extract positive links from the network, and divided them into a validation and
test set in the ratio 50:50. Note that positive links are not used for training the
anomaly detector but only for validation.
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Network Negative Links

Training set (Only | Anomaly Detector
Negative Links) Training

Positive Links R o
—>»| Validation set J

y

Anomaly Detector

| Test set |(— Testing
f.\({m_\' N Apply Trained — Tralfung set after
Training set Anomaly Detector noise removal
Positive Links Train Classifier (On Train Classifier (On
HOESE —> — Unfiltered Dataset) Filtered Dataset)
ork Negative Links
Network 8 Test classifier Test classifier
\4 \4
—»I Test set

Fig. 1 Experimental setup overview. a Training and Testing of Anomaly Detection Methods. b Classifiers
prediction on the unfiltered and filtered dataset

We extract negative links from the network, such that the vertices are within two
hops of each other. These are divided into training, validation and test set in the
ratio 60:20:20.

Topological features are extracted for the above training, validation and test sets.
We train and evaluate different anomaly detection methods and select the best
performing anomaly detection method from these methods. We use this trained

anomaly detector model in phase-II.

Phase-II: In this phase, We construct another dataset to train the classifiers. Then, we

train and evaluate the performance of different classifiers on each PPI network.

1.

We extract positive links from the network, and divided them into a training set,
validation set and a test set in the ratio 60:20:20.

In order to introduce synthetic noise we mislabel a fraction of the positive links and
assign them labels corresponding to negative links.

We extract negative links from the network using simple random sampling, such
that the vertices are within two hops of each other.

The mislabelled negative links generated in step 2 are merged with the negative
links in the training set from step 3 to allow for creation of a noisy dataset with
synthetic ground truth. This is divided into a training, validation and test set in the
ratio 60:20:20 such that the positive and negative datasets are balanced.
Topological features are extracted for the above training and test sets. We call this
the unfiltered training dataset.

Next we generate a filtered version of the dataset using anomaly detection to filter
out the noisy negative links we had generated in step 4.

We evaluate different machine learning classifiers on both the filtered and
unfiltered training datasets.

Page 11 of 20
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8.  Prediction accuracy is compared across classifiers trained on the filtered vs. the
unfiltered dataset.

Results

Performance evaluation of different anomaly detector

We trained different anomaly detection methods on the training set of each PPI network
and measured the performance on corresponding test set, where the training and test
sets are constructed as described in Phase-I of the previous subsection. We trained the
anomaly detection methods on negative links (normal class) only and utilized the positive
links (abnormal class) for validation and test purpose. Each method yields an anomaly
score on the validation set and a threshold is chosen for detection based on minimizing
the false positive and false negative rate on the validation set. We report accuracy metrics
on the test set using the chosen optimal threshold in Table 2. We notice that One Class
Gaussian Process (gpoc) anomaly detection technique has a better score than the other
anomaly detectors. Since this was consistent across the datasets, hence in this paper we
used One Class Gaussian Process technique for anomaly detection.

Now we focus our attention on the dataset described earlier for Phase-1I. We apply the
anomaly detector trained above only on negative links of noisy Phase-II training set. We
validate the performance of the GP anomaly detector (one class gaussian process) using
True Positive Rate (TPR) and True Negative Rate (TNR). Results are provided in Table 3.
The TNR is slightly lower than TPR because of uncertain labels of negative links i.e. some
of the negative links may be positive links and may be detected as outliers.

Gene Ontology (GO) validation of anomaly detection

We also elucidated the biological significance of anomaly detection using the Gene Ontol-
ogy (GO) scores of protein pairs in different PPI networks. Since proteins which are
involved in the same biological function or share the same biological pathway are more
likely to interact with each other compared to proteins which belong to other pathways,
hence this statistics is a better measure to test the quality of our prediction. We calculated

Table 2 Anomaly detection techniques comparison under different metrics

Network Anomaly Method ~ Accuracy  F-measure  Sensitivity ~— Specificity ~ FPrate  FNrate
Arabidopsis gpoc 96.69 96.77 99.19 94.19 5.81 0.81
thaliana parzen 85.75 85.12 81.50 90.00 10.00 18.50

pca 69.25 7648 1 38.50 61.50 0

nn 77.50 81.63 1 55.00 45.00 0
Caenorhabditis  gpoc 90.98 91.59 98.23 8373 16.27 1.77
elegans parzen 69.63 76.61 99.50 39.75 60.25 0.50

pca 56.13 69.50 1 12.25 87.75 0

nn 56.37 69.63 1 12.75 87.25 0
Mus musculus gpoc 94.90 95.13 99.56 90.24 9.76 0.44

parzen 90.62 91.39 99.50 81.75 18.25 0.50

pca 7037 77.15 1 40.75 59.25 0

nn 76.50 80.97 1 53.00 47.00 0
Rattus gpoc 98.10 98.13 99.68 96.52 348 032
norvegicus parzen 96.13 96.25 99.50 92.75 7.25 0.50

pca 7725 81.47 1 54.50 45.50 0

nn 9137 92.06 1 82.75 17.25 0
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Table 3 Anomaly detector performance measure

Network TPR TNR

Arabidopsis thaliana 99.62 93.23
Caenorhabditis elegans 99.22 82.33
Mus musculus 99.70 91.50
Rattus norvegicus 99.65 95.58

the GO score corresponding to each of the gene ontology classes i.e. biological process,
cellular components and molecular functions of protein pairs using the Protein Interac-
tion Network Analysis Platform (PINA) 2. As we saw in Table 3 TNR is lower than the
TPR this is because our anomaly detector extracts some non interacting protein pairs as
anomalies. These may be undiscovered interactions and to validate this hypothesis we
look at the GO scores of these anomalous protein pairs. In Mus musculus, the anomaly
detection extracts 1360 proteins pairs as anomalies out of which 612 protein pairs have
a GO score greater than 0.5, and out of these 268 protein pairs were found to interact
with different public databases. In Rattus norvegicus, 707 protein pairs were extracted
out of which 543 protein pairs had GO scores greater than 0.5. In Caenorhabditis ele-
gans, 2826 protein pairs were extracted as anomalies out of which 1254 protein pairs had
GO scores greater than 0.5. Thus, a high proportion of the protein pairs filtered by the
anomaly detection technique outlined in this paper appear to have significant GO scores
and may potentially have undiscovered interactions. We further validated the discovered
anomalies against the Negatome Database which contains experimentally supported non-
interacting protein pairs. On matching the resuts not a single anomalous negative link
discovered by the anomaly detector was found to lie in the Negatome database, further
validating the fact that the interactions discovered by the anomaly detector.

Performance evaluation of different classifiers

After we removed the anomalies and generated the two training sets before and after
filtering out the suspicious negative links, we trained four standard classifiers on both
training sets. We evaluated the different machine learning classifiers (SVM, C5.0, KNN
and Naive Bayes) on each PPI network. We used three standard metrics Accuracy, F-
measure and Area Under the ROC curve (AUC) to measure the performance of each
classifier. The F-measure indicates the trade off between precision and recall score of a
classifier for a particular threshold setting whereas the AUC is independent of the thresh-
old. It is an evaluation of the classifier as threshold varies over all possible values. In
evaluation terminology, we denote the set of true positives as TP, the set of true negatives
as TN, the set of false positives as FP, the set of false negative as FN. Various evaluation
metrics is defined as:

P
Recall or True Positive Rate or Sensitivity = ————— (28)
TP + FN

True Negative Rat Specificit N (29)

rue Negative Rate or ecificity = ————

¢ PEAY = TN ¥ FP

. TP
Precision = ——— (30)
TP + FP
TP + TN

Accuracy = + (31)

TP+ TN + FP+ FN
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2 % Precisions x Recall
F — measure = — (32)
Precisions + Recall

o Fp
False Positive Rate = ———— (33)
FP+ TN
, EN
False Negative Rate = ————— (34)
FN + TP

As mentioned earlier we experiment with both simple random and balanced random
sampling for constructing our negative set, please refer to Tables 4 and 5 for a comparitive
analysis. Results indicate that the accuracies of the models do not change significantly
using either approach, so for all further experiments we chose simple random sampling
as our sampling method.

We repeat our experiments ten times by randomly selecting the training and test set
to remove any statistical bias. Then we used the t-test for validating the statistical signif-
icance of differences between the Accuracy scores obtained with and without anomaly
detection. In all cases barring that of the C5.0 classifier for the Arabidopsis thaliana
dataset, we get a p-value < 0.0001 which shows that this difference may be consid-
ered to be extremely statistically significant. It can be seen that naive Bayes classifier is
a weak classifier without anomaly detection technique, but improves most significantly
after using anomaly detection technique. The reason for this is that the Naive Bayes clas-
sifier has more room for improvement after filtering the data via anomaly detection due
to prior poor performance. The remaining classifiers SVM, C5.0, and KNN exhibit good
classification performance before anomaly detection, but these too show significant per-
formance improvement when anomaly detection is used for filtering the training set.
The sole exception is the C5.0 classifier which yields 99.36% accuracy on the Arabidop-
sis thaliana dataset without anomaly detection and therefore has very little margin for
improvement after anomaly detection (this is marked with a * in Table 4). A comparison

Table 4 Classification comparison Under different metrics using simple random sampling

Network Classifier Without anomaly detection With anomaly detection
Accuracy F-measure AUC Accuracy F-measure AUC
Arabidopsis SVM 93.07 92.80 93.07 96.85 96.94 96.85
thaliana C5.0% 99.35 99.35 99.35 99.34 99.34 99.34
KNN 94.24 93.97 94.24 98.42 98.44 98.42
NB 62.29 40.54 62.29 84.22 82.24 84.22
Caenorhabditis SVM 87.67 86.02 87.67 94.02 94.34 94.02
elegans C5.0 97.81 97.78 97.81 98.30 98.32 98.30
KNN 92.99 9273 92.99 96.07 96.20 96.07
NB 59.18 36.39 59.18 67.23 57.46 67.23
Mus musculus SVM 93.30 93.03 93.31 96.83 96.93 96.84
C5.0 98.06 98.04 98.06 99.32 99.33 9832
KNN 94.12 93.84 94.12 98.47 98.49 98.47
NB 60.38 3523 60.38 79.32 75.55 79.32
Rattus SVM 91.65 90.79 91.65 98.79 98.81 98.79
norvegicus 5.0 91.34 90.54 9134 99.46 99.45 99.45
KNN 88.15 86.57 88.15 99.35 99.35 99.35
NB 66.29 4932 66.29 84.25 82.00 84.25

where * shows the p-value > .05
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Table 5 Classification comparison Under different metrics using balanced random sampling

Network Classifier Without anomaly detection With anomaly detection
Accuracy F-measure AUC Accuracy F-measure AUC
Arabidopsis SYM 92.99 92.70 92.99 97.01 97.09 97.01
thaliana C5.0% 99.41 99.76 9941 9941 99.41 99.41
KNN 94.81 94.60 94.81 98.43 98.45 9843
NB 62.55 41.18 62.55 86.77 85.53 86.77
Caenorhabditis SVM 87.02 85.18 87.02 93.60 93.97 93.60
elegans C5.0% 97.77 97.74 97.77 97.95 97.97 97.95
KNN 9263 9233 9263 96.20 96.32 96.20
NB 60.32 41.53 60.32 66.90 56.98 66.90
Mus musculus SYM 93.71 93.49 93.71 96.64 96.75 96.64
5.0 98.63 98.62 98.63 99.37 99.37 99.37
KNN 93.14 92.74 93.14 98.38 98.41 98.38
NB 59.67 33.26 59.67 78.60 7478 78.60
Rattus SVM 94.61 94.35 94.61 98.56 98.57 98.56
norvegicus C5.0 90.75 89.84 90.75 99.40 99.40 99.40
KNN 86.20 84.04 86.20 99.37 99.37 99.37
NB 6742 51.85 6742 82.73 80.13 82.73

where * shows the p-value > .05

of the accuracies of the different classifiers on each PPI network is shown in Fig. 2. The
results shown in Table 4 illustrate the classification performance measures in terms of
Accuracy, F-measure, and AUC. In Table 4, we can see that all three performance mea-
sures (Accuracy, F-measure, AUC) improve with anomaly detection. Thus, it appears that
classification performance improves after filtering via anomaly detection.

= Without anomaly detection
= With anomaly detection
Arabidopsis thaliana C. elegans
v LR b o ® ~
s5g 88 % .S 58 83
100 3 o o 100 ° o s °
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90 3 90 *
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Fig. 2 Accuracy Comparison of different classifiers with and without anomaly detection technique using
simple random sampling
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Feature importance
In order to understand the contribution from each feature for link prediction in the PPI
network, we comparatively analyzed the predictive power of the features. To measure the
relative importance of different features, we analysed the information gain with respect to
each feature. Information gain is based on the decrease in entropy after a dataset is split
on an attribute. An attribute with highest information gain is selected for the split. We
obtained the information gain of an attribute as follows:
Information gain=(Entropy of distribution before the split) - (entropy of distribution after
the split)

Where, entropy of a discrete probability distribution p on the countable set
{x1,%0, %3, ...}, with p; = p(x;), is defined as:

h(p) = =) _pi * log(p) (35)

i>1
By comparing the entropy before and after the split, we obtain a measure of information
gain (Han and Kamber 2006). Now, we ranked all the features based on its information
gain. Table 6 presents the Information gain on the training sets of all the PPI networks.
It can be seen that Common-Neighbors, Adamic Adar Coefficient, Resource alloca-
tion Coefficient, Cannistraci-based Preferential Attachment, Friends Measure, number

Table 6 InfoGain values of different features for all PPl networks

Networks
Arabidopsis  Caenorhabditis  Mus Rattus Average  Standard
thaliana elegans musculus  norvegicus deviation
deg(u) 032 0.10 0.24 0.260 023 0.09
deg(v) 0.24 0.093 0.17 0.17 0.17 0.06
subgraph-edge-no(u) 0.23 0.07 0.19 0.20 0.17 0.07
subgraph-edge-no(v) 0.18 0.07 0.13 0.14 0.13 0.05
subgraph-edge-nolu] 032 011 0.23 0.25 0.23 0.09
subgraph-edge-nolv] 0.24 0.09 0.16 0.17 0.17 0.06
density-nbhd-subgraph(u)  0.27 0.11 0.23 0.23 0.21 0.07
density-nbhd-subgraph(v)  0.23 0.10 017 017 0.17 0.05
density-nbhd-subgraphfu]  0.28 0.1 0.23 0.23 0.21 0.07
density-nbhd-subgraphlv]  0.23 0.10 017 0.17 0.17 0.05
CN(u,v) 0.56 0.60 0.54 0.58 0.57 0.03
TN(u,v) 0.52 0.20 041 049 040 0.15
JCuv) 0.08 0.03 0.037 0.12 0.06 0.04
AA(u,v) 0.82 0.73 0.79 0.80 0.79 0.04
RA(u,v) 0.82 0.71 0.79 0.80 0.78 0.05
PA(U,v) 0.54 0.23 042 0.51 042 0.14
CAR(u,v) 0.08 0.06 0.11 0.09 0.08 0.02
CPA(u,v) 0.67 040 0.59 0.76 0.60 0.15
CAA(UY) 0.10 0.07 0.11 0.09 0.09 0.02
CRA(uV) 0.11 0.08 0.12 0.10 0.10 0.02
CJCuv) 0.08 0.06 0.10 0.09 0.08 0.02
FM(u,v) 0.82 0.58 0.69 0.66 0.69 0.10
|nbhd-subgraph(u,v)| 0.71 040 0.55 0.61 0.57 0.13
|[nbhd-subgraph[u,v]| 0.50 0.19 0.36 0.44 0.37 0.14
|inner-subgraph(u,v)| 0.86 0.61 0.72 0.71 0.72 0.10

All features with average deviation (or average mean) > 0.5 for all networks are in bold. All values > 0.5 are in bold
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of links in inner-subgraph and number of links in neighborhoods-subgraph are higgly
influential for almost all of the PPI networks. In PPI networks, we know that proteins that
form complexes display common functions. So, if proteins A, B, and C share the same
function and protein A interacts with B and C, it is very probable that B and C also inter-
act. Thus it is expected that Common-Neighbors would be an influential feature for link
prediction in PPI networks (Alanis-Lobato 2015). We also know that proteins which are
grouped together into cliques and quasi-cliques in PPI networks share identical functions
and hence have greater probability of link formation in a densely connected group of pro-
teins. The number of links in inner-subgraph and in neighborhood-subgraph are thus also
highly influential features for link prediction in PPI networks. It is also noteworthy that
more nuanced neighbor counting features like Adamic-Adar and Resource Allocation are
more predictive than features that rely only on the number of common neighbors.

Performance evaluation across datasets

To evaluate the generalization of our method across different datasets we conducted
experiments where a model trained on one dataset is tested on all the other datasets.
Tables 7, 8, 9 and 10 tabulate the results for models trained on Arabidopsis thaliana,
Caenorhabditis elegans, Mus musculus and Rattus norvegicus datasets respectively. The
results demonstrate that for the most part the models derived from topological fea-
tures on one dataset using anomaly detection show a gain over models learned without
anomaly detection. The one exception is the translation of performance to C elegans
which suggests that this network may be topologically somewhat different from the rest.
Interestingly, the models trained on C elegans with anomaly detection do exhibit a strong
gain in performance on other datasets. Overall though the method does seem to translate

well across datasets.

Discussion

This paper presents a technique for filtering graphical link training data by using anomaly
detection for the purpose of link prediction in PPI networks. The performance of the
resulting predictor compares favourably with the classifier trained on unfiltered data.
The central idea is to have a filtering step before the classification step where suspicious

Table 7 Results for Classifier trained on Arabidopsis thaliana and tested on remaining datasets

Classifier Networks Without anomaly detection With anomaly detection
Accuracy F-measure AUC Accuracy F-measure AUC
SVM Rattus norvegicus 96.71 96.64 96.71 98.98 98.99 98.98
Mus-Musculus 9378 93.68 9378 95.79 95.96 95.79
C.elegans 85.03 86.03 85.03 81.63 84.48 81.63
C5.0 Rattus norvegicus 99.46 99.46 99.46 99.45 99.45 99.45
Mus-Musculus 99.34 99.34 99.34 99.22 99.22 99.22
C.elegans 96.92 97.00 96.92 95.72 95.89 95.72
KNN Rattus norvegicus 96.66 96.56 96.67 99.58 99.58 99.58
Mus-Musculus 9545 9531 9545 98.18 98.20 98.18
C.elegans 9138 9145 9137 90.52 91.34 90.52
NB Rattus norvegicus 64.42 4495 64.42 77.33 71.09 77.33
Mus-Musculus 60.78 36.47 60.78 76.14 70.10 76.15

C.elegans 57.96 3503 57.96 70.69 6843 70.69
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Table 8 Results for Classifier trained on Caenorhabditis elegans and tested on remaining datasets

Classifier Networks Without anomaly detection With anomaly detection
Accuracy F-measure AUC Accuracy F-measure AUC
SVM Rattus norvegicus 81.24 76.99 81.24 99.05 99.05 99.05
Mus-Musculus 8257 7898 8257 98.23 98.25 98.23
Athaliana 81.28 77.04 81.28 97.93 97.95 97.93
C5.0 Rattus norvegicus 95.56 95.37 95.56 97.87 97.83 97.87
Mus-Musculus 95.07 94.82 95.07 98.48 98.46 98.48
Athaliana 94.77 94.49 94.77 98.68 98.66 98.68
KNN Rattus norvegicus 93.94 93.56 93.94 99.08 99.08 99.08
Mus-Musculus 93.45 93.02 93.45 9853 98.52 9853
Athaliana 93.29 92.87 93.29 98.29 98.29 98.29
NB Rattus norvegicus 65.38 47.24 65.38 74.37 65.78 74.37
Mus-Musculus 62.56 40.95 62.56 71.66 61.22 71.66
Athaliana 62.62 40.82 62.62 7299 64.02 7299
Table 9 Results for Classifier trained on Mus musculus and tested on remaining datasets
Classifier Networks Without anomaly detection With anomaly detection
Accuracy F-measure AUC Accuracy F-measure AUC
SVM Rattus norvegicus 96.93 96.86 96.93 99.02 99.02 99.02
Celegans 83.96 84.87 83.96 81.52 84.40 81.52
Athaliana 92.83 92.67 92.83 95.66 95.84 95.66
C5.0 Rattus norvegicus 97.93 97.89 97.93 99.68 99.68 99.68
Celegans 94.64 94.69 94.64 95.80 95.96 95.80
Athaliana 9713 97.06 9713 99.37 99.37 99.37
KNN Rattus norvegicus 94.64 94.36 94.64 99.72 9943 99.72
Celegans 91.50 91.63 91.50 91.68 9231 91.68
Athaliana 9343 93.12 9343 98.26 98.29 98.26
NB Rattus norvegicus 65.63 47.83 65.63 79.26 74.37 79.26
Celegans 57.06 33.21 57.06 69.10 67.95 69.10
Athaliana 62.28 40.61 62.28 81.72 79.44 81.72
Table 10 Results for Classifier trained on Rattus norvegicus and tested on remaining datasets
Classifier Networks Without anomaly detection With anomaly detection
Accuracy F-measure AUC Accuracy F-measure AUC
SVM Mus-Musculus 90.89 90.68 90.89 92.81 9329 92.81
Celegans 77.71 80.01 77.71 7433 79.57 74.33
Athaliana 90.91 90.76 90.91 9257 93.07 92.57
c50 Mus-Musculus 84.24 81.46 84.24 98.61 98.62 98.61
Celegans 8243 79.73 8243 94.31 94.59 94.31
Athaliana 82.03 78.25 82.03 98.75 98.75 98.75
KNN Mus-Musculus 84.38 81.85 84.38 96.63 96.72 96.63
Celegans 8145 79.86 81.45 85.88 87.57 85.88
Athaliana 83.11 80.19 83.11 96.57 96.66 96.57
NB Mus-Musculus 65.93 50.25 65.93 85.73 84.82 85.73
Celegans 60.12 48.44 60.12 71.98 74.68 71.98
Athaliana 68.10 56.24 68.10 87.29 87.10 87.29
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links are removed from the training data. One issue that needs emphasis here is that the
choice of anomaly detection technique plays a critical role in the success of the resulting
classifier. If the anomaly detector is inaccurate, then the classifier may not yield optimum
performance. One way to ascertain the efficacy of the anomaly detection is by deliberately
mislabeling the positive links and checking if the anomaly detection algorithm can detect
them, which is how we have selected our Gaussian Process algorithm. Additionally, this
technique shows most improvement in performance when the link prediction accuracy
is not particularly high before filtering, as this allows for greater room for classification
improvement. Additionally, this technique needs to be extended to link prediction in
networks with directed edges (metabolic networks), weighted edges (neural networks).
While the given technique is useful for detecting missing links more efficiently, it may
have to adapt to work for evolving networks where the links are constantly changing.
These ideas are the focus of our future work.

Endnotes

!Downloaded from: http://cbg.garvan.unsw.edu.au/pina/interactome.stat.do on
February 10, 2015.
2http://cbg.garvan.unsw.edu.au/pina/interactome.goSimForm.do
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