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Abstract
Academic research is driven by several factors causing different disciplines to act as
“sources” or “sinks” of knowledge. However, how the flow of authors’ research interests
– a proxy of human knowledge – evolved across time is still poorly understood. Here,
we build a comprehensive map of such flows across one century, revealing
fundamental periods in the raise of interest in areas of human knowledge. We identify
and quantify the most attractive topics over time, when a relatively significant number
of researchers moved from their original area to another one, causing what we call a
“diaspora of the knowledge” towards sinks of scientific interest, and we relate these
points to crucial historical and political events. Noticeably, only a few areas – like
Medicine, Physics or Chemistry – mainly act as sources of the diaspora, whereas areas
like Material Science, Chemical Engineering, Neuroscience, Immunology and
Microbiology or Environmental Science behave like sinks.

Keywords: Human knowledge, Diffusion, Complex networks, Interconnected
networks, Big data

Introduction
Nowadays, the research carried out by academics in all areas of human knowledge is
heavily driven by exogenous factors, such as allocation of funding resources or political
interests (Boyack and Börner 2003; Ma et al. 2015). Two decades ago, pioneering stud-
ies by Etzkowitz and Leydesdorff already put in evidence the importance of relationships
between university, industry and government (Etzkowitz and Leydesdorff 1995; Leydes-
dorff and Etzkowitz 1998; Etzkowitz and Leydesdorff 2000), a “triple helix” that shapes
and drives the development of knowledge, impelling researchers to change research inter-
ests or their institution (Boyack et al. 2005; Leydesdorff and Rafols 2009; Deville et al.
2014). The structure and evolution of human knowledge has been extensively investi-
gated by observing, for instance, how academics tend to choose their co-authors, or
they physically move between different research institutions, within the same field or
to a different department (Vlachỳ 1981; Le Pair 1980; Etzkowitz and Leydesdorff 1995;
Leydesdorff and Etzkowitz 1998; Etzkowitz and Leydesdorff 2000; Shiffrin and Börner
2004; Börner et al. 2004; Boyack et al. 2005; Leydesdorff and Rafols 2009; Deville et
al. 2014; Ke et al. 2015; Sinatra et al. 2015; Gargiulo et al. 2016). These analyses, often
based on citation patterns among authors, institutions, papers or journals, allow to
understand how disciplines are related to each other in terms of scientific production
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and impact, but are not intended to quantify the flow of knowledge in science or to iden-
tifying crucial periods for the development of human knowledge. In fact, the interest
of researchers are often driven by currently available funding opportunities or by polit-
ical choices, an emblematic example being the investments in nuclear physics during
the World War II. Such factors, often external to the context of academy research, act
as catalysts pushing researchers to leave their current area of interest towards different
areas.
To study this phenomenon of “knowledge diaspora”, we consider the Microsoft

Academic Graph, a data set of more than 35,000,000 of papers published in more than
21,000 different journals in the last 100 years. To trace the changes in research interests of
every author in the data set across time, i.e. from one temporal snapshot to the successive,
we count how many authors published in topic A at time τ and in the same or a different
topic B at time τ + �τ (see Appendix). The volume of authors linking topics defines an
evolving network of connections among topics, i.e. a multilayer (time-varying, weighted
and directed) network (Holme and Saramäki 2012; Kivelä et al. 2014; De Domenico et al.
2013; Boccaletti et al. 2014). The same procedure has been also applied to the coarser level
of areas (see “Overview of the data set” section for details). The structure of these dynam-
ical multilayered networks, described in “Multilayer network model” section, encodes the
publishing temporal dynamics of academics who change their research interests across
knowledge topics and areas, respectively. In the following we will simply refer to these
structures using the term network, avoiding to specify that they are time-varying and
multilayer.

Overview of the data set
We are interested in exploiting metadata information to classify each paper into one
or more disciplines. Unfortunately, our exploratory analysis of the classification scheme
released with the dataset, based on paper keywords, revealed some relevant drawbacks
that would dramatically bias the more sophisticated analysis presented in this work. To
cope with such limitations, we classified the papers according to the journal where they
have been published, the rationale behind this choice being that journals tend to pub-
lish research studies that are, in general, more pertinent to their specific topic(s). For
instance, it is difficult to publish in a physics journal a paper about humanities or biol-
ogy, if this paper does not provide some physical insights that would make it suitable
for an audience of physicists. Therefore, each journal is classified into one or more top-
ics, fine-grained representations of academic knowledge, and into one or more areas,
coarse-grained representations of academic knowledge. We use the SCImago classifica-
tion, where there are 306 unique topics grouped into 27 distinct areas of knowledge to
assign topics and areas to each paper, according to its journal. One possible cause of
criticism might be that such classification is too recent to characterize adequately jour-
nals existing at the beginning of the past century. However, it must be remarked that
we are focusing our attention on those journals that have a long-established tradition
– i.e., from a few decades up to one century – and are unlikely to have dramatically
changed their area of reference across years. We have divided the data set into non-
overlapping temporal snapshots of 5 years, from 1910 to 2014. A snapshot marked with
a year refers to a period between that year and 4 years later, e.g. 2000 refers to the period
2000–2004.
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Details about data filtering

The Microsoft Academic Graph is a heterogeneous graph containing scientific publi-
cation records, citation relationships between those publications, as well as authors,
institutions, journals and conference “venues” and fields of study (Sinha et al. 2015). We
used the latest publicly available updated version (31 August 2015) of this data set1 in
our study. However, our careful inspection of the data did not allow us to use the accom-
panying classification of papers into fields of study. The first obstacle was the number
of different keywords classifying the papers: tens of thousands of categories providing
a scheme too fine-grained for our study. A reduction of such keywords into more gen-
eral topics would require machine learning and heuristics that would introduce other
uncontrollable bias in the resulting classification. The second obstacle was the unclear
mechanisms adopted to assign one or more keywords to each paper. In fact, we have
found many misclassified papers, an emblematic case being a paper about Agricultural
Science that has been classified in several topics, among which General Relativity. Instead,
we gathered data from an external (publicly available) source. More specifically, we used
SCImago Journal and Country Rank in 20142 to classify journals into 306 distinct research
topics and 27 unique knowledge areas. Successively, we filtered out from the Microsoft
Academic Graph data set all the papers that were not published in journals, thus excluding
other venues such as conferences, and in particular we filtered out those papers published
in journals that were not found in the SCImago classification. More than 35 millions of
papers survived this filtering procedure, representing a promising 28.7% of the original
data set, and more than 60% of the original number of papers published only in journals
(thus excluding conferences and other venues). The number of different journals match-
ing the SCImago data set was 21,729, and we report in Table 1 some information about
the distribution of their multiplexity, i.e. the number of different topics and areas where
they are classified. Finally, it is worth remarking that we further reduced the dataset to
avoid the effects of non-disambiguated authors. More specifically, we built the distribu-
tion of the number of papers per year of each author andwe focused on the 99.9%-quantile
distribution, i.e. we excluded the 0.1% of authors. This choice excluded all the names
who authored more than 17 journal papers per year, the rational being that names with

Table 1Multiplexity of journals with respect to topics and areas. We report the percentage of journals
that are classified by SCImago in exactly 1, 2, ..., etc, topics (areas). Only statistics for the top five are
reported, with rapidly decreasing percentage of journals classified in more than five topics (areas)

# of Topics % of Journals

1 31.6%

2 33.4%

3 19.8%

4 9.2%

5 3.3%

# of Areas % of Journals

1 50.9%

2 36.2%

3 9.8%

4 2.1%

5 0.5%
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a higher number of papers per year probably corresponds to different authors having the
same name. We used authors’ full name, including middle initials if present, to disam-
biguate. We did not merge different authors with identical names during this procedure.
The author name disambiguation method proposed, despite its simplicity, is designed
to efficiently work on a dataset composed of more than 35 million papers and over 123
million author names. Existing methods proposed in the literature, which exploit similar-
ity metrics based on co-authorship and co-citation (Deville et al. 2014; Kang et al. 2009;
Schulz et al. 2014), are arguably more precise but, applied to the present dataset, would
require a computation time optimization out of the scope of this paper.

Multilayer networkmodel
The data set used in our study contains a huge amount of information about published
papers and their authors. We focused on specific subsets of the data, including author
name, the papers he/she published, the journal where they have been published and the
publishing year. Thanks to the SCImago classification of areas of knowledge, we were
able to assign one or more topics to each journal. Thus, we built a tripartite time-varying
multilayer network G where for each temporal snapshot τ , a tripartite multiplex M is
considered. Eachmultiplex is composed by layersL – identifying topics or areas of knowl-
edge, depending on the application of interest – where there are three types of nodes:
authors (A), papers (P) and journals (J). One or more authors are linked to the paper(s)
they co-authored that, in turns, are linked to the journal where they have been published,
resulting in a bipartite network linking nodes of type A to nodes of type P, and a bipartite
network linking, at the same time, nodes of type P to nodes of type J. If a journal is clas-
sified in more than one topic or area, the links are replicated accordingly across layers.
The resulting network is tripartite, because three types of nodes are involved, and mul-
tiplex, because nodes are replicated on different layers. For our purposes, we aggregated
the tripartite network in each layer l ∈ L with respect to papers, in order to obtain multi-
plex bipartite networks of authors and journals only, for each temporal snapshot. Finally,
each node is inter-connected to its replicas in other layers and temporal snapshots. The
mathematical representation (De Domenico et al. 2013; Kivelä et al. 2014) of G is a rank-6
tensor Gαγ̃ ε̄

βδ̃φ̄
, where indices (ε̄, φ̄) identify the temporal snapshot, (γ̃ , δ̃) identify the layers

and (α,β) identify the nodes.
This complex network, however, is not the final object we worked with. In fact, our

analysis is more focused on changes in publication patterns across years. Mathematically,
this means that we are more interested in the links between authors and journals exhibit
between one temporal snapshot and the successive, i.e. in inter-layer links with respect to
time. We derived a more suitable time-varying multilayer network H from G as follows.
Let Ai be the i−th node of type A (i.e. authors) and Jk be the k−th node of type J (i.e.
journals), regardless of topics (areas) classification and time. In G, a link between Ai and
Jk in layer l at time τ exists if Gilτ

klτ > 0. Similarly, if in the successive snapshot τ ′ > τ the
same authorAi is linked to journal Jk′ (k′ can be the same as k) in layer l′ (l′ can be the same
as l), then Gil′τ ′

k′l′τ ′ > 0. Clearly, an author might publish papers on different topics or areas
at time τ but he/she will be, in general, more active on one or a few more. For this reason
for each snapshot, we will consider only the layer where the author has been more active,
i.e. where Gilτ

klτ is maximum with respect to l (note that if there is more than one layer
where the author is equally active, we will consider all of those layers). The choice of this
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filter is justified by the fact that, on average, the research activity of an individual is mainly
focused on a single topic, rather than many ones simultaneously. While there are many
researchers who produce at least one paper in more than one research topic or area in a
certain temporal window, in this work we are investigating the changes related to the topic
or area where they are more active. Nevertheless, it is worth remarking that statistical
fluctuations might bias, partially, the estimation of some flows and a possible solution to
this issue will be explored in a successive study. We will indicate by l
 such layers. The
components of the tensor representing H that encode inter-snapshot connections, are
defined by

Hil
τ
il′
τ ′ = �

(
Gil
τ
kl
τ

)
× �

(
Gil′
τ ′
k′l′
τ ′

)
, (1)

i.e. an interconnection between an author at time τ and his/her replica at time τ ′ > τ is
present if and only if the author published at time τ and at time τ ′. It is worth remark-
ing that the replicas being linked are defined on layers l
 at time τ and l′
 at time
τ ′, thus also connecting (possibly different) topics or areas across time. The presence
of Heaviside step function �(·) is to guarantee that each author is counted just once
at this step, regardless if he/she produced more papers. It is evident that information
about the flow of authors moving from one knowledge topic (or area) to another across
time is only encoded in inter-snapshot connections among author’s replicas, whereas
the presence of journals as nodes is no more required, as well as intra-snapshot links,
i.e. connections within the same temporal snapshot. Therefore, the tensor H represent-
ing H is defined on a smaller tensorial space with respect to G, because nodes are just
authors instead of authors and journals. Moreover, it is also extremely sparse and, in
fact, it can be further aggregated without loss of information, because of the absence
of intra-snapshot links, by projecting the tensor into the space of topics (or areas) and
time, getting rid of information about authors (see Appendix for details about this step).
The resulting tensor Mγ̃ ε̄

δ̃φ̄
, that is the one we used in our analysis, represents a multi-

layer network where nodes are topics (or areas), identified by indices (γ̃ , δ̃), and layers
are temporal snapshots, identified by indices (ε̄, φ̄). Intra-layer links, i.e. connections
among topics within the same temporal snapshot, are not present, whereas inter-layer
links among topics encode the underlying flow of authors during consecutive periods
of time.

Results
To gain the first insights about the knowledge diaspora across topics, we developed an ad
hoc visualization (see Appendix) to put in evidence, for each topic, the intricate web of
flows of authors incoming from and outgoing to other topics.
We see in Fig. 1 a few emblematic cases corresponding to the diaspora observed in

1910, 1960 and in 2010, covering one century of academic publishing in all areas of
knowledge. It is evident that one century ago authors were not contributing signifi-
cantly outside their own area of expertise. After 50 years the diaspora is more prominent,
with intense flows between topics of different areas, such as –Medicine– and –
Biochemistry, Genetics and Molecular Biology–, between –Physics and Astronomy– and
–Earth and Planetary Science–, or between –Chemistry– and –Chemical Engineering–.
After 100 years, the diaspora is extremely evident, affecting basically all areas of
knowledge.



De Domenico et al. Applied Network Science  (2016) 1:15 Page 6 of 13

Fig. 1 Flow network of knowledge diaspora. Points on the circle indicate topics (fine-grained knowledge
representations) that are colored according to their SCImago area (coarse-grained knowledge representations),
represented by thick sectors, whose color legend is reported. Two topics are connected if at least one author
at time τ switched from one to another 5 years later. a Flow of authors moving his/her research activity from
one topic to others across time. b How to read this visualization: switches between topics of the same area,
namely “intra-area flows”, are represented as ‘U” shaped links close to sectors, to distinguish them from
“cross-area flows”. The outgoing flow is colored by the area of origin. The width of edges is proportional to
the observed flow. See Appendix for more details about topics classification and this type of visualization

The map of knowledge diaspora shown in Fig. 1 allows to get qualitative insight about
this phenomenon, although it does not allow to quantify, for instance, the raise of research
interest in specific topics. We will focus first our study on the emergence of topics of
interest, by analyzing the variation of their incoming flows. To this aim, we quantify the
attractiveness of a topic t through time δt(τ ), by tracking the evolution of the relative
changes in the volume of authors Vtt′(τ ) incoming from all other topics t′ �= t, at each
temporal snapshot τ :

δt(τ ) = 1
Nt − 1

∑
t′ �=t

Vtt′(τ ) − Vtt′(τ − 5 years)
Vtt′(τ − 5 years)

, (2)

being Nt = 306 the total number of topics considered. For each topic, it quantifies the
average net relative change in the incoming flow. This parameter is sensitive to changes
in the flow from one topic to another, even when this flow is rather small compared
to the total incoming flow. Indeed, it might happen that a topic attracts a small flow
of authors from many other topics or a huge flow of authors from a rather small set
of other topics. The parameter δt(τ ) would detect both patterns and assign a similar
score in the two cases. Other aggregated parameters, such as the relative change in
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the overall incoming flow per topic, are not able to capture this type of patterns, that
would be inevitably hidden by larger flows with possibly less significant relative variations
over time.
For each snapshot τ separately, we look for the most attractive topic, the one with

the highest value of δt(τ ). The results, shown in Fig. 2, reveal intriguing correspon-
dences with historical or political events. For instance, between ’60s and ’70s the study
of physical properties of liquids was officially included in solid state physics, to form the
basis of Condensed Matter, name adopted in that period to redirected into one com-
mon field those physicists who were previously working on simple and complex matter
(Martin 2015).
Another interesting case is represented by Nanotechnology, with a significant activ-

ity change between 2000 and 2004, following the Nobel Prize in Chemistry won
by Harry Kroto, Richard Smalley, and Robert Curl for the discovery of fullerenes.
Fundamentals in many technological applications, fullerenes attracted a large num-
ber of researchers from –Statistics and Probability–, –Modeling and Simulation–
and –Computer Science Applications–, when the new National Nanotechnology
Initiative (http://www.nano.gov/) was officially proposed (1999) and the US President
Bill Clinton declared a budget worth $500 million to support it (January 20003),
thus justifying the diaspora from many other disciplines to –Nanoscience and
Nanotechnology–. The case of –Agricultural and Biological Sciences (Misc.)–, exhibit-
ing the largest value of δt(τ ) between 2010 and 2014, especially attracted our atten-
tion. A deeper analysis, revealed the presence of an increasing significant flow of
researchers incoming from –Energy (Misc.)– who moved their publications towards
in journals pertaining to agricultural and biological sciences, with research about
genetically modified organisms, synthesis of biomolecules, biofuels, food systems and
bioenergy.
After the fine-grained analysis at the level of topics, we focus on the analysis at

the coarse-grained level of areas. For the analysis at the area level we need to define
the intra-area flow as the volume of authors V [intra]

a (τ ) that keep publishing in the
same area a over successive temporal snapshots. The overall cross-area incoming
flow V [to]

a (τ ) is defined as the volume of authors who publish in area a at time
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Fig. 2 Most attractive topics in the knowledge diaspora. The flow network of each temporal snapshot of
5 years is compared with the one immediately subsequent, and the relative changes in the volume of
authors attracted by a topic (see Eq. (2)) are computed. For each temporal snapshot, we report the largest
relative change observed in the volume. Color codes the area (reported on the right-side of the plot) each
topic belongs to. The relative increase is encoded in the radius of circles
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τ coming from other areas. Finally, the overall cross-area outgoing flow V [from]
a (τ )

is defined as the volume of authors in area a that publish in other areas at time
τ . These measures allow to investigate many aspects of the diaspora, characterizing
the role played by different areas in the evolution of human knowledge. We intro-
duce two local descriptors, namely the immigration and the emigration indices
defined by

ιa(τ ) = V [to]
a (τ )

V [intra]
a (τ ) + V [to]

a (τ )
(3)

εa(τ ) = V [from]
a (τ )

V [intra]
a (τ ) + V [from]

a (τ )
, (4)

respectively, characterizing the diaspora from a local perspective, i.e. in terms of relative
variations with respect only to the existing population of authors working in the area a.
These indices range from 0 – characterizing areas where the incoming (outgoing) flow of
immigrating (emigrating) authors is negligible with respect to the existing authors popula-
tion in the area – to 1 – indicating areas where the existing authors population is negligible
with respect to the incoming (outgoing) flow of immigrating (emigrating) authors. How-
ever, these two local indices alone, do not allow to gain global insight about the diaspora
from sources and to sinks of knowledge. For instance, such indices do not allow to under-
stand if areas like –Physics and Astronomy–, –Mathematics– or –Computer Science–,
producing academics whose modeling and abstraction skills make them suitable for chal-
lenging problems in other disciplines, act as global sources of the diaspora or not. In fact,
it might happen that even if academics from these areas are commonly perceived to be
very multidisciplinary, their flow with respect to the intra-area flow of authors could be
rather small. To this aim we introduce two global descriptors, namely the sink and source
indices defined by

ρa(τ ) = V [to]
a (τ )∑

a′
V [to]
a′ (τ )

(5)

σa(τ ) = V [from]
a (τ )∑

a′
V [from]
a′ (τ )

, (6)

respectively. As before, such indices range from 0 – indicating areas where the incoming
(outgoing) flow of authors is negligible with respect to the overall incoming (outgo-
ing) flow – to 1 – characterizing areas where the incoming (outgoing) flow of authors
dominates the overall incoming (outgoing) flow.
In Fig. 3a–b is shown the evolution of the immigration and emigration across years

for each area separately. Noticeably, most knowledge areas exhibit an evolution from
an initial phase, where the incoming and outgoing flows of authors are negligible with
respect to the existing authors population in the area, to the actual phase where these
flows gain more and more importance. Nevertheless, some areas like Medicine, Physics
and Astronomy, Chemistry or Mathematics are more secluded than others and partially
preserve their isolation in both incoming and outgoingflow after one century. Con-
versely, a few areas like Nursing and Health Professions already exhibited a relevant
outgoing flow almost a century ago, as darker dots in Fig. 3b show. Of particular inter-
est are those areas that were isolated a century ago but that, between ’60s and ’70s,
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Fig. 3 Incoming and outgoing flows from and to knowledge areas across time. Immigration (panel a) and
emigration (panel b) index (see Eq. 2 and 3) of each area calculated for each temporal snapshot. Here, 0
indicates that the incoming (outgoing) flow of immigrating (emigrating) authors is negligible with respect to
the existing authors population in the area, and 1 that the existing population is negligible with respect to
the incoming (outgoing) flow of immigrating (emigrating) authors. Size of circles are proportional to the
volume of authors in each area, and areas are ordered according to their overall volume over time. cMedian
sink (left, red boxes) and source (right, blue boxes) index (see Eq. 4 and 5) calculated for each area. Both range
from 0 – indicating areas where the incoming (outgoing) flow of authors is negligible with respect to the
overall incoming (outgoing) flow – to 1 – characterizing areas where the incoming (outgoing) flow of authors
dominates the overall incoming (outgoing) flow.White dots indicate the difference between the two
indicators, to better put in evidence the one with higher value

have undergone a transition and started to both attract researchers from and provide
researchers for other areas, such as Computer Science and Environmental Science. In the
two decades between ’50s and ’70s manypublic and governmental research institutions
invested on technological and theoretical investigation attracting, among others, math-
ematicians, physicists, philosophers and engineers. During the same years, the raise
of Artificial Intelligence, required cross-disciplinary research at the edge of philosophy
of mind, electrical engineering, neurophysiology, social intelligence and applied math-
ematics, to cite a few. In parallel, an inverse flow begun as well when a variety of
disciplines started to take advantages of the new tools and methods provided by this
area, like for example the emerging field of Digital Humanities. In the case of Envi-
ronmental Science, the diaspora coincides with the revolution of the field in the ’60s.
In fact, the environmental movements born in that period to protest against chemi-
cal companies led to the creation of the U.S. Environmental Protection Agency4 and
to the creation of many new environmental laws that required the development of
specific environmental protocols of investigation, involving experts from a wide vari-
ety of disciplines. Fig. 3c shows the median over time of the source and sink indices
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for each area separately, which give instead a global perspective of incoming and out-
going flows. The choice of the median, instead of other statistical descriptors, is due
to the skewness of the underlying distributions. This allows to see that fields like
Medicine and Physics, that seem isolated when analyzed locally, actually serve as sinks
and sources of the knowledge diaspora. This means that, even though most research in
these areas is carried out by authors who are already in the field, their contribution to
the overall flow of knowledge is very relevant. In particular, both areas serve mostly as
source of the diaspora, supplying other areas with researchers importing new methods
and tools.
The knowledge diaspora obliged many researchers to work at the edge of dif-

ferent topics and different areas, driving an increasing trend towards higher trans-
disciplinary andmultidisciplinary research, in agreement with very recent evidences (Van
Noorden 2015). Our data set allows us to quantify also the contribution of authors
to different areas during the past 100 years. For each temporal snapshot of the
network, we calculate the distribution of the number of different knowledge areas
where an author has published in. The evolution of this distribution is shown in
Fig. 4 where, as expected, we can observe how authors publish mainly in one area
at the beginning of the past century while, over the years, a growing fraction of
researchers has begun to produce publications in an increasing number of different
areas.

Discussion and conclusions
We have investigated the evolution of human knowledge across one century by using,
as a proxy, the publication patterns of academics in different areas of research. For this
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purpose, we have used the Microsoft Academic Graph, the largest publicly available data
set providing detailed information about academic publications in all areas of knowl-
edge. Our multilayer network map allowed us to model the changes in research interests
of academics across time, revealing what we called the “diaspora of the knowledge”.
In fact, we were able to identify disciplines acting as sources or sinks of academics’
interest, quantifying their attractiveness across time and revealing fundamental periods
in the raise of interest in areas of human knowledge. Noticeably, such periods might
be related to crucial historical and political events. Our results show that, in the last
century, a growing number of researchers published papers in an increasing number
of disciplines. This clear trend illustrates, in a quantitative way, the perceived growth
in the number of authors performing research crossing the boundaries of knowledge
areas.

Endnotes
1 http://research.microsoft.com/en-us/projects/mag/
2 http://www.scimagojr.com/journalrank.php
3 https://www.whitehouse.gov/files/documents/ostp/NSTC%20Reports/NNI2000.pdf
4 https://www.epa.gov/history

Appendix
Building the diaspora network
Figure 5 illustrates how we define knowledge diaspora in terms of authors’ movements
across their research interests.

a

b

c

d

Fig. 5 Knowledge diaspora between areas. a If an author publishes in different topics at time τ and at time
τ + �τ , we count one transition between all combinations of topics; b if an author publishes in topics A and
B at time τ , and at time τ + �τ again in topic A but not in B anymore, then we consider just one
self-transition from topic A to itself; c consistently, if an author publishes in topics A and B both at time τ and at
time τ + �τ , we only count two self-transitions; dmore generally, if an author publishes in different topics at
time τ , and one of them (C) disappears at time τ + �τ , whereas another (D) appears, since we can not know
from with topic at time τ there is a transition to topic D at time τ + �τ , we therefore invoke the “Ceteris
paribus” principle, suggesting that we have to count one transition from any topic at time τ to topic D

http://research.microsoft.com/en-us/projects/mag/
http://www.scimagojr.com/journalrank.php
https://www.whitehouse.gov/files/documents/ostp/NSTC%20Reports/NNI2000.pdf
https://www.epa.gov/history
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Categorical edge-bundling visualization of networks
Visualizing in a clear and informative way the intricate web of transitions between dif-
ferent areas is a challenging problem. When the number of interested nodes, in our case
topics or areas, and their interconnections is sufficiently small, chord diagrams (Abel
and Sander 2014) are suitable candidates. However, if the number of interconnections
is too large, chord diagrams might lose their high level of readability. We found a good
alternative in edge-bundling visualization (Holten 2006), although this approach requires
hierarchical data and our network does not exhibit any natural hierarchy, that should
instead obtained by applying external algorithms and it would be based on assumptions.
Instead, what we wanted to exploit is the intrinsic categorization of authors and papers in
areas and topics, while having full control on redirecting edges and place nodes accord-
ing to our needing. Inspired by Circos visualization (Krzywinski et al. 2009), we adopted
a circular layout, i.e. embedding on a circle, where categories, in our case the areas of
knowledge, are drawn as sectors with different colors. The position of sectors is cho-
sen according to heuristics depending, among other factors, on the modular structure
(Newman 2012) of the network of layers. Nodes, in our case the topics, are placed on
a circular layout, close to the sector encoding the area they belong to. Within each sec-
tor, nodes are ordered by the logarithm of their strength, to facilitate the identification
of important topics and improve the visualization of connections. The size of nodes is
rescaled to avoid nodes with radius below or above certain thresholds. The name of topics,
i.e. node’s label, is shown radially along the direction connecting the node to the cen-
ter of the circle and both nodes and labels are colored according to the area they belong
to, to facilitate readability. Edges are divided into three categories: “intra-area” (encod-
ing connections among topics within the same area regardless of direction), “cross-area
out-going” (encoding connections going from a topic to other topics in a different area)
and “cross-area in-going” (encoding connections going to a topic from other topics in a
different area). Intra-area edges are spline curves placed in the space between the sec-
tors and the nodes, colored by using the color of the underlying area, allowing to gain
insight about the diaspora within the same area. Cross-area edges are spline curves cal-
culated by using five points, in addition to the positions of origin and destination nodes:
1) in front of the origin node, belonging to a “zero-level” circle with smaller radius than
that where nodes are placed; 2) on a “first-level” circle with a smaller radius than the
previous one, through a point whose position is on the right of the barycenter of the
underlying sector and slightly displaced towards the sector; 3) on a “second-level” cir-
cle, through a point that is aligned with the barycenter of the two endpoints; 4) again
on the first-level circle, through a point whose position is on the left of the barycen-
ter of the underlying sector and slightly displaced towards the center of the circle, at
variance with the third point; 5) one, on the zero-level circle, in front of the desti-
nation node. The displacement of a small angle to the right and to the left allows to
separate the out-going and the in-going edges, respectively, as well as the small displace-
ment along the radial direction facilitates the distinguishability of flow directionality, with
out-going flow collected into a point closer to the sector and in-going flow collected
into a point closer to the center of the circle. The color of each edge is calculated by
interpolating the colors of the endpoints, while giving more weight to the color of the
destination. The width of the edges is proportional to their weight, i.e. in our case the
volume of authors between the endpoint topics and their transparency is regulated by
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the Euclidean distance between the connected nodes according to their position in the
circular layout.
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