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Abstract

In this paper, a novel approach to building a dynamic correlation network of highly
volatile financial asset returns is presented. Our method avoids the spurious correlation
problem when estimating the dynamic correlation matrix of financial asset returns by
using a filtering approach. A multivariate volatility model, DCC–GARCH, is employed to
filter the fat-tailed returns. The method is proven to be more reliable for detecting
dynamic changes in the correlation matrix compared with the widely used method of
calculating time-dependent correlation matrices over a fixed size moving window,
which can have fundamental problems when applied to fat-tailed returns. We apply
the method to selected Japanese stock returns to observe the dynamic network
changes as a case study. The estimated time-dependent correlation matrices are then
compared with those calculated by using the traditional method to highlight the
advantages of the proposed method. Two types of indicators, namely the largest
eigenvalue and cosine distance measures, are introduced to identify significant
changes in the correlation matrix for an initial screening of remarkable stress events. A
more detailed network-based analysis is then conducted by examining topological
measures calculated from the network adjacency matrices. The higher density and
lower heterogeneity of the correlation network during stress periods are clearly
observed, while the correlation network of stock returns is shown to be robust with
regard to time. The method discussed in this paper is not limited to stock returns; it can
also be applied to build a dynamic correlation network of other financial and
non-financial time series with high volatility.

Keywords: Asset returns, Dynamic correlation, Fat-tail, Volatility model, Filtering,
Correlation network

Introduction
A correlation network is a network whose adjacency matrix is built on the basis of pair-
wise correlations between variables. In the context of financial asset returns including
stock prices and exchange rates, contemporaneous co-movement plays a key role in
portfolio optimization and risk management. We, therefore, focus on an undirected and
weighted correlation network in this study. The concept of a dynamic network is that
the adjacency matrix changes dynamically: the network structure can change depending
on time. In financial markets, the correlation between asset prices can change dynami-
cally in response to the trading activities of market participants, occasionally driven by
unexpected environmental changes. Those changes can be described as changes in the
structure of the correlation network. Because monitoring and analyzing such dynamic
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changes can help improve investment technology and risk management as well as our
understanding of the market structure, we are interested in the dynamic correlation
network in the context of financial asset returns.
When building a dynamic correlation network of asset returns, we need to set up a time

series of the correlation matrices. The most important challenge is creating a correlation
matrix, which is then converted into a weighted adjacency matrix by applying numerical
operations including weight conversion and thresholding. Specifically, the choice of cor-
relation measure and calculation method of the conditional correlation is crucial. If the
estimated correlation matrix is distorted, any analysis based on the correlation network
can be misleading.
To measure the co-movement of financial asset returns, Pearson’s linear correlation

measure is frequently used. The correlation matrix of asset returns is built on Pearson’s
linear correlation in many quantitative financial models; however, we should be careful to
calculate the linear correlation, since it can cause a serious distortion problem when used
for fat-tailed financial time series including stock returns and exchange rates, which have
significant volatility changes. Indeed, the spurious correlation caused by volatility shock
is a typical problem that leads to a false signal about the co-movement.
Another important point to consider when calculating the time series of sample corre-

lation matrices is how to choose an observation period. The true correlation between two
asset returns at a specific time is not directly observable; therefore, we need to estimate it
from the observable sample data. The most widely used practical method is to calculate
the sample correlation by employing a moving window method, in which the correlation
is calculated statically with the data over a fixed observation period (e.g., a moving win-
dow of 30 trading days). The window may be overlapped or non-overlapped, depending
on the need for a smaller or larger number of correlations. The correlation matrix should
be updated continuously by rolling the window; however, the moving window method
makes the correlation measure less responsive to the current price co-movement. Past
large shocks can still have a significant impact on the correlation until they are excluded
from the window.
The combination of these two methods, namely the correlation matrix of unfiltered

sample data series with a moving window, thus has fundamental problems that are widely
acknowledged by researchers and practitioners; however, the method is still widely used
because of the lack of an alternative.
In this regard, we propose a novel approach to building a dynamic correlation net-

work for highly volatile financial asset returns. We focus on estimating the correlation
matrix since this process is the dominant part of building a correlation network. The
main contribution of this paper is to provide an efficient and reliable way in which to
build a series of correlation matrices for the analysis of dynamic networks (e.g., the
inter-temporal comparison of networks). This approach can be widely applied for pre-
processing highly volatile time series data in the context of dynamic network analysis.
The method employs the dynamic correlation of asset returns that is estimated by using
a multivariate volatility model, namely the generalized autoregressive conditional het-
eroskedasticity model with dynamic conditional correlation (DCC–GARCH). Since the
correlation matrix has a dynamic structure in the model, the distortion caused by large
volatility fluctuations is greatly reduced. We also propose a way in which to monitor
dynamic changes in the correlation matrix through eigenvalue analysis: the intensity and
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direction of the correlation are separated and examined independently to detect any sig-
nificant change. Further, we apply the proposedmethod to selected Japanese stock returns
to build dynamic correlation networks in order to analyze their dynamic topological
changes.

Literature review
The earlier study by Mantegna (1999) developed a correlation network of US stock
returns, which provided the basis for a network-based approach toward financial data
analysis. They first calculated the cross correlation of returns in terms of Pearson’s lin-
ear correlation and then constructed a minimum spanning tree (MST) to discover the
hierarchical structure of the network. Similar network-based analyses have since been
conducted by many researchers including Onnela et al. (2003a), Onnela et al. (2003b), and
Chi K et al. (2010).
Some of these studies have focused on the dynamic aspects of the correlation network

to assess how the network changes. Onnela et al. (2003a) focused on the dynamics of
market correlations. They built a time-dependent MST for stock return data on the New
York Stock Exchange and concluded that the basic topological structure of the network
is robust with respect to time, while strong market correlation is identified during crisis
periods. Bonanno et al. (2004) investigated various stock portfolios at different time hori-
zons to observe the correlation structure by examining how returns are affected by the
time horizons used to compute the correlation. Kenett et al. (2010) analyzed stationary
correlations between stocks by using a visualization tool, namely the StockMarket Holog-
raphy, that allows an investigation of the structure and dynamics of the market through
the study of correlations.
These previous research works have used Pearson’s linear correlation of the sample

returns, which is also used to calculate the dynamic correlation by shifting the obser-
vation period. In this study, however, we focus more on the method of calculating the
asset return correlation, since the synchronized volatility shocks of fat-tailed asset returns
can affect the level of Pearson’s linear correlation significantly. Specifically, these volatil-
ity shocks can distort the correlation structure when a market-wide shock occurs. In our
previous research (Isogai 2014), we applied a multivariate volatility model to control for
volatility fluctuations in order to avoid such a distortion problem when clustering a static
correlation network. In this study, we use a more advanced type of volatility model with
dynamically changing correlation (DCC–GARCH) to control for such volatility fluctu-
ations. The conditional correlation matrices are estimated by using the DCC–GARCH
model, which enables us to create a dynamic correlation network. We also propose mea-
sures to track the correlation dynamics to identify any significant change in the asset
return correlation.
The remainder of this paper is organized as follows. Section “Asset correlation and

volatility model” describes the technical problems regarding the correlation of fat-tailed
returns and proposes the use of the multivariate volatility model. Section “Estimation of
the dynamic correlation” describes the result of themodel fitting to Japanese stockmarket
data. Section “Eigenvalue analysis of the dynamic correlation” describes the framework
of the dynamic analysis of the correlation matrix by using eigendecomposition. Section
“Discussion” discusses the advantages of the proposed approach as well as some difficul-
ties from a dynamic network analysis perspective. Section “Conclusion” concludes.
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Asset correlation and volatility model
Linear correlation and volatility fluctuations

Pearson’s linear correlation is frequently used to indicate the degree of the co-movement
of two asset returns. Pearson’s linear correlation ρX,Y is defined as

ρX,Y = Cov (X,Y )√
Var(X) · Var(Y )

(1)

where Var(·) and Cov(·) are the variance and covariance operators, respectively.
There is another type of linear correlation, namely the partial correlation that captures

the direct influence between two variables, thereby eliminating the indirect influence via
other variables. The partial correlation is useful for measuring the direct and indirect link-
ages between asset returns. Some previous research works including Kenett et al. (2010)
and Kenett et al. (2015) have used the partial correlation to explore the underlying struc-
tures of stock markets. In this research, we focus on the standard correlation, since the
overall interaction including indirect ones should be considered for many financial oper-
ations including portfolio optimization and risk quantification. The method proposed
below, however, can be applied for the use of the partial correlation by converting the
estimated standard correlation into the partial one.
The use of Pearson’s linear correlation implicitly assumes that the two variables are

normally distributed. The distribution of financial returns, however, frequently shows fat-
tailed features with many extreme values. Moreover, volatility changes dynamically and
large fluctuations in returns tend to cluster together, resulting in the persistence of high
volatilities (i.e., volatility clustering). These features of asset returns can significantly dis-
tort Pearson’s linear correlation. Figure 1 illustrates a simple example of the distortion
problem. The linear correlation rises significantly when an extremely large value is added
to the two uncorrelated random noise series. The distortion effect of a volatility shock on
linear correlation may cause the spurious correlation problem as shown by this example.
A rank correlation measure of returns, including Spearman’s ρ and Kendall’s τ , can

be alternatives. These rank correlations are non-parametric measures that are depen-
dent only on the rank order of variables; therefore, they do not assume a linear function
between two variables as in Pearson’s linear correlation. They can also be transformed into
Pearson’s linear correlation under certain conditions. The problem, however, is that the

Fig. 1 Synchronized Volatility Shock of Asset Returns. Note: A pair of uncorrelated white noise series with
length 100 is generated by random sampling from the bivariate standard normal distribution. A pair of noise
(-10, -10) is added as simultaneous large shocks. The sample correlation increases from 0.00 to 0.57 in this case
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rank order of the variables is not always preserved when the volatility factor is removed
from the returns (i.e., rank inconsistency).
Other types of correlation measures include mutual information, which relates to the

joint entropy of two variables. The probability density functions of returns and residuals
are not necessarily the same; therefore, this approach can have a similar problem to the
rank correlation.
Hence, volatility fluctuations should be controlled for when estimating a correlation

matrix. In this regard, modeling volatility fluctuations explicitly is more reliable than
applying a non-linear correlation measure directly to fat-tailed returns when estimating a
correlation matrix that is converted into an adjacency matrix.
Further, the linear correlation has important practical advantages when used properly.

For example, manymathematical models for pricing and risk modeling as well as portfolio
optimization are built with linear correlations in multivariate settings. Such models can
become more complicated if the non-linear type of correlation is built-in.

Model-based dynamic correlation

A time series of correlation matrices is frequently calculated by using the moving window
method. The correlation matrices can be used as an input for creating dynamic adja-
cency matrices; however, the method has serious drawbacks when capturing the dynamic
features of correlation changes. The correlation is calculated to indicate the degree of co-
movements of two variables within an observation window; therefore, past large shocks
can have significant impacts on the correlation until the event goes out of the window.
Once the correlation has increased considerably because of a large shock, a higher level
of correlation is maintained even if the shock has already disappeared. This is the distor-
tion effect of volatility shocks along the time axis, which can generate serious noise when
observing the dynamic changes in the correlation. This distortion effect can be mitigated
by adopting a shorter observation window; however, this approach may hamper the sta-
bility of the sample correlation. Positive-definiteness is another important condition that
restricts the length of the observation period (i.e., matrix rank condition).
These problems can be solved by employing a model-based dynamic correlation

approach. Specifically, we choose the DCC–GARCH model proposed by Engle (2002),
which can separate the volatility fluctuations from returns, leaving the standardized
residuals, which are independently and identically distributed (i.i.d.). The model thus
implements the dynamics of the correlation matrix change, which enables us to intro-
duce a model-based dynamic correlation of returns without using the moving window
method. Such a dynamic correlation matrix is expected to be more responsive; therefore,
the dynamic correlation network analysis of asset returns would become more precise
and convincing.
In general multivariate GARCHmodels, a vector of asset returns rt is decomposed into

the conditional mean and volatility as

rt = μt + εt = μt + H1/2
t zt ,

E (zt) = 0, Var (zt) = IN
(2)

whereμt is a vector of the conditional means, εt is a vector of the unpredictable residuals,
Ht is an N × N (N : the number of returns) symmetric positive-definite matrix, which
is a conditional variance–covariance matrix of rt , and zt is a vector of i.i.d. standardized
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residuals, the mean and variance of which are 0 and IN (an identity matrix of order N),
respectively.
DCC–GARCH has three parts: the mean part, volatility part, and DCC part. The

mean part is modeled by using the autoregressive moving average (ARMA) model
independently as

μt = μ +
P∑
i=1

Airt−i +
Q∑
j=1

Bjεt−j (3)

where Ai and Bj are diagonal matrices. The volatility part is modeled as

ht = ω +
q∑

i=1
Siεt−i � εt−i +

p∑
j=1

T jht−j (4)

where � denotes the Hadamard operator (the entry-wise product), ht is the diagonalized
matrix of Ht , and both Si and T j are diagonal matrices. Volatility is modeled without
interaction between the assets to simplify the model.
In the DCC part, an N × N positive-definite dynamic correlation Rt is used to model

the dependency structure of rt ; the more formal definition of Rt is described later in
model fitting. The time-dependent structure of Rt is described by using a proxy variable,
which is introduced to ensure the positive-definiteness of Rt . The proxy variable Qt is
modeled as

Qt = Q̄ +
m∑
i=1

ai
(
zt−iz

′
t−i − Q̄

)
+

n∑
j=1

bj
(
Qt−i − Q̄

)
(5)

where ai and bj are non-negative scalars and Q̄t is the unconditional mean of Qt . The
DCC model with time lags in the conditional correlation is denoted as DCC (m, n). The
parameter ai shows the sensitivity ofQt to previous shocks, while the parameter bj repre-
sents the persistence of the correlation in previous periods. The correlation matrix Rt is
calculated by rescaling Qt as

Rt = diag
(
Qt

)− 1
2 Qtdiag

(
Qt

)− 1
2 . (6)

The positive-definiteness of Qt and Rt is ensured by the following conditions:

ai ≥ 0, bj ≥ 0,
m∑
i=1

ai +
n∑

j=1
bj < 1. (7)

Thus, the vector of asset returns rt in (2) is modeled by DCC–GARCH with (3), (4), and
(6). For more details on the DCC–GARCH model, see Engle and Sheppard (2001) and
Engle (2002).
Volatility fluctuations are separated from returns rt , reducing the risk of the spurious

correlation problem. The dynamic correlationmatrixRt shows the point-in-time pairwise
correlation, which is expected to be more responsive than that calculated directly from
the sample return rt by using the moving window method. Further, Rt is ensured to have
positive-definiteness at all times.
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Estimation of the dynamic correlation
Stock return data

We use two sample datasets of Japanese stock returns for the empirical study. The 50
largest companies listed on the First Section of the Tokyo Stock Exchange are selected
from two industries, namely transportation equipment (manufacturing) and banking (ser-
vices), based on their market capitalization ranking, respectively. The sample portfolio
of transportation equipment includes many automobile companies as well as parts and
peripherals companies; the sample portfolio of banks includes large internationally oper-
ating banks as well as smaller regional banks. The data frequency is daily; the period runs
from the beginning of January 2008 to the end of June 2015, which includes the two major
financial shocks of the recent past: the Lehman collapse (2008) and the Great Earthquake
(2011). Price data are converted into log returns.

Model fitting

To estimate the model parameters of DCC–GARCH by maximum likelihood estima-
tion, the likelihood function needs to be identified. The distribution of zt in (2) has not
been specified. We assume one of the normal, Student t, and skew t distributions, allow-
ing for some fat-tailedness even after the volatility adjustment. Such a heterogeneous
distributional assumption makes it difficult to use multivariate distribution as the joint
distribution function of rt in the likelihood function; thus, we employ a copula-based
approach. The copula function C(·) is defined as

F (x1, . . . , xN ) = C (F1 (x1) , . . . , FN (xN )) (8)

where F(·) is the joint distribution function of the variables X = (X1, . . . ,XN ) (Sklar’s
theorem Sklar (1959)). The joint density function f (x) of X can be described as

f (x1, . . . , xN ) = c (F1 (x1) , . . . , FN (xN ))

N∏
i=1

fi (xi) (9)

where fi(xi) is the marginal distribution of xi and c(·) is the density function of the copula.
Specifically, we choose the Student t-copula that can handle tail dependency. Thus, the
dependence structure of the margins is assumed to follow a Student t-copula with condi-
tional correlation Rt and constant shape parameter. For technical details on the Student
t-copula, see Demarta and McNeil (2005).
Hence, the joint density function of rt is defined as a combination of the copula density

and density of the i.i.d. residual zt as

f
(
rt|μt , ht , Rt , η

)
= cSt (u1·t , . . . , uN ·t|Rt , η)

N∏
i=1

1√
hi·t

fi·t (zi·t|θi)
(10)

where ui·t = Fi(ri·t|μi·t , hi·t , θi), θi is a parameter set including the ARMA–GARCH
parameters in (3) and (4) and distributional parameters of zi, cSt (·) is the Student t-copula
density function, and η is the shape parameter of the Student t-copula. In the DCC setting,
we assume the time-dependent structure of Rt as described in (5) and (6). The estimate
of Rt , therefore, collapses to non-negative scalars ai and bj as defined in (5).
The log-likelihood function LL (θ |rt) is built by using (10), which can be separated into

the copula part with the DCC parameters (a, b) and marginal distribution part. The two
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parts of the log-likelihood function can be maximized independently: first, the individual
distributional parameter set θi is estimated, followed by the DCC parameters (a, b). The
model selection is based on the AIC. This two-stage estimation procedure is especially
convenient when the number of assets becomes large. For more technical details about
the two-stage maximum likelihood estimation, see Patton (2006) and Joe (2005).

Estimation results of the DCC

Table 1 shows the estimation results for the DCC parameters of the two sector-based
sample portfolios. The DCC–GARCH model is fitted independently to each portfolio in
order to investigate the correlation dynamics in these sectors. Note that these sample
portfolios are created representing typical manufacturing and service sectors, which may
have different correlation dynamics with different DCC parameters. It is also possible to
create much larger sample portfolios that cover multiple sectors, although model fitting
can be harder.
The selected DCC order is (1, 2) for both portfolios. The choice of DCC order depends

on the AIC as mentioned above. The larger value of b1 + b2 means that the dynamic
correlation matrix Rt is more dependent on its past values than previous shocks, since
the parameter bj represents the degree of persistence of the correlation. The positive-
definiteness condition shown in (7) is confirmed to be satisfied. For the ARMA–GARCH
model of individual returns defined in (3) and (4), the distribution of zi is mostly Student
t. Other details of the estimation results are omitted because of space limitations.

Eigenvalue analysis of the dynamic correlation
Two vectors of the dynamic correlation matrix Rt are successfully estimated by fitting the
DCC–GARCHmodel to the stock returns of the two sectors. In addition, we also calculate
two vectors of dynamic correlation matrix Rm

t from the sample returns by Pearson’s linear
correlation using the moving window method with a 200 trading day window. We then
conduct an inter-temporal analysis of the dynamic correlation of stock returns by using
Rt and Rm

t .

Intensity and direction of the correlation matrix

It is difficult to observe the time series trend of Rt as it is in matrix form. We hence
need the dimension reduction of Rt . In this regard, the eigendecomposition of a matrix is
useful; the matrix can then be represented in terms of its eigenvalues and eigenvectors:

Rt = U tΛtU−1
t (11)

where U t is the N × N matrix whose i-th column is the eigenvector ui·t of Rt , while
Λt is the diagonal matrix whose diagonal elements are the corresponding eigenvalues as

Table 1 DCC estimation result

Sector m, n a1 b1 b2 b1+b2 η

Transportation 1, 2 0.0061 0.4161 0.4493 0.8654 30.4160
equipment (0.0007) (0.0808) (0.0805) (1.2898)

Banking 1, 2 0.0094 0.3940 0.4461 0.8402 21.5952
(0.0009) (0.0686) (0.0695) (1.0033)

Note: The DCC order (m, n) and parameters a1, b1, and b2 are defined in (5). η is the shape parameter of the Student t-copula in
(10). The R (http://cran.r-project.org/) package “rmgarch” (Ghalanos 2014) is used for the parameter estimation

http://cran.r-project.org/
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λi·t = Λii·t . We assume that λi·t and ui·t are sorted in descending order: λ1·t is the largest
eigenvalue and u1·t is the eigenvector that corresponds to λ1·t .
Geometrically, an eigenvector points in the direction of the corresponding eigenvalue;

the eigenvalue represents the scaling factor alongside the direction. In the context of
the correlation matrix, the eigenvalue can be regarded as the correlation intensity of
the correlation matrix, while the eigenvector shows the multidimensional direction. It
is, therefore, possible to summarize the information contained in the correlation matrix
Rt by using Λt as an intensity measure and U t as a direction measure. Only the largest
eigenvalue λ1·t and associated eigenvector q1·t might be sufficiently meaningful when
the group comprises homogeneous variables. Otherwise, in the case of networks with
heterogeneous subgroups or communities, the remaining ones may be sufficiently rel-
evant to play important roles in the networks. The point here is on which eigenvalues
and associated eigenvectors to focus in order to monitor the inter-temporal changes
in Rt .
In this regard, random matrix theory can help determine which eigenvalue and eigen-

vector should be selected for monitoring. The limiting distribution of the largest eigen-
value of a randomized return correlation matrix with the same size as Rt is obtained
as the Tracy–Widom distribution (Johnstone 2001); therefore, some high percentile
value of the distribution can be used as the threshold above which the eigenvalue of a
correlation matrix is meaningful. For the level of percentile value, we adopt the 99th per-
centile. Another well-known distribution, theMarc̆enko–Pastur distribution, suggests the
boundary of the distribution of eigenvalues. The 99th percentile of the Tracy–Widom
distribution is larger than that of the Marc̆enko–Pastur distribution. For more mathemat-
ical details on eigenvalues and the Tracy–Widom andMarc̆enko–Pastur distributions, see
Johnstone (2001) and Tracy and Widom (1994, 1996, 2009).

Cosine distance measure of the eigenvectors

While the eigenvalue is a scalar value that can be directly compared at different times, we
need somemeasure to compare eigenvectors. In this regard, we use a cosine distancemea-
sure that defines the distance between two numerical vectors. First, the cosine similarity
between vector x and y is defined as

cos(θ) = x · y
‖x‖ ∥∥y∥∥ =

∑
xiyi√∑
x2i

∑
y2i

(12)

Then, the cosine distance measure is defined as

γ (x, y) = 1 − cos(θ) (13)

As the benchmark of the comparison, we use the eigenvector ūi of the unconditional
correlation matrix R̄ calculated over the whole observation period. The cosine distance
is denoted as γ (ui·t , ūi). Similarly, the eigenvector ūmi of R̄m is used as the benchmark
to measure the cosine distance γm(umi·t , ū

m
i ) for the moving window method. The cosine

distance is expected to capture significant changes in the direction of the eigenvector
compared with that of the benchmark eigenvector.



Isogai Applied Network Science  (2016) 1:7 Page 10 of 24

The cosine distance is normalized by its standard deviation, since it takes a very small
number,

νi·t = γ (ui·t , ūi)
std(γi)

(14)

where νi·t is the rescaled cosine distance between the i-th eigenvector qi·t of Rt and the i-
th eigenvector ūi·t of R̄t , while std(γi) is the sample standard deviation of γ (ui·t , ūi) over
the observation period. νi·t is calculated at every point in time t during the observation
period. νmi·t is defined similarly for the moving window method.
The normalized cosine distance νi·t , especially ν1·t , is useful to detect significant

changes in the structure of a correlation matrix. In the context of network analysis, any
relative change in link weights between nodes can be detected by the cosine distance ν1·t ,
while a systematic increase in the correlation over the whole network is captured by the
correlation intensity λ1·t . Such a structural change in the correlation network can be local
or global.

Comparison between the dynamic correlation andmoving window

The important variables for the comparison between the model-based dynamic corre-
lation and moving window are as follows: λ1·t as the largest eigenvalue of the dynamic
correlation Rt ; λm1·t as the largest eigenvalue of the correlation matrix Rm

t ; ν1·t as the cosine
distance of the eigenvector u1·t of Rt ; and νm1·t as the cosine distance of the eigenvector um1·t
of Rm

t .
Table 2 shows the result of the eigendecomposition of Rt and Rm

t of the transporta-
tion equipment and banking sectors. The range of eigenvalues during the observation
period for the largest and the second largest, λi=1,2·t and λmi=1,2·t , are shown. The 99th per-
centile values of the Tracy–Widom distribution as well as the Marc̆enko–Pastur are also
calculated.
The range of the largest eigenvalues, λ1·t and λm1·t , during the observation period is

far above the 99th percentile of the Tracy–Widom distribution in either sector. For the
second largest eigenvalues, λ2·t and λm2·t , the maximum value is higher than the 99th per-
centile point, whereas the minimum value is lower than that point. These eigenvalues
appear to have only a limited impact compared with the dominant impact of the largest
ones; however, some community structure may exist in these two sectors. A hierarchi-
cal group structure exists in many correlation networks of financial returns ((Mantegna

Table 2 Eigenvalues of the dynamic correlation matrix

Eigenvalue 99th percentile

Largest Second largest TW MP

(min - max) (min - max)

Transportation equipment

Dynamic (λ1·t , λ2·t ) 24.28 - 27.17 0.97 - 1.40
1.38 1.33

Moving Average (λm1·t , λm2·t ) 19.97 - 31.39 1.32 - 2.67

Banking

Dynamic (λ1·t , λ2·t ) 31.56 - 35.20 1.25 - 1.73
1.38 1.33

Moving Average (λm1·t , λm2·t ) 25.89 - 39.60 0.84 - 2.70

Note: The eigenvalues of Rt are calculated on every trading day during the observation period. Min and max represent the
minimum and maximum of the vector of the corresponding eigenvalues, respectively. TW represents the Tracy–Widom
distribution; MP represents the Marc̆enko–Pastur distribution



Isogai Applied Network Science  (2016) 1:7 Page 11 of 24

1999; Tumminello et al. 2010), and (Mitrović and Tadić 2009)). Here, we follow only the
largest eigenvalues and associated eigenvectors, considering the clear difference in the
eigenvalues between the largest and the second largest.
Another finding is that the range of eigenvalues λmi=1,2·t is wider than λi=1,2·t . This find-

ing means that Rm
t tends to take larger eigenvalues and have greater fluctuation than Rt ,

probably because of the volatility fluctuations of returns as mentioned earlier. Thus, Rm
t

can have a higher risk of spurious correlation problem.
Table 3 shows the range of the cosine distance ν1·t and νm1·t . ν1·t takes a much wider

range compared with νm1·t . The dynamic correlation is unaffected by volatility fluctuations;
therefore, a large value of ν1·t can provide reliable hints to detect the timing of a corre-
lation change more efficiently than νm1·t . This is another advantage of the model-based
dynamic correlation matrix.

Changes in the largest eigenvalue of the dynamic correlation

Figure 2 shows the time series trend of the largest eigenvalues, λ1·t and λm1·t , which
represent the correlation intensities of the correlation matrices, Rt and Rm

t , respectively.
An important observation is that λm1·t (the dotted line) stays at a higher level once a large

increase is observed. As expected, λ1·t (the solid line) appears to be responsive, while λm1·t
is significantly affected by its past increases. For example, significant increases in λ1·t are
observed in 2008 (the Lehman collapse) and 2011 (the Great Earthquake) for both sectors.
In both cases, the solid line falls after the events, while the dotted line tends to lag behind
the movement of the solid line. Such a large increase has a persistent impact on the future
level of λm1·t as long as it is included in the observation period. In this case, the window
size is 200 trading days. The lagging effect accumulates when multiple increase events
occur; then, the correlation intensity appears to increase significantly, whereas the actual
intensity may have already decreased, as indicated by λ1·t .
The dynamic correlation matrix Rt tells us that a sharp increase in the correlation

intensity is observed after the market disturbances; however, such an increase tends to
be contained quickly. Conversely, Rm

t indicates that a higher correlation intensity is per-
sistent, longer than the actual. Thus, the pattern of changes in the correlation intensity
differs between Rt and Rm

t .
If we build a network adjacency matrix from Rm

t , the degree and timing of changes in
the correlation intensity will not be correctly identified. Hence, the analysis of dynamic
networks can be significantly distorted. This limitation is a major drawback to using the
moving window-type calculation method of the correlation matrix.

Table 3 Cosine distance of the largest eigenvector

Cosine distance

(min - max)

Transportation equipment

Dynamic (ν1·t) 0.00 - 12.99

Moving Average (νm1·t) 0.47 - 5.15

Banking

Dynamic (ν1·t) 0.00 - 21.66

Moving Average (νm1·t) 0.34 - 4.90

Note: Cosine distance ν is defined in (14)
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Fig. 2 Changes in the Largest Eigenvalues of the Dynamic Correlation. Note: The solid line represents the
largest eigenvalue λ1·t of the dynamic correlation matrix Rt estimated by the DCC–GARCH model in the left
scale; the dotted line represents the largest eigenvalue λm1·t of the moving window-based correlation matrix
Rm
t in the right scale

Changes in the cosine distance measure of the dynamic correlation

Figure 3 shows the time series trend of the cosine distance, ν1·t (the solid line) and νm1·t
(the dotted line), which indicate changes in the direction of the correlation matrices Rt
and Rm

t , respectively. Note that changes in the cosine distance correspond to changes in
the relationship between individual asset returns.

ν1·t appears to distinguish the possible timing of a correlation change. Change point
detection is easier to pick up the sharp hikes of the solid line. On the contrary, νm1·t has a
similar problem to the correlation intensity in that it seems to be affected by past events.
The dotted line suggests the same timing of a change as the solid line indicates in some
cases; however, it is difficult to identify the exact start and end points just from the dotted
line.
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Fig. 3 Changes in the Cosine Distance of the Dynamic Correlation. Note: The solid line represents the cosine
distance ν1·t of the dynamic correlation Rt in the left scale; the dotted line represents the cosine distance νm1·t
of the moving window correlation matrix Rm

t in the right scale

In Fig. 3a (transportation equipment), the solid line clearly shows the sharp increases
after the Lehman collapse (2008) and the Great Earthquake (2011). This means that not
only the sharp increases in intensity shown by Fig. 2a but also the significant changes in
direction occurred at that time in the transportation equipment sector. This sector has
two subgroups: large automobile companies and medium-sized parts companies. In the
crisis periods, the stock prices of the former group responded more than those of the
latter group. This difference between the two groups caused temporal correlation changes
in direction.
In Fig. 3b (banking), the solid line clearly shows the sharp increases in 2009 and 2010.

In Fig. 2b, the sharp increases in the correlation intensity are observed after the Lehman
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collapse and the Great Earthquake, which means systematic changes that affect the entire
banking sector. On the contrary, ν1·t responded little after those crisis events. In 2009
and 2010, significant changes in monetary policy were introduced to enhance monetary
easing in Japan. The stock prices of some regional banks responded more to these mone-
tary policy changes, since such regional banks have more financial assets that are affected
by the policy change than large internationally operating banks. The differences in stock
price responses thus caused a temporal change in the cosine distance in the banking
sector.
The changes in ν1·t allow us to detect those temporal changes, although we need more

detailed analysis to explain the background of what occurred.When we conduct network-
based analysis using the estimated correlation matrix, the information available from the
cosine distance as well as the correlation intensity helps narrow the observation period
efficiently to enhance the detail of the analysis. The key point is to use the dynamic cor-
relation Rt , since the moving window method has serious drawbacks that may cause the
misleading selection of the target period.

Analysis of dynamic network changes
The largest eigenvalue and normalized cosine distance calculated from the correspond-
ing eigenvector proved to be reliable measures to trace the dynamic changes of the
correlation matrix. We thus build a dynamic correlation network from the estimated cor-
relation matrices to study the possible topological changes in the network. We use a
simple unsigned nondecreasing adjacency conversion based on the estimated correlation
matrix Rt :

Aii,t = 0, Aij(i�=j),t =
{

|cor (
xi, xj

)
t | if cor

(
xi, xj

)
t > 0

0 if cor
(
xi, xj

)
t � 0

(15)

whereAij,t is the (i, j)th entry of the conditional weighted adjacencymatrixAt ; cor
(
xi, xj

)
t

is the (i, j)th entry of the dynamic correlation matrix Rt . Note that an edge has connection
weight in a weighted network, while an edge takes only 1 or 0 value (connected or not)
in an unweighted network. The diagonal elements of Aij,t is 0, since any self-edge is not
considered in the correlation network.
An undirected weighted network only with edges positively weighted is built by (15).

We are mainly interested in the co-movement of stock prices; therefore, negative correla-
tion information is not retained. Moreover, no thresholding is implemented for a positive
correlation to keep as much information as possible for calculating the topological mea-
sures; we also aim to avoid technical difficulties to set the threshold level, which is beyond
the scope of our study.
Handling a negative correlation when it exists can be difficult. We assume that it is suf-

ficient to focus on the positive correlation of returns; however, a negative correlation may
have some meaning when discussing the diversification of investment. Hence, the way in
which we handle negative correlations depends on the context of the analysis and algo-
rithm to be applied. For stock return data, a negative correlation is far less frequently
observed than a positive correlation. Indeed, no negative pairwise correlation exists in
either sector in our dataset during the observation period; thus, the weighted adjacency
matrix is basically the same as the correlationmatrix with regard to the non-diagonal part.
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Further, there are many other types of adjacency conversions including the power func-
tion such as Aij,t = |cor (

xi, xj
)
t |β . We have not tested any other conversion functions;

this is an important caveat to our analysis.
For every conditional network adjacency matrix, we calculate the following three topo-

logical measures. First, network density D(A) is defined as the mean of the off-diagonal
elements of weighted adjacency matrix A:

D(A) =
∑

i
∑

j>i Aij

n (n − 1) /2
= mean (k)

n − 1
≈ mean (k)

n
(16)

where k is a vector of the node degree (connectivity), mean(·) is the arithmetic mean
function, and n is the number of nodes. The node degree ki is defined as the sum of the
row or column of an adjacency matrix:

ki =
∑
j �=i

Aij (17)

The connectivity ki equals the sum of connection weights between node i and the
other nodes. Network density D(A) measures the overall connection (correlation) among
nodes. A density close to 1 indicates that all nodes are strongly correlated with each other.
We also calculate network centralizationC(A) and heterogeneityH(A), which are defined
as below:

C(A) = n
n − 2

(
max (k)

n − 1
− mean (k)

n − 1

)

= n
n − 2

(
max (k)

n − 1
− D(A)

)
≈ max (k)

n
− D(A)

(18)

H(A) =
√
var (k)

mean (k)
=

√√√√ n
∑

i k2i(∑
i ki

)2 − 1 (19)

Centralization C(A) is 1 when one node has fully connected edges with all other nodes
that are not connected with each other. It is 0 for a network where each node has the same
connectivity. Network heterogeneity H(A) measures the variation in connectivity across
nodes. It is defined as the coefficient of variation of the connectivity distribution.
These three topological measures are calculated for the conditional adjacent matrixAij,t

for every trading day during the observation period. For more details on these topological
measures, see Horvath (2011).

Dynamic changes in network topological properties

Table 4 summarizes the network properties of the two sectors. The density measures the
overall relationship among individual stocks in a correlation network. The density of the

Table 4 Network properties of the correlation networks by sector

Transportation equipment Banking

Density Centralization Heterogeneity Density Centralization Heterogeneity

D(A) C(A) H(A) D(A) C(A) H(A)

Minimum 0.468 0.102 0.110 0.618 0.059 0.078

Mean 0.481 0.117 0.126 0.641 0.069 0.088

Maximum 0.528 0.121 0.134 0.694 0.076 0.101

S.d. 0.006 0.002 0.003 0.007 0.002 0.002

Note: Density D(A), centralization C(A), and heterogeneity H(A) are calculated by (16), (18), and (19), respectively. The minimum,
maximum, and mean are calculated from the time series of the three measures. S.d. denotes standard deviation
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banking network is higher than that of the transportation equipment network. It means
that the nodes of the banking sector network are more tightly connected with each other
than those of the transportation equipment sector, while almost every node is connected
(correlated) with the rest of nodes in both correlation networks.
The levels of centralization are very low in both sectors. When centralization is close

to 0, it means that many of the nodes in a network are almost equally connected; no one
particular node is located at the center of the network. The low values of heterogeneity
in both sectors mean that these networks seem to be highly homogeneous, since hetero-
geneity indicates the variation in connectivity across nodes. Banking is less centralized
than transportation equipment, while transportation equipment is more heterogeneous
than banking.
Figures 4 and 5 depict how these three topological measures of the two networks

changed during the observation period. Two or three stress events were selected based on
the timing when the largest eigenvalue or cosine distance recorded large values, as shown
in Figs. 2 and 3. The trading days of these stress events are listed in Table 5. The network
topological properties are analyzed in detail at these selected timings.
Figure 4 depicts the development of the topological measures of the transportation

equipment network. Figure 4a illustrates that the density of the network increased sig-
nificantly during the two stress events, namely the Lehman collapse (marked by A)
and the Great Earthquake (marked by B), while it remained at similar levels in the
other periods. The increase is larger when the Great Earthquake occurred than dur-
ing the Lehman collapse. These changes in network density are consistent with the
increases in the largest eigenvalues shown by Fig. 2a. Note that the volatility factor
is properly controlled for by GARCH modeling; therefore, such higher densities in
the correlation network reveal that the connectivity between nodes intensifies when a
stress event occurs. In the context of the factor contribution to stock prices, individual
(idiosyncratic) factors may be less influential, whereas the systematic factor contributes
more.
On the contrary, centralization exhibits a limited range of fluctuation during the obser-

vation period; it remained at around the same level throughout the period, as shown
in Fig. 4b. Even when the two stress events occurred, no significant change in central-
ization was observed. This low level of centralization means that the network has no
centralized structure, suggesting that every node in the network is affected significantly
by unobservable common factors.
Heterogeneity sharply dropped during the two stress events, as shown in Fig. 4c. When

these stress events occurred, the variance in the correlation decreased because of a break-
down in the temporal correlation; the mean of the correlation increased as indicated by
the higher density of the network. Such changes contributed to lower heterogeneity, as
defined in (19). Intuitively, the network becomes more homogeneous with smaller local
differences in the network structure.
Figure 5 depicts the development of the topological measures of the banking net-

work. Figure 5a shows that the density increased significantly when the two stress events
(marked by A and B) occurred, similar to in the transportation equipment network.
Another significant increase is identified when the monetary policy change occurred in
2009 (marked by C), which is particular to the banking sector. These increases are also
consistent with the changes in the largest eigenvalues shown in Fig. 2b.
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Fig. 4 Network Properties (Transportation Equipment). Note: Density, centralization, and heterogeneity are
calculated by (16), (18), and (19), respectively. A and B correspond to the stress events listed in Table 5
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Fig. 5 Network Properties (Banking). Note: Density, centralization, and heterogeneity are calculated by (16),
(18), and (19), respectively. A, B, and C corresponds to the stress events listed in Table 5
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Table 5 Stress events for the dynamic comparative analysis

Trading date Event Transportation Banking

equipment

15/10/2008 Lehman collapse A A

1/12/2009 Monetary policy change - C

15/3/2011 Great Earthquake B B

Note: The Lehman collapse and Great Earthquake are selected as global (market-wide) stress events that increased the volatility
of many stocks significantly; the monetary policy change event is selected as the banking sector-specific ones identified by the
clear hike in the cosine distance shown in Fig. 2b. The marks A, B, and C are identifiers of events referred to in the figures hereafter.

Centralization remained within a limited range, as shown by Fig. 5b, again as in the
transportation equipment network. Centralization, however, is much lower than that in
the transportation equipment network, suggesting that the nodes are more equally con-
nected. The banking network comprises a small number of large banks and many smaller
regional banks; the lower centralization of the network may thus reflect the tight connec-
tion between regional banks. Centralization dropped during the Great Earthquake, while
no significant change was observed when the Lehman collapse occurred.
Figure 5c shows that heterogeneity dropped significantly during the two stress events,

as observed in the transportation equipment network. Further, heterogeneity increased
sharply in 2009 (marked by C), as is clearly identified by the cosine distance measure
shown in Fig. 3b. Similar hikes in heterogeneity were observed in 2011 and 2012. These
hikes in heterogeneity are related to market events that caused local correlation increases
in the banking sector; no similar events were observed in the transportation equipment
sector at that time.
In summary, the common observation of the changes in network properties is that

density increased significantly when the stress events occurred together with the lower
level of heterogeneity. Changes in centralization seem to be less evident compared with
the other two topological measures. Moreover, the two networks remained stable in
non-stressed periods, although some occasional changes in network properties did occur.
The changes in the largest eigenvalues are consistent with the changes in network den-

sity in both sectors. The cosine distance measure works fine to detect changes in the
network properties such as centralization and heterogeneity during stress periods. It also
detects local changes in the local network structure, suggesting that some irregular event
is occurring. The analysis shows that the combined usage of the two eigenvector-based
measures can track dynamic network changes in a compact way.

Comparison between static and dynamic correlation networks

In the previous section, the dynamic topological changes of the two networks were ana-
lyzed. In this section, we compare the static network representation (as a benchmark
network) based on the whole observation period with the snapshot of the dynamic net-
work at some stress event (at time s) to examine if there are any significant differences.
Figures 6 and 7 show the static and dynamic networks, representing the static adjacency
matrix Āij and the conditional one Aij|t=s, respectively. For stress event selection, the tim-
ing when the cosine distance significantly increased allows us to detect any global or local
change in the network. We select just one stress event for each sector as a typical example
for the comparative analysis.
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Fig. 6 Transportation Equipment Network. Note: The nodes are sorted by descending order of market
capitalization at the end of the observation period: node 1 has the largest market capitalization. The node
positions of the two networks are the same. Only the edges with a weight larger than the 75th percentile of
the edge weight distribution are displayed. Event B of the dynamic network is defined in Table 5

The correlation network is similar to a complete graph with almost every node con-
nected; therefore, only the upper 25 percent of all edges with a higher level of edge weight
are displayed to observe the highly connected part of the network. The nodes are located
in the same positions in the static and dynamic networks. The node IDs are sorted in
descending order of market capitalization (analogous to corporate size).
Interestingly, the static networks of transportation equipment and banking appear to

differ greatly. This means that the network structures of the two sectors are fundamen-
tally different, at least when evaluated by using the corporate size factor. The network of
transportation equipment appears to be densely connected with the nodes ranked higher
in terms of capitalization (smaller node IDs), as shown in Fig. 6a. Many are global car
manufacturers, which reside in the center position of the network and are more densely
connected with each other.

Fig. 7 Banking Network. Note: The nodes are sorted by descending order of market capitalization at the end
of the observation period: node 1 has the largest market capitalization. The node positions of the two
networks are the same. Only the edges with a weight larger than the 75th percentile of the edge weight
distribution are displayed. Event C of the dynamic network is defined in Table 5
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On the contrary, the banking network is densely connected around the nodes with mid-
dle ranks of capitalization. Specifically, the largest three nodes (globally operating banks)
are not connected with other medium and lower ranked nodes. The network shown
in Fig. 7a basically comprises regional banks, which seem to form a tightly connected
subnetwork. This observation is consistent with the findings of our previous research
(Isogai 2014).
This comparison of the static and dynamic networks in each sector reveals some differ-

ences between these two types of networks, even though they appear to be largely similar.
This finding means that the network structures are almost stable in both sectors, but that
considerable changes are observed occasionally.
In transportation equipment, the network appears to be densely connected with the

group of the largest nodes as mentioned above. Figure 6b shows the snapshot of the
dynamic network captured at the Great Earthquake (event B). The difference between the
two networks is that the edges are more widely distributed between nodes in the dynamic
network. Further, some lower ranked nodes have more edges in the dynamic network;
such wider distribution of edges is consistent with its decreased heterogeneity, as shown
in Fig. 4c.
In banking, the snapshot of the dynamic network is captured at event C, when the

largest cosine distance value was observed in Fig. 3b. Large globally operating banks show
little correlation with smaller regional banks. Thus, the network is densely connected
among medium ranked nodes, while sparsely connected with higher and lower ranked
nodes. In the dynamic network, some nodes have more edges, especially in lower ranked
nodes (smaller capitalization) than in the static network; moreover, heterogeneity and
centralization increased significantly when the event occurred, as shown in Fig. 5b and c.
This finding means that connections between specific nodes are intensified temporarily
by market events, as mentioned earlier.
The above two examples show that a large cosine distance can detect different types of

changes in network structure. Heterogeneity and centralization may respond differently
to the large increase in the cosine distance; therefore, a more detailed analysis of network
properties is required once the timing is identified by initial screening with the cosine dis-
tance. Further, the detection of temporal and local changes is difficult by only comparing
the static and dynamic network representation, since the change is not necessarily clearly
revealed. The cosine distance measure is thus helpful for selecting those periods in which
to find any subtle differences.

Discussion
First, the dynamic correlation method can provide an efficient framework for creating
a time series of the correlation matrices. The presented case study based on Japanese
stock price data reveals that the model-based dynamic correlation matrix is useful for
detecting and analyzing inter-temporal changes in a correlation matrix efficiently. The
dynamic correlation estimation by using the DCC–GARCH model has many advantages
compared with the widely used moving window-based calculation method. Specifically,
the more responsive feature of the DCC-based dynamic correlation is useful and reli-
able. Further, it overcomes the problem of the moving window-based correlation that the
effect of past large shocks persists longer and distorts the current correlation. Themoving
window-based method has a higher risk of spurious correlations because of the distortion



Isogai Applied Network Science  (2016) 1:7 Page 22 of 24

effect by volatility fluctuations, which is properly controlled for under the DCC–GARCH
model. Further, the DCC–GARCHmodel has a rigorous theoretical background, in which
the positive-definiteness condition is always ensured. On the contrary, the DCC-based
dynamic correlation also has some shortcomings including its complicated estimation
process. For example, we tested a small portfolio of just 50 stocks; however, the model
fitting process would become challenging if the number of assets increased further still.
When building a dynamic correlation network of asset returns, the most important

aspect is estimating the correlation matrix, since all the information about the network
is stored as an adjacency matrix derived from the correlation matrix. We also need to
create a time series of adjacency matrices to follow the evolution of the asset correla-
tion network. The data size, therefore, would be much larger than the static one. What is
important here is the data dimensionality reduction, enabling a compact expression of the
network without losing any important information about network changes for a detailed
comparative analysis of the network. If we can identify the exact timing of an important
change to be focused on automatically (change point detection), it is possible to com-
press the adjacency matrix data including only the interested observation periods. Hence,
efficient data compression alongside the time axis becomes available. We can then apply
more complicatedmethods to the reduced network data to retrievemore knowledge from
the same dataset.
Another point is the separation of the correlation intensity and correlation distance

to analyze changes in a correlation matrix. When we are interested in any correlation
change, a change in intensity or direction has a different meaning from the network per-
spective. A change in intensity has a systematic impact on the entire network; all nodes are
affected unanimously, whereas the linkages between them are basically the same except
for the link weight values. When we are interested in the changes in the whole network,
this type of change has an important meaning. A change in direction indicates that some-
thing new or irregular has occurred in the network structure. The change covers just one
part of the network or the entire network. Looking at the changes at an individual data
point level may provide more details about them. It is therefore crucial to follow the two
types of different changes (i.e., intensity and direction) to carry out an efficient dynamic
network analysis. Our eigendecomposition approach for the separation of intensity and
direction is proven to work well by the case studies in this regard. Nevertheless, a more
advanced topic regarding the eigendecomposition, namely the stability of the decom-
position, needs to be examined from the viewpoint of the inherent noise problems in
correlation matrices, as discussed in Tumminello et al. (2010).
The two dynamic networks converted from the correlation matrices are analyzed by

examining the changes in network topologies. The higher densities and lower hetero-
geneity of the network are commonly observed during crisis periods, while centralization
is less responsive compared with these two measures. The combination of higher den-
sity and lower heterogeneity indicates the fragile structure of a network, which can lead
to a larger risk of stock portfolios. The analysis of topological measures ensures that the
network became riskier when stress events occurred.
While such changes in the network structure are outstanding, they did not last long

in any stress period; the network seems to be stable and retain a similar structure over
the longer term. This means that the correlation between the stocks in the two sectors
is robust with respect to time, as shown by previous research (Onnela et al. 2003a). The
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network may switch between the two regimes of crisis and non-crisis situations. It is thus
meaningful to extend the analysis to the other sectors to confirm if the network structures
remain stable. A more detailed analysis with other topological measures would also be
meaningful and informative.
It is confirmed that the largest eigenvalue and cosine distance summarize the topo-

logical measures of density, centralization, and heterogeneity well. Network density is
almost parallel to the largest eigenvalues. Moreover, the cosine distance measure summa-
rizes the local and global structural changes in the network. The cosine distance measure
thus appears to be useful for the initial screening of the dynamic changes of the network
topology. We can delve into more details once we have identified the timing of any pos-
sible changes in the network. Indeed, monitoring burden would be greatly reduced when
applied to risk monitoring in stock markets.
Many other types of correlation networks including MST can be built from the same

estimated correlation matrix by applying more complicated adjacency conversion proce-
dures. Other types of correlation measures including the partial correlation can also be
used to build a correlation network. Further analysis is thus needed to confirm if the same
result is obtained under different types of network building approaches.

Conclusion
In this study, we propose a novel approach to building a dynamic correlation network of
fat-tailed asset returns by using the DCC–GARCHmodel, which can control for volatility
fluctuations to avoid the spurious correlation problem. A model-based dynamic corre-
lation matrix is estimated by fitting the model to Japanese stock returns data on two
industries, which are then compared with another correlation matrix calculated by the
traditional moving window method. The case study shows that the dynamic correlation
method describes the dynamic changes in a more responsive way, while the correlation
calculated by the moving window method has serious distortion problems. Moreover,
temporal changes in the correlation network with higher density and lower heterogeneity
are clearly observed; the result is convincing and consistent with the findings of earlier
research works.
In future research, we will analyze the dynamic correlation network of Japanese stock

returns in more detail. Specifically, a wider coverage of inter-temporal comparative anal-
ysis of network structure is of interest. Community detection in specific industries and
shock propagation analysis during crisis periods are also important topics to be covered.
Further, the change point detection and data compression technique proposed in this
paper will be examined more precisely. Finally, the research framework of the dynamic
correlation estimation and analysis can be applied to other financial and non-financial
networks, which have high levels of volatility fluctuations.
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