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Abstract

The brain is a complex system consisting of regions dedicated to different brain
functions, and higher cognitive functions are realized via information flow between
distant brain areas communicating with each other. As such, it is natural to shift towards
brain network analysis from mapping of brain functions, for deeper understanding of the
brain system. The graph theoretical network metrics measure global or local properties of
network topology, but they do not provide any information about the intermediate scale
of the network. Community structure analysis is a useful approach to investigate the
mesoscale organization of brain network. However, the community detection schemes
are yet to be established.
In this paper, we propose a method to compare different community detection schemes
for neuroimaging data from multiple subjects. To the best of our knowledge, our method
is the first attempt to evaluate community detection from multiple-subject data without
“ground truth” community and any assumptions about the original network features.
To show its feasibility, three community detection algorithms and three different brain
atlases were examined using resting-state fMRI functional networks. As it is crucial to
find a single group-based community structure as a representative for a group of
subjects to allow discussion about brain areas and connections in different conditions
on common ground, a number of community detection schemes based on different
approaches have been proposed. A non-parametric permutation test on similarity
between group-based community structures and individual community structures was
used to determine which algorithm or atlas provided the best representative structure
of the group. The Normalized Mutual Information (NMI) was computed to measure the
similarity between the community structures. We also discuss further issues on
community detection using the proposed method.

Keywords: Brain network, Community detection, “Ground truth”, Permutation test,
Normalized Mutual Information (NMI), Multiple-subject data, Functional Magnetic
Resonance Imaging (fMRI), Brain atlases
Background
Recent development in neuroimaging devices such as magnetic resonance imaging (MRI)

and electroencephalography (EEG) enable us to record human brain activity with high

temporal and spatial resolutions. As the brain is known as a complex network consisting

of distributed brain areas dedicated to different functions, it is natural to shift towards

brain network analysis from brain mapping to understand the functional integration in
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the brain (Friston 2011). Additionally, the development in computational methods has

facilitated studies on brain networks using big data. Brain connectome is a promising ap-

proach, employing complex network analysis based on graph theory for investigating

topological architecture of the brain network (Sporns 2013).

For better understanding of the relationship between brain regions and their topo-

logical roles in the brain network, network analysis has been applied to structural and

functional brain networks derived from neuroimaging data to quantify the topological

characteristics of the network using graph theoretical network metrics such as cluster-

ing coefficient, shortest path length, small-worldness, and node centrality (Rubinov and

Sporns 2010). Although these metrics provide useful information regarding global and

local properties of the brain network, they do not provide any information about the

intermediate scale of the network. As such, community detection techniques have been

used to investigate the mesoscale network organization (Meunier et al. 2010).

The community structure analysis is one of the most important field of complex net-

works as networks in nature often show hierarchical, modular organization (Fortunato

2010; Fortunato and Castellano 2012; A. Lancichinetti and Fortunato 2009; M. E. J.

Newman 2012). Communities or clusters are usually regarded as subgraphs of a net-

work, with dense connections within the subgraphs, that are weakly linked each other.

To identify community structure of networks, a variety of community detection algo-

rithms have been proposed, and have been applied to various networks, e.g., metabolic

networks (Guimera and Nunes Amaral 2005), citation networks (Rosvall and Bergstrom

2008), co-authorship network (Luzar et al. 2014), and Twitter network (Beguerisse-Diaz

et al. 2014). However, there are no established schemes to perform the community

structure analysis on the neuroimaging data. For the neuroimaging data, it is of great

importance to find a representative, group-based community structure for a group of

subject to have discussions about brain states in different conditions on common

ground. Although a number of approaches for finding a consensus cluster have been

proposed (Dong et al. 2014; Kumar et al. 2011; Ozdemir et al. 2015; Strehl and Ghosh 2003;

Tang et al. 2009), not only the community detection algorithms, but also pre-processing of

data and methods for construction of networks influence the results. Additionally, although

community detection algorithms are usually evaluated by comparing detected communities

with “ground truth” communities, which are often provided independently of topological

properties of networks as node metadata (Hric et al. 2014), such “ground truth” community

is unknown or is no use for studies on neuroimaging data. Rather than comparing the

obtained community with a priori metadata communities, it would be more important to

identify a common group-based community structure representative of individual struc-

tures. Furthermore, community detection algorithms identify community structure, which

are substantially different from metadata groups classified with non-topological features of

nodes, particularly for large networks (Hric et al. 2014). As such, comparison methods for

community detection schemes independent of “ground truth” community would be

required to establish the scheme for community structure analysis on neuroimaging data.

In this study, we propose a method to compare different community structure ana-

lysis approaches for multiple-subject data in terms of the agreement of a group-based

community structure with individual community structures (de Souza et al. 2015). In

the proposed method, a non-parametric permutation test is used to examine which

community structure shows a greater agreement with individual structures. The group-
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based community structure is compared with each individual community structure,

and the number of subjects showing greater similarity with the group-based commu-

nity is examined, instead of averaged values, which has been used for finding the best

partition of networks (Strehl and Ghosh 2003) or selecting a representative among indi-

vidual structures (Meunier et al. 2009b). To quantify similarity between community

structures, Normalized Mutual Information (NMI) (Fortunato 2010; Kuncheva and

Hadjitodorov 2004) is computed for every pair of the group-based community and in-

dividual communities. A lot of measures for comparing different community struc-

tures other than NMI have been proposed (Fortunato 2010; Lancichinetti et al. 2009;

Meilă 2007), and can be used instead of NMI, depending on the presumptions about

the networks and the communities.

To show the feasibility of the method for comparing different community detection

approaches, three different community detection algorithms for multiple subjects (i.e.,

the “virtual-typical-subject” (VTS), the “individual structure” (IS) and the “group ana-

lysis” (GA) approaches are compared. In the VTS or consensus averaging approach, we

suppose that group averaged data reflect a typical pattern of the data, ignoring inter-

subject variability. In the IS approach, a community detection algorithm is applied to

each individual network and a single group-based community is extracted from the ob-

tained individual communities. The problem to find a consensus cluster from multiple

known clusters without accessing the original features has been known as clustering

ensembles or multiple graph clustering, and has been studied intensively (Dong et al.

2014; Kumar et al. 2011; Strehl and Ghosh 2003; Tang et al. 2009). As it is requisite to

detect individual communities before obtaining a group-based community, the IS ap-

proach is usually computationally expensive. To overcome the problems with VTS and

IS approaches, a GA method, in which a common modularity function from multiple

subjects is optimized while searching for a common group-based community directly

from individual networks, was proposed (Y. Liu et al. 2014). As this approach does not

require obtaining individual community structures, it is computationally less expensive

than the IS approach. The Liu’s method was tested on simulated EEG networks with

predefined “ground truth” community structure, outperforming the VTS approach, and

was applied to real EEG data to use the obtained community structure for investigating

inter- and intra-cluster information flow (Liu et al. 2014). However, the method is yet

to be evaluated with actual neuroimaging data. Ozdemir and colleagues have also pro-

posed a GA-based community detection algorithm and compared it with the VTS

approach and several algorithms following the IS approach without “ground truth”, in

terms of the agreement between the common community structure and each subject’s

connectivity graph on the assumption that rank distribution of inter- and intra-cluster

connection strengths are indicative of quality of a cluster (Ozdemir et al. 2015). Differ-

ently from their approach, our comparison method examines the agreement of the

common community structure with individual community structures without any as-

sumptions about the original network features.

In addition to the algorithms for community detection, node definition in network

graphs is of great importance in community structure analysis. For graph theoretical

analysis on neuroimaging data, brain networks are usually constructed by dividing

whole brain volume into brain regions, which are defined anatomically, functionally or

based on connectivity. However, different brain atlases can be mutually inconsistent
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and produce different results (Stanley et al. 2013). Also, as the number of nodes defined

by brain atlases increases, the computational costs for community detection get more

expensive. Although voxels can also be regarded as nodes of a brain network graph, it

is often too fine for the problem under investigation and computationally too expen-

sive. To show that the proposed method can be employed to compare different brain

atlases for parcellation, three brain atlases, which are popular and easily obtainable,

were examined.

We demonstrate that the proposed method based on the permutation test and

NMI would be a powerful tool for assessing different community detection algo-

rithms and different brain atlases in terms of the agreement of a group-based com-

munity structure with individual structures, without “ground truth” metadata and

accessing the original network features. Undirected, weighted network graphs de-

rived from resting-state fMRI data were used for the community structure analysis.

We would like to emphasize that the goal of this paper is not to find the best

scheme for the community structure analysis on neuroimaging data from a vast

number of possible combinations of the methods, but to provide a tool to assess dif-

ferent schemes. Although the methods based on the popular Louvian algorithm

(Blondel et al. 2008) were used for the all of the approaches examined in this study,

the other algorithms such as Informap (Rosvall and Bergstrom 2008) or NetExplorer

(Massaro et al. 2012) have been compared for cat and macaque cortical networks

(Gronchi et al. 2014) and could outperform the Louvian method for the fMRI func-

tional networks as well.
Methods
For each subject, network graph is constructed from resting-state fMRI data. Then, a

single group-based community structure is detected from multiple-subject data and is

compared with individual community structures using Normalized Mutual Informa-

tion (NMI). The obtained NMI values are subjected to a permutation test to deter-

mine the algorithm or the atlas that provided the best representative of the group.

The processing step is depicted in Fig. 1 and its details are given in the subsequent

subsections.
Subjects

Twenty healthy volunteers (12 female, age: 23.1 ± 3.1 years) took part in the study. All

subjects gave written consent to participate in the experiment, and underwent two ses-

sions of fMRI scanning. One out of the two sessions is used and reported in this article.

Each subject was reimbursed in compensation for his effort and time. The protocol of

the study was approved by the National University of Singapore Institutional Ethical

Review Board.

All subjects were right-handed according to the Edinburg Handedness Inventory, and

had normal or corrected-to-normal vision. Pre-screening via a short telephone inter-

view was performed to ensure that they had no history of psychological and physical

disorders, no poor eyesight, and no metal implants in their body. The subjects were re-

quested to have at least eight hours of sleep for the two nights before the recording,

and not to take any caffeine or alcohol for twenty-four hours preceding the study.



Fig. 1 The processing steps of the community detection analysis. For each subject, resting-state fMRI data
were acquired (a) and parcellated into ROIs with a brain atlas (AAL, HOA or Dosenbach atlas) (b) to get
time-series data of brain activity (c). A correlation matrix was obtained from the time-series data (d) and a
network graph was represented by a connectivity matrix thresholded at a density level (e). Then, a group-
based community structure was detected with a community detection algorithm (VTS, IS or GA approach)
(f). To compare the group-based structure with individual structures, Normalized Mutual Information (NMI)
was computed for every pair of the group-based and individual communities (g). The individual communities
were detected with Louvian algorithm. The obtained NMI values were subjected to the permutation test to
determine which algorithm or atlas provided the best representative of the group
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Experimental design

In this study, we used the resting-state functional network to examine agreement of the

community structure detected with different community detection techniques or differ-

ent parcellation techniques. During the resting-state runs, a white fixation cross was

presented in the center of the screen, which was projected onto the mirror inside the

scanner. The subject was lying calmly on his back with eyes open. The subjects were

requested not to move inside the scanner as much as possible. Each run lasted for a

period of 5 min and 26 s. Thus, the total number of scans was 163 for each run.
fMRI data acquisition

All subjects were scanned with a Siemens 3 T Prisma scanner (Siemens, Erlangen,

Germany) at the A*STAR-NUS Clinical Imaging Research Centre in the medical school of

the National University of Singapore. Functional scans with echo planar imaging (EPI)

were acquired using the following parameters: number of slices = 33 (interleaved); slice

thickness = 3.5 mm; inter-slice gap = 0.70 mm; matrix size = 74 × 74; flip angle = 90°; repe-

tition time (TR) = 2000 ms; echo time = 30 ms; and in-plane resolution = 3.0 mm. A high-

resolution (1.0 × 1.0 × 1.0 mm3) sagittal T1-weighted MP-RAGE image was acquired for

registration and normalization of functional data to standard brain.
fMRI data preprocessing

Functional MRI data were preprocessed using FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/).

The functional images were motion corrected, corrected for slice timing, and normal-

ized for intensity. If head motion, which was estimated with the head motion correction

algorithm, exceeded 3 mm in translation or 3° in rotation, the motion was regarded as

http://dx.doi.org/10.1093/comnet/cnu035
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excessive, and the data were to be discarded; however, no data met these criteria. The

high-resolution anatomical T1-weighted images were registered to MNI standard space

to normalize individual data to the standard space. Average cerebrospinal fluid (CSF)

and white matter signals were regressed out with the general linear model (GLM) and

the residual signals were used for the subsequent analysis.
Network construction

To compare different community detection algorithms on multiple-subject data and

different brain atlases for parcellation, we constructed functional connectivity maps

based on correlation matrices for each subject. Firstly, time series of blood-oxygen-

level dependent (BOLD) signal were extracted from the functional data normalized to

the standard brain for the regions of interest (ROIs) defined in different brain atlases.

The automated anatomical labeling atlas (AAL-90; 90 ROIs) (Tzourio-Mazoyer et al.

2002), Harvard-Oxford probabilistic atlas (HOA; 112 ROIs) (Kennedy et al. 1998;

Makris et al. 1999) and Dosenbach atlas (160 ROIs) (Dosenbach et al. 2010) were ex-

amined. For HOA atlas, the probability threshold of 25 % was used. The extracted sig-

nals were averaged over voxels within each ROI, resulting in 90–160 sets of time-series

data, depending on the atlas. The first four volumes of each series were discarded, fol-

lowing which each signal was up-sampled to 1 Hz, band-pass filtered (0.01-0.1 Hz), and

down-sampled to 0.5 Hz.

To obtain functional connectivity strength between each node, linear correlation co-

efficients were calculated for the pre-processed fMRI signals. The correlation coeffi-

cients were obtained for all possible pairs of ROIs to construct a correlation matrix M.

The size of the matrices M was different depending on the atlas for parcellation. A

Fisher’s-Z transformation was applied to each matrix M to improve the normality of

the correlation coefficients. As density of connections would influence on partitioning

of the network into communities, the obtained functional connectivity matrices were

thresholded at density levels of 1–50 % to examine the effects, where higher density

level corresponds to denser network. The obtained weighted, undirected graphs were

subjected to community detection.
Community detection based on modularity

Communities or modules are defined as subgroups of densely interconnected nodes

in a network (M. E. Newman and Girvan 2004; Radicchi et al. 2004). In this study,

we compared different approaches for partitioning networks into communities, i.e.,

the VTS (Meunier et al. 2009a), the IS (Meunier et al. 2009b) and the GA approaches

(Y. Liu et al. 2014). Different brain atlases for parcellation were also compared. All of the

examined algorithms for community detection in this study were based on the Louvain al-

gorithm, a fast and relatively accurate algorithm, which maximizes modularity of the com-

munity (Blondel et al. 2008). The results of modular decomposition can vary every time

the algorithm is executed due to its heuristic nature, but the variation of modularity over

the execution was considered to be negligible (Blondel et al. 2008). Therefore, the com-

munity detection was performed one hundred times for each connection matrix, and a

single modular structure yielding the highest modularity was selected as a representative

for subsequent assessment of community structure (Han et al. 2014). Although the
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highest Qs could be observed at several iterations, all community structures showing the

highest Q were identical for all atlases and all community detection techniques, suggesting

reliability of the methods. The community structures were obtained independently at each

density level.

For the VTS approach, the community structure of the brain functional network was

generated using the averaged connection matrices across subjects (Meunier et al. 2009a;

Robinson et al. 2015; Sun et al. 2014). The averaged matrices were thresholded at density

levels of 1–50 %. In the Louvain algorithm, the partitioning of the network nodes into

communities is completed by maximizing modularity index Q, which represents the dens-

ity of links inside communities compared to links between communities (Blondel et al.

2008), where the definition of modularity index Q is given in Appendix 1. For the network

with strong community structure, the modularity index typically falls in the range

from 0.3 to 0.7 (M. E. Newman and Girvan 2004). The modularity indices and the

number of modules were also obtained for fifty different density levels from 1 % to

50 % at the interval of 1 %.

For the IS approach, individual community structures were first detected for all sub-

jects using the Louvain algorithm. Then, Normalized Mutual Information (NMI), which

quantifies similarity between two community structures, was calculated for every pos-

sible pair of subjects. The detailed calculation about the NMI is given below. The ob-

tained NMI values were averaged for each subject, and the community structure of the

subject showing the highest averaged NMI value was selected as the representative

(Meunier et al. 2009b).

For the GA approach, a single community structure was detected using individual con-

nection matrices with the algorithm proposed by Liu and colleagues (Y. Liu et al. 2014),

an extension of Blondel’s algorithm maximizing the modularity of individual community

structures. In this algorithm, the change of modularity was calculated for all subjects ex-

cluding outliers, and the change of community structure showing the maximum change

of modularity averaged over the subjects is selected at each step of the greedy algorithm

to find a community structure showing highest modularity among subjects. In this study,

we excluded subjects whose modularity change was outside the 25th and 75th percentiles.

To compare the different community detection algorithms and the different brain at-

lases for parcellation, we extracted three group-based community structures using three

different approaches (VTS, IS and GA) and twenty individual community structures

with the Blondel’s algorithm. The group-based and individual community structures

were obtained for three different brain atlases (AAL, HOA and Dosenbach atlases).

In-house scripts on MATLAB (version R2011b, Mathworks, USA) were used for net-

work analysis. The flowchart of the fMRI data analysis is depicted in Fig. 1.
Agreement with individual community structures

To assess the three community detection techniques, using the different brain atlases

for parcellation, we propose to examine the similarity between a group-based commu-

nity and individual community structures with a non-parametric permutation test. The

similarity between two community structures is quantified by the Normalized Mutual

Information (NMI) (Alexander-Bloch et al. 2012; Kuncheva and Hadjitodorov 2004;

Strehl and Ghosh 2003), which is one of the most popular, similarity measure based on
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information theory. The definition of NMI is given in Appendix 2. The basic idea be-

hind the theory is that, if two communities are similar, less information is necessary

to infer one from the other community structure (Fortunato 2010). The confusion

matrix, which represents overlap between communities, is useful for understanding

the concept of NMI (Kuncheva and Hadjitodorov 2004). If the overlap between

communities represented, i.e., the number of nodes belonging to the same commu-

nity, is high, NMI gets high. The calculation of NMI through confusion matrix is

depicted in Fig. 2.

The NMI was calculated for every pair of the group-based community structure

(VTS, IS and GA) and the individual community structure (20 subjects) at each density

level for three brain atlases (AAL, HOA and Dosenbach). The obtained NMI values

were subjected to a non-parametric permutation test in order to examine agreement of

group-based community structure with individual community structures. For the com-

parison of the NMI values, it is examined whether the number of subjects showing

higher MNI value for one approach was greater than the other approach. In the permu-

tation test, 10,000 iterations were executed for each density level per subject. To

correct for multiple testing, the false discovery rate (FDR) was controlled at the signifi-

cance level of 5 % (Benjamini and Yekutieli 2001). For comparison, a permutation test

on averaged NMI values was also performed.
Permutation tests on modularity indices

To compare the modularity index of the intrinsic functional network for different

approaches, we used a permutation test with 10,000 iterations for each density level

per subject. For modularity indices, we recalculated the modularity indices using the

group-based community structure detected with VTS, IS and GA approaches and

the individual connection matrices. Please note that the modularity indices used for
Fig. 2 An illustration of calculation of Normalized Mutual Information (NMI) quantifying similarity between
two community structures. Colors of the nodes represent assigned community and red circles indicate
overlaps in communities. Confusion matrix is used to measure the overlap between the two community
structures. In the above figure, Community C1 in Network A corresponds to Community C2 in Network B.
The NMI is calculated with the confusion matrix, and gets high when the overlap between the
communities is high
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the statistical tests were different from those used during the community detection.

To correct for multiple testing, the false discovery rate (FDR) was controlled at the

significance level of 5 % (Benjamini and Yekutieli 2001).
Consistency in community structures within iterations

To overcome the heuristic nature of the algorithms for community detection, the par-

tition of the network was performed 100 times and a community showing the highest

modularity was selected as a representative. However, this approach can be applied

only to networks with relatively small number of nodes (90–160 parcellated regions

in this study). For larger networks, it is too time-consuming to repeat the calculation

multiple times.

In order to grasp the nature of the community detection algorithms, the obtained

100 community structures were investigated. For each atlas, group-based communi-

ties detected with VTS and GA algorithms were compared. At each density level,

NMI values between a group-based community and 20 individual communities were

calculated for 100 communities. The obtained NMI values were first averaged over

subjects. Then, the averaged NMI values across iterations and standard deviation of

the values were calculated to investigate consistency in community structure within

iterations in terms of agreement with individual community structures. Additionally,

in order to explore similarity between detected community structures within 100

iterations, NMI values were calculated for all possible pairs of the detected 100

communities.
Results
Modularity and the number of communities

We first compared the global properties of the community structure: the modularity Q

and the number of communities. Figure 3 shows the recalculated modularity indices

averaged over subjects while Fig. 4 shows the number of communities of the group-

based community structures. The modularity indices and the number of communities

for individual community structures are also shown in these figures. As can be seen in

Figs. 3 and 4, the modularity indices and the number of communities decreased as the

density level increased. Generally, the averaged modularity indices were higher for VTS

and GA compared to IS approach while VTS and GA approaches produced the group-

based communities with almost the same modularity at every density level in all atlases.

As expected, the averaged modularity index of individual community structure was

highest for all atlases as Louvian algorithm looks for the community structure showing

the highest modularity. For the number of communities, IS approach tended to detect

more communities while GA approach tended to detect fewer communities. VTS

approach lay in the middle.

Permutation tests on modularity indices showed that both VTS and GA approaches

communities with higher modularity indices compared to IS approach at every density

level. When comparing VTS and GA, GA approach produced community with higher

modularity at a number of density levels (AAL: 1–4, 10 %, HOA: 1–5, 9, 34, 39–42,

44–45 %, Dosenbach: 1–4 %) while no community detected with VTS approach showed

higher modularity than GA.



Fig. 3 Averaged modularity indices Qs were better for VTS and GA, compared with IS approach. Three rows
of symbols on the top of each figure show significant difference (p < 0.05, FDR-corrected) for the comparison
of VTS-IS, VTS-GA and IS-GA. Blue asterisks, green Xs and red crosses indicate significant higher Q values for VTS,
IS and GA respectively. Error bars indicate SEMs
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Agreement with individual community structures

To compare different community detection algorithms and brain atlases for parcellation,

we examined the agreement of the group-based community structure with the individual

community structures. To quantify the similarity of the group-based community structure

with the individual community structures, we computed NMI values between the group-

based and the individual community structures for each approach. Figure 5 shows the

averaged NMI values between the group-based community, partitioned with different

community detection techniques, and individual communities for each brain atlas while

Fig. 6 shows the averaged NMI values between the group-based community for different

brain atlases and individual communities plotted for each community detection approach.

As shown in these figures, the agreement with individual community structures decreased

as the density level increased, suggesting that it is harder to find a single common com-

munity structure as the density of the network increases.

When comparing the different community detection approaches, a small difference

existed in averaged NMI values between them. The GA approach tended to show lower

NMI values for sparser networks, as shown in Fig. 5. In order to get a clearer picture of

which method was superior to the other, we carried out a non-parametric permutation

test on the number of subjects showing higher NMI value between the compared

methods. The permutation test demonstrated significant differences at a number of

density levels. In comparison to IS, VTS produced communities with greater number



Fig. 4 IS approach tended to identify more communities, while GA approach detected the least. Error bars
indicate SEMs
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of subjects showing higher NMI values at density levels of 2, 9–50 % in AAL, 1, 3,

6–14, 15–50 % in HOA, and 2–40, 44–45, 47, 50 % in Dosenbach atlases. When

comparing VTS with GA, VTS tended to show higher agreement with individual

community structures at lower density levels (AAL: 1–6, 10–11, 17, 29, 31, 38 %;

HOA: 1–9, 18–24, 26, 33 %; Dosenbach: 1–13, 17–19, 21–25, 27, 29, 31, 33, 35–36,

38 %) while GA tended to show higher agreement at higher density levels (AAL:

12–13, 32, 40, 44 %; HOA: 10, 34–38, 40–47, 49 %; Dosenbach: 40–42, 46–49 %). In

the comparison of IS with GA, IS tended to show higher agreement at lower density

levels (AAL: 2–6 %; HOA: 2–6 %; Dosenbach: 1–7 %) while GA tended to show

higher agreement at higher density levels (AAL: 11–50 %; HOA: 7–14, 16–50 %;

Dosenbach: 12–21, 25–30, 32, 34, 37, 40, 42–50 %).

The proposed test can be applied for the comparison between brain atlases used for

parcellation. As shown in Fig. 6, Dosenbach atlas showed lower agreement with indi-

vidual community structures than both AAL and HOA at every density level, which

was further confirmed with the permutation tests (p < 0.05, FDR-corrected). In com-

parison of AAL with HOA, AAL showed higher agreement at a number of density

levels (VTS: 1–2 %; IS: 1, 3, 7, 23, 28–29, 32 %; GA: 3–4 %) while HOA showed higher

agreement at a density level of 10 % for GA.

When averaged NMI values were tested, the permutation test was less sensitive com-

pared to that on the number of subjects. For example, VTS-IS comparisons showed no

significant difference for AAL and Dosenbach atlases probably due to large variability

in the IS algorithm. Even for the other comparisons, the permutation tests on averaged



Fig. 5 Averaged NMI between group-based consensus community structure and individual community
structures are shown for different community detection methods. VTS and GA approaches identified better
consensus community structures in terms of the agreement of group-based community structure with
individual community structures. Three rows of symbols on the top of each figure show significant difference
(p < 0.05, FDR-corrected) for the comparison of VTS-IS, VTS-GA and IS-GA, using the proposed method. Blue
asterisks, green Xs and red crosses indicate significant higher NMI values for VTS, IS and GA respectively. Error
bars indicate SEMs
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NMI values showed less sensitivity to the difference between algorithms or atlases in

general. These results indicate that the permutation test on the averaged NMI values is

more sensitive to outliers.
Similarity between group-based community structures

To investigate similarities between group-based community structures detected with

different community detection algorithms, NMI values between group-based com-

munities were calculated as shown in Fig. 7. As can be seen in the figure, NMI values

between VTS and GA approaches fluctuated around relatively higher values (0.8–0.9)

suggesting that the VTS and the GA tended to produce relatively similar community

structures. On the other hand, NMI for VTS-IS and IS-GA were very low particularly

for higher density levels, suggesting that the IS approach produced very different

community structures from the other approaches.
Consistency in community structures within iterations

To investigate consistency in community structures within iterations of community de-

tection, the averaged NMI values and the standard deviations of the values over



Fig. 6 Averaged NMI between group-based consensus community structure and individual community
structures are plotted for different brain atlases. AAL and HOA atlases tended to produce better consensus
community structures, compared to Dosenbach atlas in terms of the agreement of group-based community
structures with individual community structures. Three rows of symbols on the top of each figure show
significant difference (p < 0.05, FDR-corrected) for the comparison of AAL-HOA, AAL-Dosenbach and HOA-
Dosenbach. Blue asterisks, green Xs and red crosses indicate significantly higher NMI values for AAL, HOA
and Dosenbach atlas respectively. Error bars indicate SEMs
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iterations were represented in Fig. 8. As seen in the figure, the variability of the aver-

aged NMI values over iterations was very small at every density level for both VTS and

GA regardless of the brain atlas. These results indicate that both community detec-

tion algorithms produce consistent communities at every iteration in terms of

agreement with individual community structures, suggesting that even a single exe-

cution of the community detection can produce a group-based community with

comparable quality.

Similarity of the obtained community structures within 100 iterations was also ex-

plored as shown in Fig. 9. Generally, VTS produced communities with higher resem-

blance for sparser networks, but the similarity became lower for denser networks. On

the other hand, GA produced relatively consistent results at every density level, except

at lower density levels for Dosenbach atlas.
Summary

In summary, comparing between community detection algorithms, the VTS and the

GA approaches detected community structures with greater agreement with individual

community structures, as compared to the IS approach (Fig. 5). When comparing the

representative group-based communities detected with the different algorithms, the



Fig. 7 NMI between group-based community structures detected with different approaches are shown. VTS
and GA approaches tended to produce similar group-based community structures regardless of brain atlases,
while IS approach identified quite different ones
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VTS and the GA approaches produced relatively similar results while the IS approach

detected very different community structures particularly at higher density levels

(Fig. 7). Additionally, the VTS approach tended to produce better results at relatively

lower density levels (Fig. 8) while the GA approach produced stable results regardless

of the density levels (Fig. 9). When comparing brain atlases for used parcellation, AAL

and HOA atlases were comparable while Dosenbach atlas produced surprisingly worse

results than the other atlases (Fig. 6).

Discussion
In this study, we proposed the method to compare different schemes for community

detection from multiple-subject neuroimaging data to determine which algorithm or

atlas produce the best representative community structure of the group. To the best of

our knowledge, this is the first attempt to assess community structure schemes for

multiple-subject data.

We showed that our method was feasible to real data: brain functional networks

derived from resting-state fMRI data. For this purpose, three community detection

algorithms based on different approaches (i.e., VTS, IS and GA), and three brain atlases

(i.e., AAL, HOA and Dosenbach atlases) used in parcellation were examined. In our

method, the Normalized Mutual Information (NMI) was calculated between a group-

based community and each individual community. The obtained NMI values were

subjected to the permutation test to examine whether there was a significant difference

in the number of subjects showing a greater NMI value for either of the approaches



Fig. 8 Averages and standard deviations of NMI between group-based and individual community structures
over 100 iterations of community detection are shown. Variability in the agreement of the obtained consensus
communities with the individual structures was very small in both approaches
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examined. Our method showed significant differences between community detection

schemes even when no significant difference was found on averaged NMI, suggesting

that our method was more sensitive to the difference in NMI values between algo-

rithms or those between atlases.

Our results indicate that the VTS approach, using the averaged connection matrix as

the representative, can produce surprisingly good results. For the VTS approach,

group-based connectivity pattern can be obtained using more sophisticated method

rather than just averaging such as the modified PCFDR algorithm based on a multi-

subject, error-rate-controlled brain connectivity modeling approach (Liu et al. 2012),

which could result in better results. As the GA and the IS approaches are computation-

ally more expensive, the VTS approach proved to be a relatively good choice. However,

please note that our results are limited to the particular algorithms and dataset that we

examined. Although it is inconsistent with the result showing higher accuracy of the

GA approach in community detection compared to the VTS approach for EEG simu-

lated data (Y. Liu et al. 2014), there are several potential reasons for this, e.g., difference

in data modality (fMRI vs. EEG), temporal resolution of signals and spatial distribution

of sensors. Also, a more elaborate version of the IS approach could produce communi-

ties with higher agreement with individual structures. Although, in the IS algorithm

that we examined, a community showing the highest average NMI value was selected

as a representative, other algorithms following the IS approach can be implemented by



Fig. 9 Averages of NMI between every pair of obtained community structures within 100 iterations are
shown. VTS approach tended to identify similar group-based communities at lower density levels while GA
tended to produce similar group-based communities at higher density levels. Error bars indicate SDs
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integrating individual structures with averaging or voting/consensus algorithms (Strehl

and Ghosh 2003).

In the Dosenbach atlas that showed the worst result, 160 ROIs are identified func-

tionally and are defined as spheres centered at peaks identified with meta-analyses

(Dosenbach et al. 2010) while the ROIs are defined anatomically in AAL and HOA at-

lases. Therefore, the functional distinctiveness of ROIs may be too prominent in

Dosenbach atlas and thus resulted in poorer clustering of ROIs in community detec-

tion. Other community detection algorithms and brain atlases are to be investigated.

In addition to the quality of the obtained common community, the scalability of dif-

ferent methods must be considered to determine the scheme for community structure

analysis on neuroimaging data. First, although we used a greedy Louvain algorithm,

which tries to maximize modularity, for community detection, there are a variety of al-

gorithms based on different approximation methods as the community detection or

clustering is NP-hard (Fortunato 2010). Second, the VTS, the IS and the GA approach

are also different in scalability. Generally, the VTS approach requires the least compu-

tation as the community detection is performed on an averaged network. Thus, it de-

pends only on the community detection algorithm. The IS approach requires to obtain

individual community structures, indicating that the computational time depends on

the number of individual networks. However, if the individual communities are already

given or necessary for other purposes, the relative costs could be comparable with the

VTS approach. The GA approach lies between the VTS and the IS approaches. Further-

more, the network size, i.e., the number of nodes, is crucial although the computational
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time could be less important compared with social or biological networks whose net-

work size is usually much larger than that of brain networks. In case of fMRI brain net-

work, the number of nodes depends on the choice of brain atlas. Practically, the

computational time is almost negligible for the AAL atlas whose node number is 90,

but much longer for the Dosenbach atlas or other atlases such as Cradock atlas consist-

ing of 200 ROIs (Craddock et al. 2012).

There are further several issues to be addressed for community detection on neuro-

imaging data. Although the community detection is a promising approach for studying

mesoscale organization of brain network because of its well-established modular archi-

tecture, there are no established schemes for the employment of the community detec-

tion analysis on neuroimaging data obtained from multiple subjects. Currently, there

are two approaches to investigate the modular organization of the brain network.

Firstly, a single group-based community structure is obtained with a community detec-

tion technique based on any one of the virtual-typical-subject (VTS), the individual

structure (IS), or the group analysis (GA) approach because a single community

structure common among individual subjects is necessary to discuss about brain re-

gions and connections on common ground. Secondary, quantitative metrics measur-

ing global properties of community structure, such as modularity index or the

number of communities, are computed based on individual community structure and

discussed (Bassett et al. 2011). In either case, the community structure analysis is not

used effectively, demanding more sophisticated approaches to neuroimaging data. In

addition, although there are several options for partitioning brain networks into commu-

nities and for dividing whole brain into regions or nodes, there exists no established

scheme for obtaining community structures. Further studies would be necessary to inves-

tigate effects of different scheme on community structure analysis.

In this study, we proposed a method using the permutation test on Normalized Mutual

Information to compare different community detection approaches to neuroimaging data

from multiple subjects. Using the real fMRI data, we demonstrated that our method is feas-

ible for comparing different community detection algorithms and different brain atlases for

parcellation. The results showed that the algorithms based on VTS and GA approaches are

comparable and detected a group-based community structure showing greater agreement

with the individual community structures compared to IS approach, and anatomically

defined AAL and HOA atlases are more appropriate than functionally defined Dosenbach

atlas for community structure analysis. Our method would be a useful tool to evaluate

different approaches for detecting a group-based community structure from multiple-

subject data in terms of the agreement with individual community structures.

Availability of data and materials
The brain network data used in this study are available at "http://sinapseinstitute.org/

projects/cognitiveengr/network_data/". Please refer to Methods in this article for the

details about the datasets.

Appendix 1
Modularity

In this study, we used Louvain algorithm, which is a greedy method trying to optimize

a quality function of clusters, to identify community structures of the brain network

http://sinapseinstitute.org/projects/cognitiveengr/network_data/
http://sinapseinstitute.org/projects/cognitiveengr/network_data/
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(Blondel et al. 2008). The most popular quality function is the modularity of Newman

and Girvan (M. E. Newman and Girvan 2004), which was also used in our study. The

modularity index Q for weighted networks is defined as (Blondel et al. 2008):

Q ¼ 1
2m

X
i;j

W ij−
kikj
2m

� �
δ ci; cj
� �

where Wij is the weight of the edge between the node i and the node j, ki is the sum of
the weights of the edges linking to the node i, ci is the community to which the node i

belongs to, the δ-function δ(u,v) is 1 if u = v and 0 otherwise, and m = ∑i,jWij. If the sum of

the weights of the edges within the communities is no more than that of random network,

Q will be 0. Q approaches to 1 if the network has a strong community structure.

Appendix 2
Normalized mutual information (NMI)

To measure similarity between community structures, Normalized Mutual Information

(NMI), which is one of the most popular metrics for comparing communities, is used

(Fortunato 2010; Strehl and Ghosh 2003). NMI is defined as follows.

NMI A;Bð Þ ¼
−2

XCA

i¼1

XCB

j¼1

Nij log
NijN

Ni:N :j

� �

XCA

i¼1

Ni: log
Ni:

N

� �
þ
XCB

j¼1

N :j log
N :j

N

� �

Where A and B are the community structure of two graphs; CA is the number of

communities in partition A; CB is the number of communities in partition B; N is the

number of nodes, which is the same in both community structures; Nij is the overlap

between A’s community i and B’s community j, i.e. the number of nodes that the com-

munities have in common; Ni. is the total number of nodes in A’s community i; N.j is

the total number of nodes in B’s community j; and this calculation follows the conven-

tion that 0 × log(0) = 0. The NMI ranges from 0 to 1, where 0 signifies that the commu-

nity structures are totally independent and 1 that they are identical.
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