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Abstract 

Cultural data analytics aims to use analytic methods to explore cultural expressions—
for instance art, literature, dance, music. The common thing between cultural expres-
sions is that they have multiple qualitatively different facets that interact with each 
other in non trivial and non learnable ways. To support this observation, we use 
the Italian music record industry from 1902 to 2024 as a case study. In this scenario, 
a possible research objective could be to discuss the relationships between different 
music genres as they are performed by different bands. Estimating genre similarity 
by counting the number of records each band published performing a given genre 
is not enough, because it assumes bands operate independently from each other. 
In reality, bands share members and have complex relationships. These relationships 
cannot be automatically learned, both because we miss the data behind their crea-
tion, but also because they are established in a serendipitous way between artists, 
without following consistent patterns. However, we can be map them in a complex 
network. We can then use the counts of band records with a given genre as a node 
attribute in a band network. In this paper we show how recently developed techniques 
for node attribute analysis are a natural choice to analyze such attributes. Alternative 
network analysis techniques focus on analyzing nodes, rather than node attributes, 
ending up either being inapplicable in this scenario, or requiring the creation of more 
complex n-partite high order structures that can result less intuitive. By using node 
attribute analysis techniques, we show that we are able to describe which music 
genres concentrate or spread out in this network, which time periods show a balance 
of exploration-versus-exploitation, which Italian regions correlate more with which 
music genres, and a new approach to classify clusters of coherent music genres or eras 
of activity by the distance on this network between genres or years.

Keywords:  Cultural data analytics, Complex networks, Data clustering, Temporal 
analysis

Introduction
Node attribute analysis has recently been enlarged by the introduction of techniques 
to calculate the variance of a node attribute (Devriendt et al. 2022), estimate distances 
between two node attributes (Coscia 2020), calculating their Pearson correlations 
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(Coscia 2021), and cluster them (Damstrup et al. 2023) without assuming they live in 
a simple Euclidean space—or learnable deformation thereof.

These techniques are useful only insofar the network being analyzed has rich node 
attribute data, and that analyzing their relationships is interesting. This is normally 
the case in cultural analytics, the use of analytic methods for the exploration of con-
temporary and historical cultures (Manovich 2020; Candia et  al. 2019). Example 
range from archaeology—where related artifacts have a number of physical charac-
teristics and can be from different places/ages (Schich et al. 2008; Brughmans 2013; 
Mills et al. 2013); to art history—where related visual artifacts can be described by a 
number of meaningful visual characteristics (Salah et al. 2013; Hristova 2016; Karjus 
et al. 2023); to sociology—where different ideas and opinions distribute over a social 
network as node attributes (Bail 2014; Hohmann et al. 2023); to linguistics—with dif-
ferent people in a social network producing content in different languages (Ronen 
et al. 2014); to music—with complex relations between players and informing meta-
relationships between the genres they play (McAndrew and Everett 2015; Vlegels and 
Lievens 2017).

In this paper we aim at showing the usefulness of node attribute analysis in cul-
tural analytics. We focus on the Italian record music industry since its beginnings in 
the early XX century until the present time. We build a temporally-evolving bipar-
tite network connecting players with the bands they play in. For each band we know 
how many records of a given genre they publish, whether they published a record 
in a given year, and from which Italian region they originate—all node attributes of 
the band. By applying node attribute analysis, we can address a number of interesting 
questions. For instance: 

1.	 How related is a particular music genre to a period? Or to a specific Italian region?
2.	 Is the production of a specific genre concentrated in a restricted group of bands or 

generally spread through the network?
3.	 Does clustering genres according to their distribution on the collaboration network 

conform to our expectation of meta-genres or can we discover a new network-based 
classification?

4.	 Can we use the productivity of related bands across the years as the basis to find eras 
in music production?

The music scene has been the subject of extensive analysis using networks. Some works 
focus on music production as an import–export network between countries (Moon et al. 
2010). Other model composers and performers as nodes connected by collaboration or 
friendship links (Stebbins 2004; Park et  al. 2007; Gleiser and Danon 2003; Teitelbaum 
et al. 2008; McAndrew and Everett 2015). Studies investigate how music consumption 
can inform us about genres (Vlegels and Lievens 2017) and listeners influencing each 
other (Baym and Ledbetter 2009; Pennacchioli et al. 2013; Pálovics and Benczúr 2013). 
Differently from these studies, we do not focus on asking questions about the network 
structure itself. For our work, the network structure is interesting only insofar it is the 
mediator of the relationships between node attributes—the genres, years, and regions 
the bands are active on –, rather than being the focus of the analysis.
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This is an important qualitative distinction, because if one wanted to perform our 
genre-regional analysis on the music collaboration network without our node attribute 
analysis, they would have to deal with complex n-partite objects—a player-band-year-
genre-region network—which can become unwieldy and unintuitive. On the other hand, 
with our approach one can work with a unipartite projection of the player-band relation-
ships, and use years, genres, and regions as node attributes, maintaining a highly intui-
tive representation.

Deep learning techniques and specifically deep neural networks can handle the rich-
ness of our data (Aljalbout et al. 2018; Aggarwal et al. 2018; Pang et al. 2021; Ezugwu 
et  al. 2022). These approaches can attempt to learn, e.g., the true non-Euclidean dis-
tances between genres played by bands (Mahalanobis 1936; Xie et al. 2016). The prob-
lem is that this learning is severely limited if the space is defined by a complex network 
(Bronstein et al. 2017), as is the case here. Therefore, one would have to use Graph Neu-
ral Networks (GNN) (Scarselli et al. 2008; Wu et al. 2022; Zhou et al. 2020). However, 
GNNs focus on node analysis (Bo et al. 2020; Tsitsulin et al. 2020; Bianchi et al. 2020; 
Zhou et al. 2020), usually via finding the best way of creating node embeddings (Perozzi 
et al. 2014; Hamilton et al. 2017). GNNs only use node attributes for the purpose of aid-
ing the analysis of nodes rather than analyzing the attributes themselves (Perozzi et al. 
2014; Zhang et al. 2019; Wang et al. 2019; Lin et al. 2021; Cheng et al. 2021; Yang et al. 
2023). Previous research shows that, when focusing on node attributes rather than on 
nodes, the techniques we use here are more suitable than adapting GNNs developed 
with a different focus (Damstrup et al. 2023).

Another class of alternative to deal with this data richness is to use hypergraphs 
(Bretto 2013) and high order networks (Bianconi 2021; Benson et  al. 2016; Lambiotte 
et al. 2019; Xu et al. 2016). With these techniques, it is possible to analyze relationships 
involving multiple actors at the same time—rather than only dyadic relationships like in 
simpler network representations—and encode path dependencies—e.g. using high order 
random walks where a larger portion of the network is taken into account to decide 
which node to visit next (Kaufman and Oppenheim 2020; Carletti et al. 2020). While a 
comparative analysis between these techniques and the ones used in this paper is inter-
esting, in this paper we exclusively focus on the usefulness of techniques based on node 
attribute analysis. We leave the comparison with hypergraphs and high order networks 
as a future work.

Our analysis shows that the node attribute techniques can help addressing a num-
ber of interesting research tasks in cultural data analytics. We show that we are able to 
describe the eclecticism required by music genres—or expressed in time periods –, by 
how dispersed they are on the music network. We can determine the geographical con-
nection of specific genres, by estimating their correlation not merely based on how many 
bands from a specific region play a genre, but how bands not playing that genre relate 
with those that do. We can create new genre categories by looking at how close they are 
to each other on the music network. We can apply the same logic to discover eras in Ital-
ian music production, clustering years into coherent periods.

Finally, we show that our node attribute analysis rest on some assumptions that are 
likely to be true in our network—that bands tend to share artists if they play similar gen-
res, in similar time periods, and hailing from similar regions.
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We release our data as a public good freely accessible by anyone (Coscia 2024), along 
with all the code necessary to reproduce our analysis.1

Data
In this section we present our data model and a summary description of the data’s main 
features. Supplementary Material Section 1 provides all the details necessary to under-
stand our choices when it comes to data collection, cleaning, and pre-processing.

Data model

To obtain a coherent network and to limit the scope of our data collection, we focus 
exclusively on the record credits from published Italian bands. The data from this pro-
ject comes from crowd-sourced user-generated data. We mainly use Wikipedia2 and 
Discogs.3 We should note that these sources have a bias favoring English-speaking pro-
ductions. While this bias does not affect our data collection too much, since we focus 
on Italy without comparing it to a different country/culture, it makes it more likely that 
there are Italian records without credits, or that are simply missing.

Figure  1 shows our data model, which is a bipartite network G = (V1,V2,E) . The 
nodes in the first class V1 are artists. An artist is a disambiguated physical real person. 
The nodes in the second class V2 are bands, which are identified by their name. Note that 
we consider solo artists as bands, and they are logically different from the artist with the 
same name. Note how in Fig. 1 we have two nodes labeled “Ginevra Di Marco”, one in 
red for the band and the other in blue for the artist.

Each edge (v1, v2, t)—with v1 ∈ V1 and v2 ∈ V2—connects an artist if they participated 
in a record of the band. The bipartite network is temporal. Each edge has a single attrib-
ute t reporting the year in which this performance happened. This implies that there are 

Fig. 1  Our bipartite network data model. Artists in blue, bands in red. Edges are labeled with the first-last 
year in which the collaboration was active. The edge width is proportional to the weight, which is the 
number of years in which the artist participated to records released by the band

1  http://​www.​miche​lecos​cia.​com/?​page_​id=​2336.
2  https://​it.​wikip​edia.​org.
3  https://​www.​disco​gs.​com/.

http://www.michelecoscia.com/?page_id=2336
https://it.wikipedia.org
https://www.discogs.com/
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multiple edges between the same artist and the same band, one per year in which the 
connection existed—for notation convenience, we can use wv1,v2 to denote this count for 
an arbitrary node pair (v1, v2) , since it is equivalent to the edge’s weight.

We have multiple attributes on the band. The attributes are divided in three classes. 
First, we have genres. We recover from Discogs 477 different genres/styles that have 
been used by at least one band in the network. Each of these genres is an attribute of 
the band, and the value of the attribute is the number of records the band has released 
with that genre. We use S to indicate the set of all genres, and show an example of these 
attributes in Table  1 (first section). The second attribute class is the one-hot encoded 
geographical region of origin, with each region being a binary vector equal to one if the 
band originates from the region, zero otherwise. We use R to indicate the set of regions. 
Table 1 (second section) shows a sample of the values of these attributes. The final attrib-
ute class is the activity status of a band in a given year—with Y being the set of years. 
Similarly to the geographical region, this is a one-hot encoded binary attribute. Table 1 
(third section) shows a sample of the values of these attributes.

Summary description

For the remainder of the paper, we limit the scope of the analysis to a projection of our 
bipartite network. We focus on the band projection of the network, connecting bands if 
they share artists. We do so to keep the scope contained and show that even by looking 
at a limited perspective on the data, node attribute analysis can be versatile and open 
many possibilities. Supplementary Section  2 contains summary statistics about the 
bipartite network and the other projection—connecting artists with common bands.

There are many ways to perform this projection (Newman 2001; Zhou et  al. 2007; 
Yildirim and Coscia 2014), which result in different edge weights. Here we weight edges 
by counting the number of years a shared artist has played for either band. Supplemen-
tary Material Section 1 contains more details about this weighting scheme. Since we care 
about the statistical significance—assuming a certain amount of noise in user-generated 
data—we deploy a network backboning technique to ensure we are not analyzing ran-
dom fluctuations (Coscia and Neffke 2017).

Table  2 shows that the band projection has a low average degree and density, with 
high clustering coefficient and modularity—which indicate that one can find meaningful 
communities in the band projection. These are are typical characteristics of a wide vari-
ety of complex networks that can be found in the literature.

Table 3 summarizes the top 10 bands according to three standard centrality measures: 
degree, closeness, and betweenness centrality. Degree is biased by the density of the hip 
hop cluster—which, as we will see, is a large quasi-clique, including only hip hop bands. 
Closeness is mostly dominated by alternative rock bands, as they happen to be in the 
center of mass of the network. The top bands according to betweenness are those bands 
that are truly the bridges connecting different times, genres, and Italian regions. Note 
that we analyze the network as a cumulative structure, therefore these centrality rank-
ings are prone to overemphasize bands that are in the central period of the network, as 
they naturally bridge the whole final structure. In other words, it is harder to be central 
for very recent or very old bands.
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We visualize the band projection to show visually the driving forces behind the edge 
creation process: temporal and genre assortativity. For this reason we produce two visu-
alizations. First, we take on the temporal component in Fig. 2. The network has a clear 
temporal dimension, which we decide to place on a left-to-right axis in the visualization, 
going from older to more recent.

Second, we show the genre component in Fig.  3, which instead causes clustering—
the tendency of bands playing the same genre to connect to each other more than with 
any other band. For simplicity, we focus on the big three genres—pop, rock, and elec-
tronic—plus hip hop, since the latter creates the strongest and most evident cluster not-
withstanding being less popular than the other three genres. For each node, if the band 
published more than a given threshold records in one of those four genres, we color 
the node with the most popular genre among them. If none of those genres meets the 
threshold, we count the band as playing an “other” generic category.

This node categorization achieves a modularity score of 0.524, which is remarkably 
high considering that it uses no network information at all—and it is not a given that this 
is the correct number of communities. This is a sign that the network is strongly assor-
tative by genre. With our division in four genres plus other, we observe an assortativity 
coefficient of 0.689, which is quite high. The assortativity coefficient for the average year 
of activity is even higher (0.91).

We omit showing the network using the regional information on the bands for two 
reason. First, there are too many regions (20) to visualize them by using different colors 
for nodes. Second, the structural relationship between the network and the regions is 

Table 2  Summary statistics for the projected networks

Variable Band

# Nodes 2447

# Edges 6512

Avg deg 5.3

Density 0.0022

Clustering 0.4160

Modularity 0.8437

Table 3  The top 10 bands in the band projection according to different centrality measures

In bold we have nodes central in multiple measures

# Degree Closeness Betweenness

1 Night Skinny Calibro 35 Roberto Gatto
2 Marracash Giorgio Canali & Rossofuoco Adriano Celentano

3 DJ Double S Le Luci della Centrale Elettrica Vinicio Capossela
4 Bassi Maestro Vinicio Capossela Luca Carboni
5 Jake La Furia Dente Marcello Giombini

6 Noyz Narcos Afterhours Pietro Umiliani

7 Fabri Fibra Roberto Gatto Renato Sellani

8 Emis Killa Elisa Cube

9 Gemitaiz Luca Carboni Tullio Pane

10 Salmo Gianni Maroccolo Ennio Morricone
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Fig. 2  The temporal component of the band projection. Each node is a band. Edges connect bands with 
significant number of artist overlap. The edge’s color encodes its statistical significance (in increasing 
significance from bright to dark). The edge’s thickness is proportional to the overlap weight. The node’s size 
is proportional to its betweenness centrality. The node’s color encodes the average year of the band in the 
data—from blue (low year, less recent) to red (high year, more recent)

Fig. 3  The genre component of the band projection. Same legend as Fig. 2, except for the node’s color. Here, 
color encodes the dominant genre among pop (green), rock (red), electronic (purple), hip hop (blue), and 
other (gray)
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weaker—the assortativity coefficient being 0.223—which would lead to a less clear 
visualization.

From the figures and the preliminary analysis, it appears quite evident that the struc-
ture of the network has a set of complex and interesting interactions with time, genres, 
and, to a lesser extent, geography. This means that it is meaningful to use the network 
structure to estimate the relationship between genres, time, and space. This is the main 
topic of the paper and we now turn our attention to this analysis.

Results
In this section we investigate a number of potential research questions in cultural data 
analytics. Each of them is tackled with a different node attribute analysis technique: 
network variance (Devriendt et al. 2022), network correlation (Coscia 2021; Coscia and 
Devriendt 2024), and Generalized Euclidean distance (Coscia 2020)—which is at the 
basis of node attribute clustering (Damstrup et al. 2023) and era discovery. Supplemen-
tary Material Section 3 explains in details each of these methods.

Genre specialization

When focusing on the genre attributes of the nodes, their network variance can tell us 
how concentrated or dispersed they are in the network. A disperse genre means that the 
bands playing that genre do not share artists, not even indirectly: they are scattered in 
the structure. Vice versa, a low-variance genre implies that there is a clique of artist play-
ing it, and they are shared by most of the bands releasing records with that particular 
genre. Table 4 reports the five most (and least) concentrated genres in the network.

We only focus on genres that have a minimum level of use, in this specific case at least 
1% of bands must have released at least one record using that specific genre. The values 
of network variance should be compared with a null version of the genre—the values 
themselves do not tell us whether they are significant or if we would get that level of 
variance simply given the popularity of the genre. For this reason we bootstrap a pseudo 
p-value for the variance.

Let’s assume that S is a |V | × |S| genre matrix. The Sv,s entry tells us how many records 
with genre s the band v has published. We can create S ′ , a randomized null version of S . 

Table 4  The genres with the five highest and lowest variance in the band projection network

*** p < 0.001 , ** p < 0.01 , * p < 0.05

Genre Variance

Stoner rock 4.954**

Beat 4.772***

Neo-classical 4.605***

Country 4.403*

Post-modern 4.359*

... ...

Happy hardcore 0.249***

Power metal 0.198***

Eurobeat 0.161***

Gabber 0.155***

Trap 0.105***
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In S ′ , we ensure that each null genre has the same number of records as it has in S . We 
do so by extracting with replacement at random 

∑

v∈V

Sv,s bands for genre s. The random 

extraction is not uniform: each band has a probability of being extracted proportional to 
∑

s∈S

Sv,s . In this way, S ′ has the same column sum and similar row sum as S . In other 

word, we randomize S preserving the popularity of each genre and each band. Then, we 
can count the number of such random S ′ s in which the null genre has a higher (lower) 
variance than the observed genre.

Table  4 shows that stoner rock has a high and significant variance, indicating that 
bands playing stoner rock have a low degree of specialization. This can be contextual-
ized by the fact that stoner rock was tried out unsystematically by a few unrelated bands, 
ranging from heavy metal to indie rock. On the other hand, many variants of heavy 
metal have low variance. This can be explained by the fact that heavy metal is a niche 
genre in Italy, and all bands playing specific heavy metal variants know each other and 
share members.

In Fig. 4 we pick two representative genres—Hip Hop and Beat—which both have the 
same relatively high popularity in number of bands playing them, and have a significant 
(low or high) variance and we show how they look like on the network. The figure shows 
that the variance measure does what we intuitively think it should be doing: the Hip Hop 
bands have low variance and therefore strongly cluster in the network, while the Beat 
bands are more scattered.

Temporal variety

We are not limited to the calculation of variances for genres: we can perform the same 
operation for the years. If the variance of a genre tells us how diverse the set of bands 
playing is, the variance of a year can tell us how diverse the year was. Figure 5 shows 
the evolution of variances per year. We test the statistical significance of the observed 
variance value by shuffling the values of the node attribute for a given year a number 
of times, testing whether the observation is significantly higher, lower, or equal to this 
expectation.

Fig. 4  Two genres (a Hip Hop, b Beat) with different variance. Node size, node definition, and edge thickness, 
color, and definition is the same as Fig. 2. The color is proportional to the genre-band node attribute value, 
with bright colors for low values and dark colors for high values
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From the figure we can see that there seems to be two phase transitions. In the 
first regime, we have an infancy phase with low activity and low variance. The first 
phase transition starts in the year 1960 and brings the network to a second regime of 
high activity and high variance. After the peak around the year 1980, a second phase 
transition introduces the third regime from the mid 90 s until the present, with high 
activity but low variance. In the latter years, we see hip hop cannibalizing all genres 
and compressing the record releases to its tightly-knit cluster.

Node attribute correlation

We can now shift our attention from describing a single node attribute at a time—its 
variance as we saw in the previous sections—to describing the relationships between 
pairs of attributes. In this section, we do so by calculating their network correla-
tion. Specifically, we want to make a geographical analysis. The ultimate aim is to 
answer the question: what are some particular strong genre-region associations? We 
can answer the question by calculating the network correlation between two node 
attributes, one recording the genre intensity for a band and the other a binary value 
telling us whether the band is from a specific region or not. The network correla-
tion is useful here, because it grows not only if there are a lot of bands playing that 
specific genre in that specific region, but also if the other bands in the region that 
do not play that genre are close in the network to—i.e. share members with—bands 
playing that genre.

In Table  5 we report some significant region-genre associations. For each region, 
we pick the most popular genre in the network to which they correlate at a signifi-
cant level—and they have the highest correlation among all other regions that cor-
relate significantly to that genre. The significance is estimated via bootstrapping, by 
randomly shuffling the region vector—i.e. changing the set of bands associated to 
the region while respecting its size. Table  5 does not report a genre for all regions, 
because for some regions there was no genre satisfying the constraints. Note that 
some regions might correlate more strongly or more significantly with a genre that is 
not reported in the table, but we omit it if there was another region with a stronger 
correlation for that genre.

Fig. 5  The network variance (y axis) for a given decade (x axis). Background color indicates the statistical 
significance: red = lower than expected, green = higher than expected, white = not significantly different 
from expectation
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Genre clusters

When we measure the pairwise distance between all node attributes systematically 
we can cluster them hierarchically. Here, we do such a network-based hierarchi-
cal clustering on the music genres and styles as recorded by Discogs. The aim is to 
see whether we can find groups of genres that are similar to each other, potentially 
informing a data-driven musical classification. Figure 6 shows a bird’s eye view of the 
hierarchical clustering, with the similarity matrix and the dendrogram.

To make sense of it, we have selected some clusters, for illustrative purposes only. 
Table 6 shows what genres and styles from Discogs end up in the color-highlighted 
clusters from Fig. 6. We can see that the clusters include similar genres which make 
as a coherent set of more general music styles. The figure also highlights that there is 
a hierarchical structure of music styles, with meaningful clusters-within-clusters, and 
clear demarcation lines between groups and subgroups.

Recall that these clusters are driven exclusively by the network’s topology and do 
not use any feature coming from the songs themselves. This means that using a net-
work of shared members among bands is indeed insightful in figuring our the related 
genres these bands play. Therefore, network-based clustering has the potential to 
guide the definition of new musical classifications.

Temporal clusters

We now look at the eras of Italian music we can discover in the data. Figure 7 shows 
the dendrogram, connecting years and groups of years at a small network distance 
to each other. Each era we identify colors its corresponding branch in the dendro-
gram. We avoid assigning an era for years pre-1906 and post-2018, due to issues 
with the representativeness of the data. We also notice that the 1938–1945 period 

Table 5  The most popular genre with the strongest and significant correlation with a given region

The third column shows the significance level of the correlation, estimated via bootstrapping: * p <0.1; **p <0.05; *** p <

0.01

Region Genre Significance

Apulia Latin *

Calabria Hip Hop *

Campania Folk, World, & Country *

Emilia-Romagna House **

Friuli Reggae ***

Lazio Soundtrack ***

Liguria Prog rock ***

Lombardy Electronic ***

Marche Rock *

Piedmont Punk ***

Sardinia Thrash *

Sicily Fado **

Tuscany New wave *

Umbria Cut-up/DJ **

Veneto Krautrock **
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is tumultuous, with many small eras in a handful of years, which is understandable 
given the geopolitical situation at a time, and so we ignore that period as well.

To make sense of temporal clustering, the standard approach in the literature would 
be to compare counts of activities across clusters. However, that would ignore the role 
of the network structure. In our framework, we can characterize eras applying the same 
logic used to find them. We calculate the network distance between a node attribute rep-
resenting the era and each genre. The era’s node attribute simply reports, for each band, 
a normalized count of records they released within the bounds of that era. We normalize 

Fig. 6  The hierarchical genre clusters. The heatmap shows the pairwise similarity among the genres—from 
low (dark) to high (bright) similarity. The dendrograms show the hierarchical organization of the clusters

Table 6  The genres encased in the clusters we highlight in Fig. 6

Color Genres

Blue Calypso, Bolero, Mambo, Cha-Cha, Tango, Beguine, Samba, Rumba

Green Hard Rock, Symphonic Metal, Power Metal, Progressive Metal, Heavy Metal, Speed Metal, 
Thrash, Doom Metal, Death Metal, Black Metal

Purple Trap, Pop Rap, Hip Hop, Conscious, Hardcore Hip-Hop, Boom Bap, Instrumental, Hip House

Black Dub Techno, Acid, Deep Techno, Techno, Minimal, Tech House, Minimal Techno
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so that each era attribute sums to one, to avoid overpowering the signal with the scale of 
the largest and most active eras.

Then, for each era, we report the list of genres that have the smallest distance with that 
era. Note that some genres might still have a small distance with other eras, but we only 
report the smallest. These are the genres we use to label the eras in Fig. 7. These genres 

Fig. 7  The eras dendrogram. Clusters join at a height proportional to their similarity level (the more right, the 
less similar). Colors encode the detected eras with labels on the left



Page 15 of 20Coscia ﻿Applied Network Science            (2024) 9:56 	

are not the most dominant in that era—in almost all cases, pop and rock dominate—but 
they give an intuition of what was the most characteristic genre of the era, distinguishing 
it from the others.

We can see that the characterization makes intuitive sense, with the classical genres 
being particularly correlated with the 1906–1916 era. Beat and rock’n’roll are particu-
larly associated to the 1965–1971 period, the dates corresponding to the British Invasion 
in Italy. Notably, the punk genre has its closest association with the most recent era we 
label, 2006–2017, proving that—at least in Italy—punk is indeed not dead.

Explaining the network

Wrapping up the analysis, one key assumption that underpins the analysis we made so 
far is that the connections in the band projection follow a few homophily rules. We can 
have meaningful genre (Sect. Genre clusters  ) and temporal (Sect. Temporal Clusters) 
clusters using our network distance measures only if bands do tend to connect if they 
have a genre or temporal similarity. Two bands should be more likely to share members 
if they play similar genres and if they do it at a similar point in time. More weakly, corre-
lations between genres and geographical regions (Sect. Node Attribute Correlation ) also 
make sense if bands with similar geographical origins also tend to share members more 
often than expected.

While proving this assumption would require a paper on its own, we can at least 
provide some evidence in favor of its reasonableness. We do so by running two linear 
regressions. In the first regression, we want to explain the likelihood of an edge to exist 
in the band projection with the genre, temporal, and geographical similarity between 
bands, or:

In this formula:

•	 Yu,v is a binary variable, equal to 1 if bands u and v shared at least one member, and 
zero otherwise;

•	 Gu,v is the genre similarity, which is the cosine similarity between the vectors record-
ing how many records of a given genre bands u and v have published;

•	 Ru,v is the region similarity, equal to 1 if the bands originate from the same region, 
and zero otherwise;

•	 Tu,v is the temporal similarity, in which we take the logarithm of the number of years 
in which both bands released a record, plus one to counter the issue when the bands 
did not share a year;

•	 β0 and ǫ are the intercept and the residuals.

Note that Yu,v contains all links with weight of at least one, even those that are not statis-
tically significant and were dropped from our visualizations and analyses from the previ-
ous sections. Moreover, it also has to contain all non-links. However, since the network 
is sparse, it is not feasible to have all non-links in the regression. Thus, we perform a 

Yu,v = β0 + β1Gu,v + β2Ru,v + β3Tu,v + ǫ.
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balanced negative sampling: for each link that exists we sample and include in Yu,v a link 
that does not.

For Gu,v we only consider the most popular 38 genres, since sparsely used genres would 
make bands more similar than what they would otherwise be.

The first column of Table 7 shows the result of the model. The first thing we can see is 
that we can explain 28.4% of the variance in the likelihood of a edge to exist. This means 
that 71.6% of the reasons why two bands share a member is not in our data—be it unre-
corded social networks, random chance, impositions from labels, etc.

However, explaining 28.4% of the variance in the edge existence likelihood still pro-
vides a valid clue that our homophily assumptions should hold. All similarities we con-
sidered play a role in determining the existence of an edge: all of their coefficients are 
positive and statistically significant. Given that these similarity measures do not share 
the same units—and not even the same domain –, one cannot compare the coefficients 
directly. However, we can map their contributions to the R2 by estimating their relative 
importance (Feldman 2005; Grömping 2007), which we do in Fig. 8. From the figure we 
can see that it is the temporal similarity the one playing the strongest role, closely fol-
lowed by genre similarity. Spatial similarity, on the other hand, while still being statisti-
cally significant, provides little to no additional explanatory power to the other factors.

Table 7  The regression results from our two models predicting the existence of a link (column 1) 
and its weight (column 2)

*p <0.1; **p <0.05; ***p <0.01

Dependent variable

Exists Size

(1) (2)

Genre 0.568*** 0.605***

(0.004) (0.008)

Region 0.079*** 0.089***

(0.003) (0.006)

Year 0.248*** 0.325***

(0.001) (0.003)

Constant 0.210*** 0.037***

(0.002) (0.005)

Observations 173,966 86,983

R2 0.284 0.170

Adjusted R2 0.284 0.170

Residual SE 0.423 (df = 173,962) 0.693 (df = 86,979)

F Statistic 22,966.210*** (df = 3; 173,962) 5944.348*** (df = 3; 86,979)

Fig. 8  The relative importance of each explanatory variable to determine the existence of a link between 
two bands in the band projection
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Once we establish that the existence of the connection is related to genre, temporal, 
and geographical similarity, we can ask the same question about the strength of the rela-
tionship between two bands. We apply the same model as before, changing the target 
variable:

Here, log(Wu,v) is the logarithm of the edge weight. Note that here we only focus on 
those edges that have a non-zero weight, i.e. those that exist. This is because we do not 
want this model to try and predict also edge existence, beside its strength, as we already 
took care of that problem with the previous model.

Table 7 contains the results in its second column. We can see that, also in this case, all 
three factors are significant predictors of the edge weights. The number of artists two 
bands share goes up if the two bands play similar genres, with temporal overlap, and if 
they originate from the same region. The R2 is noticeably lower, though, which means 
that log(Wu,v) is harder to predict than Yu,v.

Figure 9 shows the same R2 decomposition we did in Fig. 8 for Yu,v . All explanatory 
variables explain less variance than in the previous model. Relative to each other, the 
temporal overlap is the factor gaining more importance than genre similarity.

Discussion
In this paper we have provided a showcase of the analyses and conclusions one could do 
in cultural data analytics by using node attribute analysis. We focused on the case study 
of Italian music from the past 120 years. We built a bipartite network connecting artists 
to bands and then projected it to analyze a band-band network. We have shown how 
one could identify genres concentrating in such a network, hinting at clusters of bands 
playing homogeneous genres, using network variance. We have shown a geographical 
analysis, calculating the network correlation between the region of origin of bands and 
the genres they play. We have shown how one could create a new music genre taxonomy 
by performing node attribute clustering on music genre data. We also proposed a novel 
way of performing era detection in a network, by finding clusters of similar consecutive 
years, where years are node attributes.

While we believe our analysis is insightful, there are a number of considerations that 
need to be made to contextualize our work. We can broadly categorize the limitations in 
two categories: the one relating to the domain of analysis, and the methodological ones.

When it comes to cultural data analytics, we acknowledge the fact that we are work-
ing with user-generated data. There is no guarantee that the data is free from significant 
mistakes, misleading entries, and incompleteness. Furthermore, our results might not be 
conclusive. We process data semi-automatically, and the coding process is not complete, 

log(Wu,v) = β0 + β1Gu,v + β2Ru,v + β3Tu,v + ǫ.

Fig. 9  The relative importance of each explanatory variable to determine the weight of a link between two 
bands in the band projection
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meaning we miss a considerable amount of the lesser known artists. This also means 
that there could be biases in the data collection, induced by our decision on the order in 
which we explore the structure—which might be focusing too much or too little on spe-
cific areas of Italian music. As a specific example, in our project we have ignored another 
potentially rich source of node attributes: information about the music labels/publishers. 
This is available on Discogs, and we could envision a label to be represented as a node 
vector, whose entries are the number of records a specific label published for a specific 
band. We plan to use this information for future work. The coding process is still ongo-
ing, and we expect to be able to complete the network in the near future.

On the methodlogical side, we point out that what we did is only possible in the pres-
ence of rich metadata—dozens if not hundreds of node attributes. Networks with scarce 
node attribute data would not be amenable to be analyzed with the techniques we propose 
here. However, in cultural data analytics, there is usually a high richness of metadata. Fur-
thermore, many of the node attribute techniques only make sense if the node attributes 
are somehow correlated with the network structure. The musical genre clustering or the 
era detection would not produce meaningful results if the probability of two nodes of con-
necting was not influenced by their attributes—i.e. if the homophily hypothesis does not 
hold. In our case, the homophily assumption likely holds, as we show in Sect. Explaining the 
Network.

When considering some specific analyses we performed other limitations emerge. For 
instance, our era discovery approach exclusively looks at node activities. However, struc-
tural changes in the network’s connections also play a key role in determining disconti-
nuities with the past (Berlingerio et al. 2013). We should explore in future work how to 
integrate our node attribute approach with structural methods. When it comes to the 
use of network variance, how to properly estimate its confidence intervals without using 
bootstrapping remains a future work. Therefore, the results we present here should be 
taken with caution, as it might be that some of the patterns we highlight are not statisti-
cally significant.

On a more practical side, our node attribute techniques hinge on specific matrix 
operations. While these can be efficiently computed on GPU using tensor representa-
tions, this might put a limit on the size of the networks analyzed, which have to fit in 
the GPU’s memory.
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