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Abstract 

There are various methods for handling longitudinal data in graphs and social net-
works, all of which have an impact on the algorithms used in data analysis. This article 
provides an overview of limitations, potential solutions, and unanswered questions 
regarding different temporal data schemas in social networks that are compara-
ble to existing techniques. Restricting algorithms to a specific time point or layer 
has no effect on the results. However, when applying these approaches to a network 
with multiple time points, adjusted algorithms or reinterpretation becomes neces-
sary. Therefore, using a generic definition of temporal networks as one graph, we aim 
to explore how we could analyze longitudinal social networks with centrality measures. 
Additionally, we introduce two new measures, “importance” and “change”, to iden-
tify nodes with specific behaviors. We provide case studies featuring three different 
real-world networks exhibiting both limitations and benefits of the novel approach. 
Furthermore, we present techniques to estimate variations in importance and degree 
centrality over time.

Keywords:  Social network analysis, Longitudinal networks, Importance, Change

Introduction
Network analysis provides a powerful framework to study interrelated data, for example 
social networks. However, there are several dimensions which do not naturally fit into 
network structures and can only hardly be represented. This includes spatial informa-
tion, but also in particular temporal aspects. Thus, studying temporal or longitudinal 
networks lead to the development of additional visualization and analysis methods. The 
easiest approach is working with snapshots, but going ‘beyond the snapshot’ (Ryan and 
D’Angelo 2018) was early identified as research problem. Proposing a generic approach 
which fits into the multitude of different domains working with network approaches and 
the diverse set of applications is a gap in research which we will focus on.

This paper builds upon a generic framework for analyzing centrality measures in longi-
tudinal social networks introduced in Dörpinghaus et al. (2023). The framework, includ-
ing visual analysis tools, which was proposed there is the basis for our research. Here, we 
will extend and evaluate it in terms of its suitability for longitudinal network analysis. To 
this end, we add novel analysis and compare groups of actors, provide improved bounds 
for specific use cases of social networks, and present three complex example use cases 
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on real-world data. Additionally, we present experimental results on random graphs. As 
a further argument in favor of our approach, we present mathematical bounds for cen-
trality measures. The most important addition to our previous paper is, however, the 
introduction of two additional measures: importance and change.

Background

Social network analysis (SNA) is an important part of the social sciences and has been 
used in both theory and practice for several decades. It is important to understand social 
interactions and networks and how they affect society. In the last few years, there has 
been a growing interest in the use of social networks in the historical sciences. In reli-
gious studies, especially narrative studies and theology, social networks have recently 
received considerable attention.

Scholars have always seen SNA as part of the humanities, and in recent years there has 
been a rapid increase in the use of methods from the digital humanities, which includes 
the humanities and computer science. Most works indicate that the data and source 
problems are one of the greatest hurdles to establish a network (Leidwanger et al. 2014). 
Although some preliminary work on how missing data influences a network has been 
carried out (Valeriola 2021), there are still several open questions regarding the stabil-
ity of social networks with respect to missing and additional data. The main question is: 
Can we still use the same algorithms, if we know that the data are incomplete? The need 
to work with temporal data makes an answer to this question even more urgent.

Research questions

The primary objective of this paper is to investigate the potential for extending the 
methods introduced in Dörpinghaus et al. (2023) to model longitudinal social networks. 
To this end, we will address the following sub-research questions: (a) How can we ana-
lyze and compare groups of actors? (b) How can we approximate the change of centrality 
measures over time using more specific properties of social networks? (c) How can we 
apply these methods to real-world data including visual analysis?

Outline

This paper is divided into five sections. After this introduction, we give an overview of 
related work and the background of this research. Here, one focus is on historical net-
work analysis (HNA), because it helps to highlight the challenges and is the natural habi-
tat for longitudinal networks.

Our methodological approach is described in the “Method” section, where we discuss 
the modeling of longitudinal social networks, and their analysis. In the “Experimental 
results” section we describe the data to carry out our experiments. The “Discussion and 
outlook” section is dedicated to the experimental results. Our conclusions are presented 
in the final section.

Related work
Modeling temporal or longitudinal data in SNA is a well-known problem (Holme and 
Saramäki 2019). Temporal data lead to complex network structures and Lemercier 
stated in 2015: “There is no one best way for the analysis or even description of such 
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multidimensional data” (Lemercier 2015). There are several modeling challenges, for 
example with synchronous and asynchronous events or relations, see (Lehmann 2019).

Several methods, usually introducing a novel graph structure, have been proposed, for 
example, modeling with

•	 stream graphs (Latapy et al. 2018, 2019),
•	 Markov chains (Peixoto and Rosvall 2019; Scholtes et al. 2014),
•	 with network snapshots (Xu et  al. 2013), or with a discrete set of time points that 

may contain snapshots.

Most of these approaches are equivalent (Holme and Saramäki 2012; Dörpinghaus et al. 
2023). However, a single graph-theoretic definition covering all these approaches was 
only introduced in Dörpinghaus et al. (2023), although only tested on random graphs. 
Consequently, whereas other methodologies necessitate the introduction of novel graph 
structures or even the conversion of a ‘traditional’ social network or knowledge graph 
into an alternative graph, a generic solution merely incorporates the requisite data 
into the network. This represents a gap in the existing research that requires further 
investigation.

Longitudinal studies represent a central objective in both network science and soci-
ology. In sociology, authors have developed mixed methods approaches to account for 
the integration of thick qualitative insights with quantitative network analysis. These 
approaches have been applied by Lazega and Snijders (2015), Lazega (2017), Lazega 
(2016) and Bellotti (2014). However, these approaches lack generality. For instance, 
in Espinosa-Rada et  al. (2024), the authors defined micro–macro linkage as another 
method. Consequently, these approaches do not contribute to a generic approach; 
rather, they describe specific additional methods that must be integrated into a generic 
approach.

Scientists are not only careful about how to model temporal networks, but also how to 
analyze them: “Traditional analyses of temporal networks have addressed mostly pair-
wise interactions, where links describe dyadic connections among individuals” Cenc-
etti et al. (2021). Concetti et al. thus introduced “temporal hypergraphs” to address this 
challenge. Other researchers proposed visual analysis (Yi et  al. 2010), pattern search 
(Franzke et al. 2018), or probabilistic discrete temporal models (Hanneke et al. 2010). As 
previously stated, it is evident that these methodologies do not possess the capacity for 
generalization; rather, they are typically contingent upon the specific structural charac-
teristics of the graphs in question.

Centrality measures, widely used in SNA, are also challenging in temporal networks. 
Some researchers have proposed definitions of temporal closeness, betweenness, and 
eigenvector centrality, see (Pan and Saramäki 2011; Taylor et  al. 2017; Sizemore and 
Bassett 2018). However, these definitions remain limited to the underlying graph topol-
ogy, e.g. Sizemore and Bassett (2018) work with a contact sequence where nodes remain 
static; (Naima et al. 2023) propose temporal walks. In addition, the natural extension of 
centrality to groups and classes (Everett and Borgatti 1999; Rasti and Vogiatzis 2022) is 
usually omitted. Other authors propose MLI based on network embedding and machine 
learning (ML) (Yu et al. 2020). In general, ML approaches are widely used in dynamic 
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networks, not only in temporal networks, see (Cinaglia and Cannataro 2022). However, 
these approaches – although providing significant insights on the networks – are usu-
ally not comparable to the results of centrality measures, which makes them difficult to 
reproduce. Thus, directly related to a generic definition of temporal networks is a second 
gap: How can algorithms track and use this temporal data, and how does this affect the 
analysis of networks, e.g., with centrality measures? In this paper, we will try to bridge 
this gap with the approaches introduced in Dörpinghaus et al. (2023) and apply them to 
real-world networks.

These issues may be due to the fact that several aspects of knowledge graphs and the 
semantic web are not widely perceived in the SNA community. They have only recently 
been brought together (Dörpinghaus et al. 2022). Barats et al. conclude in 2020: FAIR 
data, a topic directly related to knowledge graphs, “remains a theoretical discussion 
rather than a shared practice in the field of humanities and social sciences.” Barats et al. 
(2020) As has been demonstrated previously, social networks and knowledge graphs 
share not only a common data structure – both are graphs – but knowledge graphs can 
also be regarded as a generalization of social networks. Categories for nodes and edges 
can be modeled as (RDF) classes (Dörpinghaus et al. 2022). Consequently, our objective 
is to address the research questions using knowledge graphs, with the aim of establishing 
a connection between the two domains.

Method
We will use a definition of a knowledge graph1 that combines the approaches of Franzke 
et al. (2018), Dörpinghaus et al. (2022):

Definition 1  (Temporal social network) A Social Network is a graph G = (V ,E,T ) 
with vertices (nodes) v ∈ V  , edges (relations) e ∈ E and a time domain T = {t0, ..., tk} 
where ti ∈ R and T  is sorted ascending, which means ti < ij ∀i < j.

Every node and edge may exist at one or multiple intervals of time-
points [ts, te] = {x ∈ T : ts ≤ x ≤ te; ts, te ∈ T } denoted by t(v) and t(e). Thus, 
t : V ∪ E → I ⊆ R . We denote the graph G at time t by

so that

Both edges and vertices are part of previously well-defined categories C1, ...,Cn , which 
means V ⊆ C1 ∪ C2 ∪ ... ∪ Cn and E ⊆ R1 ∪ R2 ∪ ... ∪ Rm.

Is is important to notice, that – in contrast to other definitions, e.g. Santoro and Sarpe 
(2022) – both edges and nodes are temporal. Unless otherwise noted, we assume that G 

Gt =
(

V t
,Et

)

, where

V t = {v ∈ G |t ∈ t(v)}, Et = {v ∈ E |t ∈ t(e)}

⋃

t∈T

Gt = G.

1  Consequently, in this paper, the terms “social networks” and “knowledge graphs” are used synonymously. In this defini-
tion, both share a common notation and a common toolbox.
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is an undirected graph. We will now present examples of the notation introduced above. 
It should be noted that the desired properties of this network have not yet been defined. 
However, we will subsequently examine the impact of very unstable or link-stream style 
networks.

Each vertex v ∈ V  has a lifetime t(v). In general, any edge connected to v may only 
exist for times t ∈ t(v) . But this rule is not strict. For example, we can define categories 
for successors Ts and predecessors Tp , so that these edges can indicate a predecessor of a 
certain position at any time. To illustrate, a company (denoted as a) may be acquired by 
another company (denoted as b), which suggests that a can be considered a predecessor 
of b. Similarly, a historical figure may succeed another in a distinct position. The mod-
eling of these relationships relies on the specific context and research questions.

For these edges we set t(e) = ∅ , they are ‘timeless’. The necessity of these nodes is evi-
dent in specific modeling scenarios, such as the representation of locations. Addition-
ally, the construction of a compatible model with certain other approaches necessitates 
their inclusion. In addition, v can be part of several categories, e.g., it can be an actor 
v ∈ Ca and a politician v ∈ Cp . Thus, our approach can combine static and temporal 
information.

It was shown in Dörpinghaus et al. (2023) that this definition is equivalent to stream 
graphs. Here, the only difficulties are those edges and vertices that are ‘timeless’. How-
ever, extending their interval to T  models their behaviour in the intended way. It is quite 
easy to see that both approaches are also equivalent to models using snapshots of time 
points (Yu et al. 2020). For a detailed overview we refer to Holme and Saramäki (2012).

Thus, Definition 1 is well aligned with other approaches. However, it is also compat-
ible with semantic web approaches and makes it easier to integrate analysis approaches. 
We will now move on to modelling longitudinal social networks with semantic web 
technologies.

Modelling longitudinal social networks

The initial definition of a social network in Dörpinghaus et  al. (2022) corresponds to 
the definition of a knowledge graph. In particular, the categories for nodes C1, ...,Cn and 
edges R1, ...,Rm can be modelled using RDF classes. So we need to add time intervals to 
nodes and edges. To do this, Hobbs and Pan introduced the time ontology, see (Hobbs 
and Pan 2004; Grüninger 2011). Here they use a function duration: Intervals × Tempo-
ralUnits to express intervals. We can set duration(v) = t(v) and duration(e) = t(e) for 
any node v ∈ V  and edge e ∈ E.

Thus, any social network according to the knowledge graph definition in Dörpinghaus 
et  al. (2022) can be easily transformed into a temporal social network, where time is 
modelled as a property of nodes and edges.

Example 1  Consider the graph G = (V ,E,T ) in Fig.  1 with V = {v1, v2, v3} and 
E = {e1, e2} and a set of time intervals t(v1) = [1, 6] , t(v2) = [2, 4] , t(v3) = [4, 6] , 
t(e1) = [3, 4] and t(e2) = [4, 4] . They also provide a visualisation according to Sizemore 
and Bassett (2018): We visualise time by plotting a sequence of edges on a time scale. 
However, we extend the latter approach by adding information about the lifetime of 
nodes. In this case, each lifetime can be mapped according to the temporal duration.
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It is worth noting that the general knowledge graph definition of a social network is 
open to adding a variety of additional data while maintaining the general graph struc-
ture. Thus, it is useful for modelling not only temporal social networks, but also any 
other temporal data, e.g., disease models.

All graph structures naturally extend to temporal graphs, e.g., the degree d(v) of a node 
v at timepoint t can be denoted by dt(v) . See Appendix B for details.

Analysing networks

For a detailed overview of centrality measures, we first follow (Dörpinghaus et al. 2023). 
We can consider the series of a particular measure, e.g., a generic c (centralitym which 
could refer, for example, to closeness – cc – or betweenness centrality – bc), which is 
basically a vector in R|T |:

Recall that T = {t1, ..., t|T |} is the time domain. Note that cti(v) = ∅ if ti  ∈ t(v).

Definition 2  (Lifespan) For x ∈ V  or x ∈ E we set

where l(ti−1, ti) defines the length of time elapsed between two times ti−1 and ti as the 
lifespan of x.

However, if all times are equally distributed, this simplifies to

This allows us to calculate the average temporal centrality of a node v over its lifetime 
which is normalized by the lifespan of a node:

Definition 3  (Average temporal centrality) The average temporal centrality of a node v 
is defined by

(1)c̃(v) =
(

ct1(v), ..., ct|T |(v)
)

.

l(x) =
∑

i∈{1,...,|T |, cti (x)�=∅}

l(ti−1, ti),

(2)l(v) = |T | − |{x ∈ c̃(v) | x = ∅}|.

c(v) =
1

l(v)

∑

t∈T ,ct (v)�=∅

ct(v).

Fig. 1  Illustration of the graph in Example 1 with a definition of lifetimes in the middle and a visualisation of 
the lifetime of edges and the sequence of edges over time (right)
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In “Experimental results” section we will discuss several working examples and offer 
an interpretation of these values in light of the current state of research on degree and 
betweenness centrality.

First, we consider how a centrality measure evolves over time. Since we need to plot 
this for n nodes, we consider a heatmap visualisation that bins the number of nodes in 
a given interval. Next, we can plot the average centrality measure at a particular time 
and the average centrality over all time points, as we show in Fig. 2. This and the follow-
ing two figures are illustrative and based on random graphs; for details, see “Random 
graphs” section.

This figure gives us a good overview of how many nodes are below and above the aver-
age centrality at a given time, and whether the network at a given time is special for the 
scenario. To analyse and compare a particular node with this overall picture, we can plot 
c̃(v) and c(v) , as we show in Fig. 3.

Fig. 2  Illustration of the distribution of a centrality measure over time, grouped into 20 bins between 0 
and 1, as a heatmap. The blue horizontal line refers to the overall average centrality, while the blue dots 
refer to the average degree at a given time. This illustrates the degree centrality for Gs(100, 15, 0.1) , see 
“Approximating the changes over time” section

Fig. 3  Illustration of the distribution of a centrality measure over time, grouped into 20 bins between 0 and 
1, as a heatmap. The blue horizontal line refers to the overall average centrality, while the blue dots refer to 
the average degree at one point in time. Both figures show ˜c(v) and c(v) (green dots and horizontal line, 
respectively) for two different nodes. Left: This node exists over all 15 time points and usually shows that the 
betweenness centrality varies a lot. Right: This node exists from time 1 to 7 and has an increasing degree 
centrality value. The network is based on Gs(100, 15, 0.1)
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Some scholars like (Taylor et al. 2017) considered calculating and plotting c̃(v) , oth-
ers added probabilities (Pan and Saramäki 2011). Thus, in addition to the classical 
approach (e.g. Sizemore and Bassett (2018)), c̃(v) and c(v) allow the study of static 
centrality measures at a time t ∈ T  , comparing the individual centrality value of a 
particular node with the average node degree and the distribution of node degrees. In 
addition, by plotting the series of centrality over time, we can compare the temporal 
centrality measures within a given interval or across the entire timeline. While some 
general measures, such as average temporal centrality, have been studied previously 
(Holme and Saramäki 2019), their interpretation remains vague. If networks change 
significantly over time, this value is not comparable.

For large networks, however, we also want to measure the difference between indi-
vidual actors and the entire network, e.g., which actors have a higher or lower central-
ity measure. For this we can compute the importance of a node v for a given centrality 
measure c at a certain time t, which is basically the distance between the centrality 
value of a node and the average of all nodes:

We can naturally extend this measure over all timepoints to

This allows us to identify those actors in a network that have significantly higher 
importance(v) > 0 or lower importance(v) < 0 . However, this does not help to identify 
actors that change over time, because the importance of an actor that starts with a very 
low importance and gets higher importance over time may sum up to zero. Here we can 
compute the change of an actor v given a vector T̂ = (t ∈ T , ct(v) �= ∅) with all lifetimes 
of v:

With this we can identify those actors that change over time if change(v) > 0 . We will 
now continue with some methods that help to evaluate the change of these measures 
over time.

Approximating the changes over time

Let Gp = {G1, ...Gι} be a series of graphs and p ∈ R with 0 ≤ p ≤ 1 and

for i ∈ {1, ..., ι− 1} . Thus, Gp is a series of graphs with a fixed set of differences and 
changes from one to the other. We will use this formal framework to make some 

(3)importancetc(v) =
1

l(t)



ct(v)−
1

|{u ∈ V , ct(u) �= ∅}|

�

u∈V ,ct (u)�=∅

ct(u)



.

(4)importancec(v) =
∑

t∈T ,ct (v)�=∅

importancet(v).

(5)changec(v) =
1

|T̂ |

∑

i∈{1,...,|T̂ |}

∣

∣

∣
cT̂i(v)− cT̂i+1(v)

∣

∣

∣

|(V (Gi) ∪ V (Gi + 1)) \ (V (Gi) ∩ V (Gi + 1))| ≤ p|V (Gi)|,

|(E(Gi) ∪ E(Gi + 1)) \ (E(Gi) ∩ E(Gi + 1))| ≤ p|E(Gi)|,
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mathematical observations about the measures introduced above, but also to evaluate 
networks. Here, we can either use random networks; see Appendix C for several random 
graph models used in this manuscript. Not only that, but we can also use real networks. 
In this case, the parameter p is not fixed, but changes individually for each step.

Now we can approximate the changes over time, or the error in the centrality meas-
ures that can occur due to these changes. Unless otherwise noted, we will consider 
G

p = {G1, ...Gι}.
In Dörpinghaus et al. (2023) two bound were introduced for betwenness centrality 

(bc) and degree centrality (dc):

Theorem 2  Let i ∈ {1, ...ι− 1} so that v ∈ V (Gi) and v ∈ V (Gi+1) . Then it holds that

For betwenness centrality, they defined

where D(G) is the diameter of G.

Theorem 3  Let i ∈ {1, ...ι− 1} so that v ∈ V (Gi) and v ∈ V (Gi+1) . Then,

holds.

However, in several social networks, nodes are usually not removed. In citation net-
works, for example, it is a rare case that publications are retracted. In this case, we set 
V (Gi + 1) ⊆ V (Gi) . With this, we can make bound 2 more sharp:

Theorem 4  Let i ∈ {1, ...ι− 1} so that v ∈ V (Gi) and v ∈ V (Gi+1) . Then it holds that

Proof  We know that

dci+1(v) ≥
di(v)− p|V (Gi)|

|V (Gi)| − 1+ p|V (Gi)|
,

dci+1(v) ≤
di(v)+ p|V (Gi)|

|V (Gi)| − 1− p|V (Gi)|
.

σ = |N (Gi)|p,

ǫ = min

{

D(Gi)
2
, 2|V (Gi)|p

}

,

bci(v)ǫ ≤ bci+1(v) ≤ bci(v)
1

σ

dci+1(v) ≥
di(v)

|V (Gi)| − 1+ p|V (Gi)|
,

dci+1(v) ≤
di(v)+ p|V (Gi)|

|V (Gi)| − 1− p|V (Gi)|
.

dci(v) =
di(v)

|V (Gi)| − 1
.
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However, due to the definition of Gp , we know that at most p|V (Gi)| new connections 
from v to other nodes can exist in Gi+1 . In addition, di(v) ≤ di+1(v) . Thus, in Gi+1 it 
holds that

In addition, we know that for Gi+1

holds. Hence the claim follows. 	�  �

This allows us to set some bounds for how actors will become more important and 
change in the future. Here we focus on degree centrality. For the following two lem-
mas, p does not describe a global change ratio, but the local change ratio to the future 
time. For Lemma 5 we assume that V (Gi + 1) ⊆ V (Gi) , while this restriction is not 
necessary for the Lemma 6.

Lemma 5  Let G = (V ,E,T ) be a social networks with a time domain T = {t0, ..., tk} . 
For any additional timepoint tk+1 and a node v ∈ V  it holds that

here importancedc(v) denotes the importance in T  and importance+dc(v) for T ∪ tk+1.

Proof  We know by Lemma 4 that

And with this we can find an upper bound for importancet+1
c (v):

Using this bound for the sum in Formula 4 shows the assumption. 	�  �

We can show a similar bound for the change of a node in the network:

di(v) ≤ di+1(v) ≤ di(v)+ p|V (Gi)|.

|V (Gi)| − p|V (Gi)| ≤ |V (Gi+1)| ≤ |V (Gi)| + p|V (Gi)|

importance+dc(v) ≤ importancedc(v)+
1

l(t + 1)(|V (Gi)| − 1+ p|V (Gi)|)


di(v)−
�

u∈V ,dct (u)�=∅

di(u)+ p|V (Gi)|



,

∑

u∈V ,dct (u)�=∅

dct(u) ≤
∑

u∈V ,dct (u)�=∅

di(u)+ p|V (Gi)|

|V (Gi)| − 1+ p|V (Gi)|

ct(v) ≥
di(v)

|V (Gi)| − 1+ p|V (Gi)|

importancet+1
dc (v) ≤

1

l(t + 1)





di(v)

|V (Gi)| − 1+ p|V (Gi)|
−

�

u∈V ,dct (u)�=∅

di(u)+ p|V (Gi)|

|V (Gi)| − 1+ p|V (Gi)|





=
1

l(t + 1)(|V (Gi)| − 1+ p|V (Gi)|)



di(v)−
�

u∈V ,dct (u)�=∅

di(u)+ p|V (Gi)|




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Lemma 6  Let G = (V ,E,T ) be a social networks with a time domain T = {t0, ..., tk} . 
For any additional timepoint tk+1 and a node v ∈ V  it holds that

here changedc(v) denotes the change in T  and change+dc(v) for T ∪ tk+1.

Proof  We know by the Formula 5 and Lemma 2 that

This shows the assumption. 	�  �

We will now continue with experimental results on real-world networks and experi-
ments on random graphs showing the results of these bounds.

Experimental results
Before considering random graph scenarios, we will turn to the three real-world net-
works introduced in “Data” section and begin with Luke’s Gospel.

Data

This section will present the results of three distinct real-world graphs. These networks 
were selected for their ability to exemplify typical social network use cases while repre-
senting the diverse field of applications. The selected networks are comparable to other 
networks that describe socio-patterns, such as human contact networks. A general over-
view will be provided in this section, while a more detailed analysis follows.

The first network S1 is a network of actors in Luke-Acts (Dörpinghaus 2022; Dörp-
inghaus and Stenschke 2021). It thus represents both a narrative and a historical net-
work. The exegetical approach best suited to the questions that need to be answered for 
SNA – and which seeks to examine the social networks represented in biblical literature 
– is a literary approach and narrative criticism. In this analysis, however, we will focus 
on the Gospel of Luke and three different time periods: Before Jesus leaves Galilee (up 
to Lk 9:50, 17 nodes, 37 edges), before Jesus arrives in Jerusalem (Lk 19:27, 57 nodes, 
287 edges), and the entire Gospel (57 nodes, 367 edges). Thus, it will provide a narrative 
evaluation in a simple network at the points where the narrative changes. The density of 
the whole network is d(S1) ≈ 0.23 , the diameter is �(S1) = 4 , and the average clustering 
coefficient is C(S1) ≈ 0.26.
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The second network S2 is a dataset on the development of the assemblies of Breth-
ren in Germany between 2012 and 2023 (Dörpinghaus 2023). The history of the assem-
blies of the Brethren in Germany is constantly being researched, see for example (Riedel 
and Runkel 2015; Kessler 2022; Schafer 2004). This dataset contains data points for 939 
unique congregations (a maximum of 656 nodes per time step), including changes of 
affiliation (e.g., from closed to open Brethren). It contains information for most years, 
but also contains some gaps (2013, 2019, 2022). The dataset presents two challenges that 
are important to our analysis: First, the data is sparse because information is no longer 
available or was never published. The relationships were computed using proximal point 
analysis, i.e. based only on geographic information. Second, the movement soon split 
into several subgroups, e.g., exclusive and open Brethren, and congregations may have 
changed their affiliation over time, making the data even more complex. It is therefore 
necessary to provide an analysis of the groups within the networks. The density of the 
entire network is d(S2) ≈ 0.016 , the network is not connected, and the average cluster-
ing coefficient is C(S2) ≈ 0.63.

The third network S3 is a high energy physics phenomenology citation network 
extracted from the arXiv e-print from January 1993 to April 2003, see (Gehrke et  al. 
2003; Leskovec et al. 2005). The network contains 34,546 papers and 421,578 citations 
within the network. While the data includes timestamps, we will analyze the informa-
tion categorized by year. The density of the whole network is d(S3) ≈ 0.0007 , the net-
work is not connected, and the average clustering coefficient is C(S3) ≈ 0.28.

Our work considers very small ( S1 ) and very large ( S3 ) networks with very different 
topologies. While the density of S1 is high, the other networks have a very low density. 
The average clustering coefficient is very high for S2 ; only S1 is connected.

Fig. 4  Distribution of centrality measures for S1 over time is illustrated in a heatmap. The data is grouped into 
10 bins between 0 and 1. The three centrality measures, degree, closeness and Betweenness centrality are 
represented on the left, middle and right, respectively. We chose to show results for two actors, Jesus and 
John the Baptist, despite average, minimum and maximum values
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Luke’s Gospel

Within New Testament research, the relationship between Jesus, the main figure in 
Luke’s Gospel, and John the Baptist and his disciples remains an open question. See 
(Brownlee 1955; Chauchot 2021) for further discussion. Figure 4 displays the degree, 
closeness, and betweenness centrality development of both figures. No surprises are 
apparent from the figure. Notably, Jesus exhibits a considerably high centrality value 
in all three measures. John the Baptist, however, shows minimal significance since he 
is only a peripheral character in the latter half of Luke’s Gospel. Both actors receive 
above-average ratings.

This does not really help to understand the longitudinal development of actors in 
Luke’s Gospel. It also remains an open question: Which actors would be interesting 
to study? For this, we present an overview of the top five and bottom five nodes in 
terms of importance and change value in Table 1. Here, we focus on degree centrality, 
although this analysis could be carried out for other centrality measures as well. For 
such a small network, however, we found out that the results are similar.

The overall importance is expected: Jesus and John the Baptist are key characters, 
while the disciples of John are merely supporting roles. It is noteworthy that this per-
spective overvalues characters who are important solely in the initial stages of the 
narrative. For instance, Elisabeth and Zacharias hold significance in the early parts of 

Table 1  An overview of the top five and bottom five nodes in terms of importance and change 
value is provided for the network on Luke’s Gospel S1 considering degree centrality

Node Importance

Jesus 1.362810

Elisabeth 0.612810

Zacharias 0.514595

Joseph 0.411654

John the Baptist 0.389595

...

Simon (Pharisee) 0.018797

Maria − 0.195489

Pharisees − 0.231203

Teachers of the law − 0.266917

Disciples of John − 0.338346

Node Change

Jesus 0.366071

John the Baptist 0.160714

Simon Peter 0.107143

Jerusalem 0.107143

Simon 0.107143

...

Maria 0.000000

Joseph 0.000000

Simon (Pharisee) 0.000000

Simon’s mother-in-law 0.000000

Anna 0.000000
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the narrative, but lose prominence as the story progresses. Nevertheless, they remain 
integral to the larger network.

This major disadvantage is crucial for the overall change: If figures such as Maria 
and Herod appear later, they cannot attain a higher value. Consequently, it is unsur-
prising that Jesus and John the Baptist possess a greater change value. In the left panel 
of Fig. 5, we can contrast Elisabeth, who holds a high importance value, and Simon 
Peter, who, based on New Testament research, is a significant character in Luke’s 
Gospel and also boasts a high change value. In Fig.  5(left), we compare Zacharias, 
who has a high importance value, with James, a disciple of Jesus, who has a change 
value of 0.10. It’s crucial to note that the network topology doesn’t undergo significant 
changes from timestep 2 to 3. Therefore, marginal actors continue to have high val-
ues, and it’s difficult but not impossible to identify the actors pushing the narrative.

Including more timepoints could have enhanced the results, as we will demonstrate 
in our next analysis. Thus, to conduct longitudinal analysis, it is essential to account 
for breaks in the narrative. While this study confirms alignment with New Testament 
research, there are no significant findings and they are difficult to interpret.

Figures  4 and 5 illustrate that the importance of nodes increases over time. This 
is due to the fact that more nodes have been observed by the end of the time inter-
val. Consequently, it can be concluded that the notions presented in these plots are 
heavily biased in time. This is a common issue when dealing with temporal networks. 
However, these plots clearly demonstrate these biases by plotting the maximum, min-
imum, and average measures over time.

The assemblies of Brethren in Germany

The development of Brethren assemblies in Germany began in 1849, originating from 
Ireland. For more on this subject, see (Holthaus et  al. 2003; Geldbach 2023). The 
Brethren movement later divided into subgroups, such as the Exclusive Brethren and 
the Open Brethren. The international history of the Brethren movement is intricately 
complex and closely associated with the Baptist church in Germany, as outlined in 
Liese (2007), Geldbach (2023). In Germany, there are a variety of Brethren churches, 
including those affiliated with the BEFG, Open Brethren, Exclusive Brethren, and 
Brethren congregations that have separated themselves from the Exclusive Brethren, 
known as the “blockfree” or “blockfreie Gemeinden”. The conservative Raven Brethren 

Fig. 5  Distribution of centrality measures for S1 over time is illustrated in a heatmap. The data is grouped into 
10 bins between 0 and 1. These two figures show degree centrality, for Elisabeth and Simon Peter (left) and 
Zacharias and James (right)
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have only a small number of congregations. Complicating matters further, some con-
gregations may have changed their affiliations over time.

In Fig.  6, we present the closeness and degree centrality evolution of the groups. 
Notably, only blockfree congregations exhibit below-average centrality while exclusive 

Fig. 6  Distribution of centrality measures for S2 over time is illustrated in a heatmap. The data is grouped into 
10 bins between 0 and 1. The two centrality measures, closeness and degree centrality are represented on 
the left and right, respectively. We chose to group by exclusive Brethren (green), open Brethren (red) and thus 
congregations not affiliated to a church (cyan). Average values are plotted in blue

Table 2  An overview of the top five and bottom five nodes in terms of importance and change 
value is provided for the network on the assemblies of Brethren in Germany S2 considering degree 
centrality

Node Importance

Dautphetal-Hommertshausen 0.159584

Steffenberg-Oberhoerlen 0.146634

Angelburg-Goennern 0.129008

Zwickau-Oberhohndorf (BF) 0.117686

Zwickau-Oberhohndorf (FB) 0.117686

...

Memmingen − 0.088595

Bietigheim-Bissingen − 0.101346

Niederrossbach/Westerwald − 0.117263

Frankfurt am Main − 0.117263

Hof/Saale − 0.117263

Node Change

Duisburg-Homberg 0.045455

Hagen 0.042208

Altena 0.042208

Dillenburg-Donsbach 0.036611

Muenchen-Schwabing 0.035874

...

Wesel-Lackhausen 0.000000

Hattingen 0.000000

Muelheim/Ruhr-Duempten 0.000000

Muelheim/Ruhr 0.000000

Essen-Borbeck 0.000000
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Brethren have the highest values. Another crucial insight is that from 2020 onwards, 
all groups share a common value, making them indistinguishable from each other.

Table 2 displays the top five and bottom five nodes ordered by importance and change 
value for individual congregations. The values, in contrast to S1 , are relatively low. 
Grouping these values by congregation type reveals the following mean importance val-
ues: exclusive Brethren 0.012, open Brethren 0.12, and block-free congregations −0.01; 
the mean change values for these groups are as follows: exclusive Brethren 0.012, open 
Brethren 0.011, and block-free congregations 0.009. These findings are consistent with 
those in Fig. 6(right): blockfree congregations have lower values, but the overall change 
appears to be similar across all groups.

However, an examination of the distribution of importance (Fig. 7) and change (Fig. 8) 
over time reveals some intriguing findings. While both values begin with a considerable 
number of low values, they appear to approach a normal distribution over time. How-
ever, it is uncertain if this phenomenon is universal to social networks. For both meas-
ures, it seems that over time, a greater number of nodes exhibit above-average values, 
while initially, a greater number of nodes have below-average values.

Therefore, for larger networks that possess inherent group data, it is not only rea-
sonable but also insightful to group the data. Although analyzing the total change and 
importance values can prove difficult, grouping the data simplifies the understanding 
and summarization of the longitudinal development. Moving forward, let us now exam-
ine extremely large networks that lack inherent group data.

Fig. 7  Histograms showing the distribution of importance values over the time provided for the network on 
the assemblies of Brethren in Germany S2 considering degree centrality
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Fig. 8  Histograms showing the distribution of importance values over the time provided for the network on 
the assemblies of Brethren in Germany S2 considering degree centrality

Fig. 9  Distribution of betweenness, degree and closeness centrality for S3 and randomly chosen nodes over 
time is illustrated in a heatmap. The data is grouped into 10 bins between 0 and 1. Left: Randomly chosen 
nodes; Middle: Two nodes with highest importance; Right: Two nodes with highest change
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High energy physics phenomenology citation network

The high energy physics phenomenology citation network has no inherent groups, 
but contains 34,546 nodes, making manual data inspection impractical. Comparing 
randomly selected nodes, such as for betweenness centrality, proves unfruitful in 
identifying noteworthy actors, see Fig.  9. Nevertheless, these figures facilitate com-
prehending the overall shift in centrality measures over time. While betweenness only 
has a few nodes with a high degree, the number of nodes with a low degree increases 
significantly over time. However, for closeness centrality, the opposite is true. Since 
the network has a low density, it is expected to find a lot of nodes with a low varying 
degree.

However, Table  3 allows us to identify nodes that have high importance or have 
undergone significant changes. We present the results for the top two ranked nodes 
in Fig. 12. It is apparent that publications 9,302,210 and 9,306,320 are of great impor-
tance, their betweenness centrality values have significantly improved and remain 
close to the maximum value. On the other hand, publications 9,209,262 and 9,303,255 
start with high values, but experience a considerable drop, although they still exceed 
the average betweenness centrality value. Thus, in identifying nodes with unique 

Table 3  An overview of the top five and bottom five nodes in terms of importance and change 
value is provided for the High Energy Physics Phenomenology citation network S3 considering 
betweenness centrality

Node Importance

9302210 0.286474

9306320 0.222511

9303255 0.199420

9603208 0.188684

9410404 0.186773

...

9209206 − 0.003858

9205218 − 0.003858

9210207 − 0.003858

9211330 − 0.003858

9208204 − 0.003858

Node Change

9209262 0.092262

9303255 0.089568

9302210 0.087727

9203203 0.080529

9310366 0.078702

...

9601270 0.000000

9307346 0.000000

9203208 0.000000

9311330 0.000000

9309254 0.000000
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Fig. 10  Histograms showing the distribution of importance values over the time provided for the High 
Energy Physics Phenomenology citation network S3 considering degree centrality

Fig. 11  Histograms showing the distribution of importance values over the time provided for the High 
Energy Physics Phenomenology citation network S3 considering degree centrality

Fig. 12  Distribution of betweenness centrality for S3 over time is illustrated in a heatmap. The data is 
grouped into 10 bins between 0 and 1. Left: Two nodes with highest importance; Right: Two nodes with 
highest change
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properties, importance and change are critical considerations for networks that com-
prise numerous nodes.

Again we will provide an examination of the distribution of importance (Fig.  10) 
and change (Fig. 11) over time. The findings on this large network differ from those 
provided for network S2 . Over all years, there are numerous nodes with a low value 
for both measures, and this does not appear to be changing. The values appear to 
follow a power-law distribution. This clearly demonstrates that there is no universal 
solution for analyzing network change and importance. Instead, it is essential to apply 
visualizations that align with the network topology.

However, it is evident that this method overestimates nodes with a long lifespan, 
which we will discuss as an open research question. Here, normalizing by the lifespan 
of a node might help. Its bias or reasonable understanding heavily depends on the initial 
research question. This issue was problematic for networks with only a few time points, 
as seen in S1 , but not a concern for S3 where citations develop over time. However, these 
networks offer real-world data, and a crucial next step is to assess these methods on ran-
dom graphs with specific, albeit artificial, properties.

Random graphs

We evaluate the degree centrality and betweenness centrality on random graphs, see 
Appendix C for details. First, we consider scale-free networks with n nodes, see (Jackson 
2010). With this, we create a series of random Graphs Gs(n, i, p) which creates one initial 
scale-free network with n nodes and i − 1 more random graphs with a probability of p/2 
for each node and edge to be deleted and p/2 for each node and edge to be deleted and a 
new one created. In addition, we consider scale-free networks and create a series of ran-
dom Graphs Gw(n, i, p) which starts with one initial small world network with n nodes 
and i − 1 more random graphs with a probability of p/2 for each node and edge to be 
deleted and p/2 for each node and edge to be deleted and a new one created.

We will evaluate importance and change for degree, closeness and betwenness central-
ity on the following random graph series:

Fig. 13  Average change ratio for betwenness centrality on different runs of random graphs (scale-free, left, 
and small-world, right)
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•	 Gs(n, 15, p) , p ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4} , 
n ∈ {50, 100, 150, 200, 250, 300}

•	 Gw(n, 15, p) , p ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.45} , 
n ∈ {50, 100, 150, 200, 250, 300}

However, the overall importance average for all these graphs is close to zero. indicating 
that both random graphs display an artificial scenario in which the values for all three 
centrality measures are distributed almost equally without many outliers.

The results for the average change ratio are showcased in Figs. 13, 14, 15. It is worth 
noting that the two distinct random graphs reveal diverse behaviors, and various cen-
trality measures exhibit different outcomes. Overall, scale-free networks typically have a 
low change ratio, even for high values of p. Small-world networks present a clearer view: 
the average change ratio increases for larger p, but then drops after a certain threshold. 
Additionally, the change in degree centrality appears to be the least influenced by graph 
topology.

Further research may be conducted in the direction of random graphs. The extent to 
which these simple random graph models reflect real-world networks remains unclear, 
and the differences between these two analytical approaches serve to highlight this ques-
tion. Furthermore, our findings underscore the necessity for further investigation into 

Fig. 14  Average change ratio for degree centrality on different runs of random graphs (scale-free, left, and 
small-world, right)

Fig. 15  Average change ratio for closeness centrality on different runs of random graphs (scale-free, left, and 
small-world, right)
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graph topology, particularly with regard to the viability of the methodologies proposed 
in this study.

Summarizing the findings on random graphs underscores the necessity of investigat-
ing the impact of graph structures on network robustness and the effects of network 
changes on centrality measures of other nodes. Our analysis of real-world networks 
demonstrated the benefits of conducting longitudinal studies across multiple time steps, 
as analyzing only a few timesteps can hinder identification of the proposed measures’ 
significance. For larger networks and multiple time steps, nodes with distinct properties, 
significance, and variability can indeed be identified. Nonetheless, it is important to note 
that comparing values across various networks is not possible, and analyzing longitudi-
nal social networks still requires manual effort.

Discussion and outlook
Various methods are available for handling longitudinal data in networks. However, all 
of them result in the algorithms analyzing the data being biased. In accordance with 
Dörpinghaus et al. (2023), we have proposed an expanded answer to the query of how 
to universally model longitudinal social networks in a single graph. We have enhanced 
the techniques through the provision of metrics for analyzing larger networks – spe-
cifically node importance and change – in addition to the evaluation and comparison 
of actor groups. The visual analysis was complemented by the use of histogram plots, 
which illustrate the evolution of the data over time, should any changes be observed.

The measures naturally extend centrality measures to longitudinal networks, but they 
require reinterpreting these results and adapting algorithms. It also remains unclear how 
well these measures work for different types of networks, for example since the pro-
posed method overestimates nodes with a long lifespan and the network topology can 
vary. Three real-world examples demonstrate that small networks or those with only a 
few timesteps require significant manual effort and deeper understanding of the net-
work, whereas the proposed measures can be reasonably utilized in larger networks. At 
this stage, it is not possible to determine whether an universal solution that incorporates 
additional normalization or other techniques can be established. However, our approach 
is effective for all centrality measures, but we have only focused on betweenness, close-
ness, and degree centrality. Further research should explore additional centrality meas-
ures and methods such as community detection, as addressing these questions is crucial 
for comprehending the algorithmic difficulties of temporal data in social network analy-
sis. Nevertheless, we could address the third research question, namely how these ana-
lytical methods can be applied to real-world networks. It must be acknowledged that 
there is no universal solution; rather, the researcher must select the most appropriate 
methods for the network in question, taking into account its size and topology.

Our second question was whether we could approximate the change in central-
ity measures, change and importance over time. Our initial investigation (Dörping-
haus et al. 2023) yielded bounds based on degree centrality. Yet, prior knowledge of the 
change ratio p between different time points is necessary for these limits. As p increases, 
the sharpness of these boundaries diminishes. Further research should investigate vari-
ous types of bounds, especially for other centrality measures. Additionally, analyzing 
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graph substructures that impact the temporal behavior of centrality measures could be 
beneficial, particularly when p is unknown.

In general, it does not appear that larger networks are more easily followed longitudi-
nally. This claim would contradict the prevailing consensus in computer and social sci-
ences, which posits that small, dense networks offer deeper analysis opportunities than 
large, “poor” networks. Additionally, the dynamic structure of a graph appears to play an 
important role in its analysis, although this was not explored in this study. For instance, 
a stable graph with marginal additions over time and an interaction network, where the 
graph varies considerably from one time step to the next and is typically close to empty 
at each time t, would yield disparate results. This makes it challenging to assess the 
generality of our claim and is a question for further research, although most networks 
appear to follow the first type.

Overall, we have presented evidence that the proposed methods offer a comprehen-
sive understanding and practical measures for examining longitudinal networks. The 
primary benefit of our approach is that it takes into account the natural extension of 
centrality measures without relying on specific graphs, such as stream graphs. As dem-
onstrated, this means that our approach can be readily applied to pre-existing networks.

Rewriting algorithms for analyzing longitudinal social networks and reinterpret-
ing measures and algorithms requires interdisciplinary discussions between scientific 
domains. Thus, our paper advocates for more interdisciplinary exchange, especially 
among mathematics, computer science, social sciences, and the humanities.

Appendix A: Temporal graph structures
Similar to the approaches of Nicosia et al. (2013), Sizemore and Bassett (2018) we can 
study time-respecting structures in a graph as discussed in Dörpinghaus et  al. (2023). 
However, Definition 1 of temporal social networks makes it easier to generalise graph 
structures as it keeps the generic definition of a graph.

A path p in a graph H = (V ,E) is a set of vertices v1, ..., vt , t ∈ N , for example written 
as

where (vi, vi+1) ∈ E for i ∈ {1, . . . , t − 1} . However, to track the meaning of time in a 
temporal social network G = (V ,E,T ) , we define pt , which is a path p that exists at time 
t. In turn, we define t(p) as the interval of time in which the path p exists in G.

Unless otherwise noted, we use G for a temporal social network G = (V ,E,T ) and H 
for any undirected graph.

We can add this generic notation for other structures as well. For example, we denote 
the time-respecting degree of a node v by dt(v) . In this way, we get a series of temporal 
degree centrality measures (TDC) for a node v ∈ V  denoted by

p = [v1, ..., vt ],

dct(v) =
dt(v)

n− 1
.
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In addition, we can analyse the temporal degree distribution which tells us about the 
network structure since we can distinguish between sparsely and densely connected 
networks.

Betweenness centrality (BC) was first introduced by Freeman (1977) and considers 
other indirect links, see (Schweizer 1996). Given a node v, bc(v) is defined as

that is, we compute the number of all shortest paths Pv(k , j) in a network for all start-
ing and ending nodes k , j ∈ V  that pass through v. Let P(k, j) denote the total number of 
shortest paths between k and j. Then the importance of v is given by the ratio of the two 
values of Pv and P. Again, for any time t ∈ T  we may set Pt

v(k , j) and Pt(k , j) accordingly, 
such that

defines the series of temporal betweenness centrality (TBC). This definition is similar to 
that of Sizemore and Bassett (2018), who, however, used the concept of fastest paths.

We will proceed similarly with closeness centrality (CC). Given a node i ∈ V  we can 
compute the average distance between the first and other nodes j ∈ V  with 

∑

j  =i d(i, j) , 
where d(i,  j) denotes the length of a shortest path between i and j. Then, according to 
Jackson (2010), we can compute closeness-centrality as follows:

Again, with a definition of dt(i, j) for the length of a shortest path at time t ∈ T  at hand, 
we can define temporal closeness centrality (TCC) as

However, these definitions are currently not more than a containment of well-known 
centrality measures on time snapshots of the temporal social network. They allow an 
interpretation of these snapshots, comparable to static social networks, and they provide 
a series of centrality measures that can be interpreted as the progression of these meas-
ures over time.

For social networks, perceiving the world with as few snapshots as possible is most 
feasible. Other approaches, e.g. defining paths closely so that they could split up from 
one time to another, if the interval is so small that an event lasts less, is often neces-
sary to model traffic (Pan and Saramäki 2011). Social interaction, on the other hand, 
does usually change on the basis of longer lasting events. This is a crucial observation, 
because computing temporal paths with increasing timestamps from one node to the 
next is computationally hard, see (Santoro and Sarpe 2022).

bc(v) =
∑

k �=j,v �=k ,v �=j

Pv(k , j)

P(k , j)
·

2

(n− 1)(n− 2)
,

bct(v) =
∑

k �=j,v �=k ,v �=j

Pt
v(k , j)

Pt(k , j)
·

2

(n− 1)(n− 2)

cl(v) =
n− 1

∑

u∈V d(u, v)
.

clt(v) =
n− 1

∑

u∈V dt(u, v)
.
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While interdisciplinary approaches are available, applications from humanities and in 
particular historical networks research lead to a different perspective on data. For exam-
ple, a closed organization may still have an influence on parts of the network or may 
be referred to later. However, with our novel approach, we will evaluate the behavior of 
analysis methods like centrality measures and community detection and discuss limita-
tions and challenges for further research.

Appendix B: Random graphs
For our analysis, we rely on random graphs. The degree distribution provides us with 
information about the network structure since we can distinguish between sparsely and 
densely connected networks. In social network analysis (SNA), the following two graphs 
are widely considered:

Definition 4  (Scale-free network) A network is scale-free if the fraction of nodes with 
degree s follows a power law s−α , where α > 1.

Definition 5  (Small world network (Watts 1999)) Let G = (V ,E) be a connected graph 
with n nodes and average node degree k. Then G is a small-world network if k ≪ n and 
k ≫ 1.

Bollobás et  al. (2003) introduced a widely used graph model with three random 
parameters α + β + γ = 1 . These values define probabilities and thus define attach-
ment rules to add new vertices between either existing or new nodes. This model 
allows loops and multiple edges, where a loop denotes one edge where the endvertices 
are identical, and multiple edges denote a finite number of edges that share the same 
endvertices. Thus, we convert the random graphs to undirected graphs. For testing 
putposes, we scale the number of nodes n and use α = 0.41 , β = 0.54 , and γ = 0.05 . 
This random graph model is generic and feasible for computer simulations for meas-
uring and evaluation purposes, see (Bollobás and Riordan 2003; Kivelä et al. 2014).

One of the core concepts important in social network research is the graph diame-
ter D(G). From the 1960s on, it was widely discusses whether the average path length 
of social networks is near six, see (Milgram 1967). However, there is an ongoing dis-
cussion on this issue, see for example (Watts and Strogatz 1998; Kleinfeld 2002). 
However, it was shown that in a scale-free network the diameter is always lower than 
log(n) , and if the fixed number m of earlier vertices is larger than 1, in general the 
diameter is lower than log(n)

log log(n) , see (Riordan 2004). Here, n describes not only the 
number of steps to create the random graph, but also the number of nodes in the 
graph. While the connection between a particular graph and a particular diameter is 
quite complex, see (Ma et al. 2020), we can rely on these bounds. For small-world ran-
dom graphs we find (Gu et al. 2013) the almost surely upper bound D(G) ≤ 72

p log2 n 
while (Martel and Nguyen 2004) proved the diameter is usually bound by log(n).

The diameter of a scale-free graph is in general quite low, while in small-world 
graphs it is bound by log(n) . However, we may expect random graphs to have a 
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different behavior from real-world social networks. Thus, for some of the following 
proofs we will assume that D(G) ≤ 5.
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